1
|
Kapitza S, Zörner B, Weinmann O, Bolliger M, Filli L, Dietz V, Schwab ME. Tail spasms in rat spinal cord injury: changes in interneuronal connectivity. Exp Neurol 2012; 236:179-89. [PMID: 22569103 DOI: 10.1016/j.expneurol.2012.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 12/16/2022]
Abstract
Uncontrolled muscle spasms often develop after spinal cord injury. Structural and functional maladaptive changes in spinal neuronal circuits below the lesion site were postulated as an underlying mechanism but remain to be demonstrated in detail. To further explore the background of such secondary phenomena, rats received a complete sacral spinal cord transection at S(2) spinal level. Animals progressively developed signs of tail spasms starting 1 week after injury. Immunohistochemistry was performed on S(3/4) spinal cord sections from intact rats and animals were sacrificed 1, 4 and 12 weeks after injury. We found a progressive decrease of cholinergic input onto motoneuron somata starting 1 week post-lesion succeeded by shrinkage of the cholinergic interneuron cell bodies located around the central canal. The number of inhibitory GABAergic boutons in close contact with Ia afferent fibers was greatly reduced at 1 week after injury, potentially leading to a loss of inhibitory control of the Ia stretch reflex pathways. In addition, a gradual loss and shrinkage of GAD65 positive GABAergic cell bodies was detected in the medial portion of the spinal cord gray matter. These results show that major structural changes occur in the connectivity of the sacral spinal cord interneuronal circuits below the level of transection. They may contribute in an important way to the development of spastic symptoms after spinal cord injury, while reduced cholinergic input on motoneurons is assumed to result in the rapid exhaustion of the central drive required for the performance of locomotor movements in animals and humans.
Collapse
Affiliation(s)
- Sandra Kapitza
- Brain Research Institute, University and ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
2
|
Scott ALM, Ramer LM, Soril LJJ, Kwiecien JM, Ramer MS. Targeting myelin to optimize plasticity of spared spinal axons. Mol Neurobiol 2006; 33:91-111. [PMID: 16603791 DOI: 10.1385/mn:33:2:91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 11/30/1999] [Accepted: 07/18/2005] [Indexed: 01/30/2023]
Abstract
Functional re-innervation of target neurons following neurological damage such as spinal cord injury is an essential requirement of potential therapies. There are at least two avenues by which this can be achieved: (a) through the regeneration of injured axons and (b) through promoting plasticity of those spared by the initial insult. There are several reasons why the latter approach may be more feasible, not the least of which are the inhibitory character of the glial scar, the often long distances over which injured axons must regrow, and the fact that spared axons are often already in the vicinity of denervated targets. The challenge is to unveil the well-recognized intrinsic plasticity of spared axons in a way that avoids complications, such as pain or autonomic dysfunction. One approach that we as well as others have taken is to target growth-suppressing signaling pathways initiated in spared axons by myelin-derived proteins. This article reviews models used for the study of spinal axon plasticity and describes the anatomical and behavioral effects of interfering with myelinderived proteins, their receptors, and components of their intracellular signaling cascades.
Collapse
Affiliation(s)
- Angela L M Scott
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
3
|
Ondarza AB, Ye Z, Hulsebosch CE. Direct evidence of primary afferent sprouting in distant segments following spinal cord injury in the rat: colocalization of GAP-43 and CGRP. Exp Neurol 2004; 184:373-80. [PMID: 14637107 DOI: 10.1016/j.expneurol.2003.07.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mechanical and thermal allodynia develops after spinal cord injury in three areas relative to the lesion: below level, at level, and above level. The present study tests colocalization of CGRP, associated with nociceptive neurons, with growth-associated protein (GAP-43), expressed in growing neurites, to test for neurite sprouting as a mechanism for reorganization of pain pathways at the level of the lesion and distant segments. Male Sprague-Dawley rats were divided into three groups: sham control (N = 10), hemisected at T13 and sacrificed at 3 days (N = 5) and at 30 days (N = 5) following surgery, the spinal cord tissue was prepared for standard fluorescent immunocytochemistry using mouse monoclonal anti-GAP-43 (1:200) and/or rabbit polyclonal anti-CGRP (1:200), density of immunoreaction product (IR) was quantified using the Bioquant software and values from the hemisected group were compared to similar regions from the sham control. We report significant increases at C8 and L5, in CGRP-IR in lamina III compared to control tissue (P < 0.05). We report significant bilateral increases in GAP-43-IR at C8, T13, and L5 segments in lamina I through IV, at 3 days post hemisection, compared to control tissue (P < 0.05), some of which is colocalized with alpha-CGRP. The increased area and density of GAP-43-IR is consistent with neurite sprouting, and the colocalization with alpha-CGRP indicates that some of the sprouting neurites are nociceptive primary afferents. These data are consistent with endogenous regenerative neurite growth mechanisms that occur near and several segments from a spinal lesion, that provide one of many substrates for the development and maintenance of the dysfunctional state of allodynia after spinal cord injury.
Collapse
|
4
|
Uchida K, Baba H, Maezawa Y, Kubota C. Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine (Phila Pa 1976) 2002; 27:480-6. [PMID: 11880833 DOI: 10.1097/00007632-200203010-00008] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemical examination of the expression and localization of neurofilament (NF) proteins and growth-associated protein (GAP)-43 in spinal hyperostotic (twy/twy) mice with progressive compression of the cervical spinal cord. OBJECTIVE To determine the biologic functions of NF proteins and GAP-43 in the mouse cervical spinal cord during chronic mechanical compression. SUMMARY OF BACKGROUND DATA The pathologic and repair process in the chronically compressed spinal cord are understood poorly. The present authors hypothesized that there existed an increased expression of NF proteins and GAP-43 in twy/twy mice during the lengthy period of spinal cord compression, which resembles compressive myelopathy. METHODS The cervical spinal cords of 54 twy mice (aged 8 weeks [n = 18], 14 weeks [n = 18], and 20 weeks [n = 18]) and 18 control animals were examined histologically. Using appropriate antibodies, sections were also stained immunohistochemically for NF proteins and GAP-43. RESULTS Separation of the myelin sheath from the axon and axonal swelling with deformation were detected in the anterior and lateral funiculi of the spinalcords of 20-week-old twy/twy mice. No such changes were noted in 8-week-old twy mice. In twy/twy mice aged 8 and 14 weeks with mild-to-moderate compression, weak immunoreactivities (mainly in the white matter) for NF proteins and GAP-43 were noted; however, in 20-week-old twy/twy mice, these axons stained strongly positive and immunoreactive swollen axons were present. The relative area of GAP-43 immunoreactive axons gradually increased between 8 and 20 weeks in each column, particularly in the anterior and lateral funiculi in the contralateral side of compression. CONCLUSIONS The results showed that the expression of NF proteins and GAP-43 in the white matter increased proportionally with the magnitude of spinal cord compression, and indicated the possible involvement of GAP-43 in both axonal degeneration and repair processes in the chronically compressed spinal cord.
Collapse
Affiliation(s)
- Kenzo Uchida
- Department of Orthopaedic Surgery, School of Medicine, Fukui Medical University, Matsuoka, Fukui, Japan
| | | | | | | |
Collapse
|
5
|
Zhang YW, Del Bigio MR. Growth-associated protein-43 is increased in cerebrum of immature rats following induction of hydrocephalus. Neuroscience 1998; 86:847-54. [PMID: 9692721 DOI: 10.1016/s0306-4522(98)00080-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrocephalus is associated with gradual progressive impairment and destruction of cerebral axons and neurons. Growth associated protein-43 appears to be permissive for neuro-axonal regeneration and synaptic remodeling. Hydrocephalus was induced in three-week-old rats by injection of kaolin into the cisterna magna. Compared to controls, cerebral growth-associated protein-43 messenger RNA was significantly up-regulated one week after kaolin injection and the overall cerebral growth-associated protein-43 protein level was significantly higher at four weeks when the ventricles were severely enlarged. One and three weeks after kaolin injection, growth-associated protein-43-like immunoreactivity was increased in periventricular axons, and also in the cerebral cortex at three weeks. Hydrocephalic rats that had been treated by shunting after one week, exhibited growth-associated protein-43 messenger RNA and protein levels intermediate between hydrocephalic rats and control rats. The increase in periventricular axon growth-associated protein-43, early in the course of experimental hydrocephalus, suggests that through early intervention there may be a chance for preventing or reversing the axonal injury. Cortical expression of growth associated protein-43 suggests that an alteration in synaptogenesis may also occur.
Collapse
Affiliation(s)
- Y W Zhang
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
6
|
Abstract
After spinal cord injury, hyper-reflexia can lead to episodic hypertension, muscle spasticity and urinary bladder dyssynergia. This condition may be caused by primary afferent fiber sprouting providing new input to partially denervated spinal interneurons, autonomic neurons and motor neurons. However, conflicting reports concerning afferent neurite sprouting after cord injury do not provide adequate information to associate sprouting with hyper-reflexia. Therefore, we studied the effect of mid-thoracic spinal cord transection on central projections of sensory neurons, quantified by area measurements. The area of myelinated afferent arbors, immunolabeled by cholera toxin B, was greater in laminae I-V in lumbar, but not thoracic cord, by one week after cord transection. Changes in small sensory neurons and their unmyelinated fibers, immunolabeled for calcitonin gene-related peptide, were assessed in the cord and in dorsal root ganglia. The area of calcitonin gene-related peptide-immunoreactive fibers in laminae III-V increased in all cord segments at two weeks after cord transection, but not at one week. Numbers of sensory neurons immunoreactive for calcitonin gene-related peptide were unchanged, suggesting that the increased area of immunoreactivity reflected sprouting rather than peptide up-regulation. Immunoreactive fibers in the lateral horn increased only above the lesion and in lumbar segments at two weeks after cord transection. They were not continuous with dorsal horn fibers, suggesting that they were not primary afferent fibers. Using the fluorescent tracer DiI to label afferent fibers, an increase in area could be seen in Clarke's nucleus caudal to the injury two weeks after transection. In conclusion, site- and time-dependent sprouting of myelinated and unmyelinated primary afferent fibers, and possibly interneurons, occurred after spinal cord transection. Afferent fiber sprouting did not reach autonomic or motor neurons directly, but may cause hyper-reflexia by increasing inputs to interneurons.
Collapse
Affiliation(s)
- N R Krenz
- The John P. Robarts Research Institute and The Neuroscience Program, University of Western Ontario, London, Canada
| | | |
Collapse
|
7
|
Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH. B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 1997; 53:627-86. [PMID: 9447616 DOI: 10.1016/s0301-0082(97)00043-9] [Citation(s) in RCA: 237] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growth-associated protein B-50 (GAP-43) is a presynaptic protein. Its expression is largely restricted to the nervous system. B-50 is frequently used as a marker for sprouting, because it is located in growth cones, maximally expressed during nervous system development and re-induced in injured and regenerating neural tissues. The B-50 gene is highly conserved during evolution. The B-50 gene contains two promoters and three exons which specify functional domains of the protein. The first exon encoding the 1-10 sequence, harbors the palmitoylation site for attachment to the axolemma and the minimal domain for interaction with G0 protein. The second exon contains the "GAP module", including the calmodulin binding and the protein kinase C phosphorylation domain which is shared by the family of IQ proteins. Downstream sequences of the second and non-coding sequences in the third exon encode species variability. The third exon also contains a conserved domain for phosphorylation by casein kinase II. Functional interference experiments using antisense oligonucleotides or antibodies, have shown inhibition of neurite outgrowth and neurotransmitter release. Overexpression of B-50 in cells or transgenic mice results in excessive sprouting. The various interactions, specified by the structural domains, are thought to underlie the role of B-50 in synaptic plasticity, participating in membrane extension during neuritogenesis, in neurotransmitter release and long-term potentiation. Apparently, B-50 null-mutant mice do not display gross phenotypic changes of the nervous system, although the B-50 deletion affects neuronal pathfinding and reduces postnatal survival. The experimental evidence suggests that neuronal morphology and communication are critically modulated by, but not absolutely dependent on, (enhanced) B-50 presence.
Collapse
Affiliation(s)
- A B Oestreicher
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Weaver LC, Cassam AK, Krassioukov AV, Llewellyn-Smith IJ. Changes in immunoreactivity for growth associated protein-43 suggest reorganization of synapses on spinal sympathetic neurons after cord transection. Neuroscience 1997; 81:535-51. [PMID: 9300440 DOI: 10.1016/s0306-4522(97)00151-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cervical or high thoracic spinal cord injury often results in autonomic dysreflexia, a condition characterized by exaggerated spinal reflexes and episodic hypertension, that may be caused by reorganization of synapses on sympathetic preganglionic neurons after loss of supraspinal input. To assess remodelling of synaptic input to identified preganglionic neurons, immunoreactivity for growth associated protein-43 was examined by fluorescent and electron microscopy in control rats with intact spinal cords and in rats seven to 30 days after midthoracic cord transection. This protein is found in mature bulbospinal axons that supply spinal sympathetic nuclei and it is also known to be up-regulated in growing or sprouting axons. In the thoracic cord of control rats, fibres containing growth associated protein-43 surrounded histochemically- or retrogradely-labelled preganglionic neurons and formed a ladder-like pattern in the gray matter. Fibres travelled rostrocaudally along the lateral horn and, at approximately regular intervals, they coursed mediolaterally to form "rungs" of a ladder. Electron microscopy revealed concentrated growth associated protein-43 in many intervaricose axon segments in the intermediolateral cell column. Less frequently, faint immunoreactivity for this protein was found in varicosities, some of which synapsed on retrogradely-labelled sympathoadrenal preganglionic neurons. Electron microscopy of conventionally processed tissue was used to determine the time-course of degeneration of severed axon terminals in the intermediolateral cell column. In spinal rats, terminals with ultrastructural signs of degeneration were numerous in the intermediolateral cell column three days after transection, but were rare at seven days and absent at 14 days. Degenerating terminals were never found in this region in control rats. Thus virtually all supraspinal inputs to preganglionic neurons had been eliminated by seven days after transection. At longer times after injury, terminals containing immunoreactivity for growth associated protein-43 must therefore arise from intraspinal neurons. The distribution of fibres immunoreactive for growth associated protein-43 changed markedly in the first 30 days after cord transection. By 14 days, the ladder-like pattern was distorted rostral to the transection by enlarged masses of immunoreactive fibres surrounding preganglionic neurons, suggesting sprouting of bulbospinal or intraspinal axons or accumulation of this protein in their terminals after the parent axon had been severed. Caudal to the transection, the ladder-like arrangement of fibres was completely replaced by a reticular network of immunoreactive fibres that extended throughout the intermediate gray matter and increased in density between 14 and 30 days. In the intermediolateral cell column, at fourteen days after transection, axons with the ultrastructural features of growth cones contained intense growth associated protein-43 immunoreactivity. Although varicosities of bulbospinal axons containing this protein had degenerated by 14 days, weak immunoreactivity was still found in varicosities that synapsed on labelled sympathoadrenal neurons. Furthermore, immunoreactivity appeared in numerous somata of presumed interneurons throughout the intermediate gray matter by 14 days and the number of somata increased by 30 days. These interneurons may be the source of this protein in the reticular network, and in growth cones and synapses. The loss of supraspinal inputs by seven days after cord transection, and the new intraspinal network of immunoreactive fibres, synapses and cells are consistent with new synapse formation on preganglionic neurons. New synpases on preganglionic neurons may be crucial for the development of autonomic dysreflexia.
Collapse
Affiliation(s)
- L C Weaver
- John P. Robarts Research Institute, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
9
|
Christensen MD, Hulsebosch CE. Spinal cord injury and anti-NGF treatment results in changes in CGRP density and distribution in the dorsal horn in the rat. Exp Neurol 1997; 147:463-75. [PMID: 9344570 DOI: 10.1006/exnr.1997.6608] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) results in chronic pain states in which the underlying mechanism is poorly understood. To begin to explore possible mechanisms, calcitonin gene-related peptide (CGRP), a neuropeptide confined to fine primary afferent terminals in laminae I and II in the dorsal horn of the spinal cord and implicated in pain transmission, was selected. Immunocytochemical techniques were used to examine the temporal and spatial distribution of CGRP in the spinal cord following T-13 spinal cord hemisection in adult male Sprague-Dawley rats compared to that seen in sham controls. Spinal cords from both hemisected and sham control groups (N = 5, per time point) were examined on postoperative day (POD) 3, 5, 7, 14, and 108 following surgery. Sham operated rats displayed CGRP immunoreaction product in laminae I and II outer, Lissauer's tract, dorsal roots, and motor neurons of the ventral horn. In the hemisected group, densiometric data demonstrated an increased deposition of reaction product that was statistically significant, in laminae III and IV, both ipsilateral and contralateral to the lesion that extended at least two segments rostral and caudal to the hemisection site by POD 14, and remained significantly elevated as long as POD 108. Since upregulation alone of CGRP would occur in an acute temporal window (by 2 to 3 days following spinal injury), these results are interpreted to be invasion of laminae III and IV by sprouting of CGRP containing fine primary afferents. Intrathecal delivery of antibodies against purified 2.5S nerve growth factor for 14 days to the hemisected group resulted in CGRP density in laminae I through IV that was significantly less than that seen in untreated or vehicle treated hemisected groups and to sham controls. These data indicate changes in density and distribution of CGRP following spinal hemisection that can be manipulated by changes in endogenous levels of NGF. These observations suggest possible strategies for intervention in the development of various pain states in human SCI.
Collapse
Affiliation(s)
- M D Christensen
- Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | |
Collapse
|
10
|
Nacimiento W, Sappok T, Brook GA, Tóth L, Schoen SW, Noth J, Kreutzberg GW. Structural changes of anterior horn neurons and their synaptic input caudal to a low thoracic spinal cord hemisection in the adult rat: a light and electron microscopic study. Acta Neuropathol 1995; 90:552-64. [PMID: 8615075 DOI: 10.1007/bf00318567] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Structural changes in lumbosacral ventral horn neurons and their synaptic input were studied at 3, 10, 21, 42, and 90 days following low thoracic cord hemisection in adult rats by light microscopic examination of synaptophysin immunoreactivity (SYN-IR) and by electron microscopy. There was an ipsilateral transient decrease in SYN-IR at the somal and proximal dendritic surfaces of anterior horn neurons which extended caudally from the site of injury over a postoperative (p.o.) period of 42 days. Concomitantly, at 21 days p.o., perineuronal SYN-IR started to recover in upper lumbar segments. By 90 days p.o., a normal staining pattern of SYN was noted in upper and mid lumbar segments, but the perineuronal SYN-IR was still slightly below normal levels in low lumbar and sacral segments. Electron microscopy revealed ultrastructural changes coincident with the alterations in SYN-IR. At 3 days p.o., phagocytosis of degenerating axon terminals by activated microglial cells was observed at the somal and proximal dendritic surfaces of ventral horn neurons. These changes were most prominent up to two segments caudal to the lesion. At 10 days p.o., advanced stages of bouton phagocytosis were still detectable in all lumbosacral motor nuclei. Additionally, abnormal axon terminals, with a few dispersed synaptic vesicles and accumulations of large mitochondria, appeared at the scalloped somal surfaces of anterior horn neurons. At 21 days p.o., several large lumbosacral motoneurons had developed chromatolysis-like ultrastructural alterations and motoneuronal cell bodies had become partially covered by astrocytic lamellae. At 42 days p.o., there was a transient appearance of polyribosomes in some M-type boutons. In addition, at 42 and 90 days p.o., a few degenerating motoneurons were detected in all lumbosacral segments, but most displayed normal neuronal cell bodies contacted by numerous intact synapses as well as by astrocytic processes. In contrast to these striking alterations of synaptic input at somal and proximal dendritic surfaces of motoneurons, relatively few degenerating boutons were detected in the neuropil of motor nuclei at all the p.o. times studied. We suggest that the preferential disturbance of the predominantly inhibitory axosomatic synapses on ventral horn neurons may be involved in the mechanisms which influence the well-established increase in motoneuronal excitability after spinal cord injury.
Collapse
Affiliation(s)
- W Nacimiento
- Depart of Neurology, Technical University, School of Medicine, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|