1
|
Tsur O, Khrapunsky Y, Azouz R. Sensorimotor integration in the whisker somatosensory brain stem trigeminal loop. J Neurophysiol 2019; 122:2061-2075. [PMID: 31533013 DOI: 10.1152/jn.00116.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rodent's vibrissal system is a useful model system for studying sensorimotor integration in perception. This integration determines the way in which sensory information is acquired by sensory organs and the motor commands that control them. The initial instance of sensorimotor integration in the whisker somatosensory system is implemented in the brain stem loop and may be essential to the way rodents explore and sense their environment. To examine the nature of these sensorimotor interactions, we recorded from lightly anesthetized rats in vivo and brain stem slices in vitro and isolated specific parts of this loop. We found that motor feedback to the vibrissal pad serves as a dynamic gain controller that controls the response of first-order sensory neurons by increasing and decreasing sensitivity to lower and higher tactile stimulus magnitudes, respectively. This delicate mechanism is mediated through tactile stimulus magnitude-dependent motor feedback. Conversely, tactile inputs affect the motor whisking output through influences on the rhythmic whisking circuitry, thus changing whisking kinetics. Similarly, tactile influences also modify the whisking amplitude through synaptic and intrinsic neuronal interaction in the facial nucleus, resulting in facilitation or suppression of whisking amplitude. These results point to the vast range of mechanisms underlying sensorimotor integration in the brain stem loop.NEW & NOTEWORTHY Sensorimotor integration is a process in which sensory and motor information is combined to control the flow of sensory information, as well as to adjust the motor system output. We found in the rodent's whisker somatosensory system mutual influences between tactile inputs and motor output, in which motor neurons control the flow of sensory information depending on their magnitude. Conversely, sensory information can control the magnitude and kinetics of whisker movement.
Collapse
Affiliation(s)
- Omer Tsur
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yana Khrapunsky
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Kaneshige M, Shibata KI, Matsubayashi J, Mitani A, Furuta T. A Descending Circuit Derived From the Superior Colliculus Modulates Vibrissal Movements. Front Neural Circuits 2018; 12:100. [PMID: 30524249 PMCID: PMC6262173 DOI: 10.3389/fncir.2018.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/22/2018] [Indexed: 11/20/2022] Open
Abstract
The superior colliculus (SC) is an essential structure for the control of eye movements. In rodents, the SC is also considered to play an important role in whisking behavior, in which animals actively move their vibrissae (mechanosensors) to gather tactile information about the space around them during exploration. We investigated how the SC contributes to vibrissal movement control. We found that when the SC was unilaterally lesioned, the resting position of the vibrissae shifted backward on the side contralateral to the lesion. The unilateral SC lesion also induced an increase in the whisking amplitude on the contralateral side. To explore the anatomical basis for SC involvement in vibrissal movement control, we then quantitatively evaluated axonal projections from the SC to the brainstem using neuronal labeling with a virus vector. Neurons of the SC mainly sent axons to the contralateral side in the lower brainstem. We found that the facial nucleus received input directly from the SC, and that the descending projections from the SC also reached the intermediate reticular formation and pre-Bötzinger complex, which are both considered to contain neural oscillators generating rhythmic movements of the vibrissae. Together, these results indicate the existence of a neural circuit in which the SC modulates vibrissal movements mainly on the contralateral side, via direct connections to motoneurons, and via indirect connections including the central pattern generators.
Collapse
Affiliation(s)
- Miki Kaneshige
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken-Ichi Shibata
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Mitani
- Laboratory of Physiology, Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Furuta
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Ebbesen CL, Insanally MN, Kopec CD, Murakami M, Saiki A, Erlich JC. More than Just a "Motor": Recent Surprises from the Frontal Cortex. J Neurosci 2018; 38:9402-9413. [PMID: 30381432 PMCID: PMC6209835 DOI: 10.1523/jneurosci.1671-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Motor and premotor cortices are crucial for the control of movements. However, we still know little about how these areas contribute to higher-order motor control, such as deciding which movements to make and when to make them. Here we focus on rodent studies and review recent findings, which suggest that-in addition to motor control-neurons in motor cortices play a role in sensory integration, behavioral strategizing, working memory, and decision-making. We suggest that these seemingly disparate functions may subserve an evolutionarily conserved role in sensorimotor cognition and that further study of rodent motor cortices could make a major contribution to our understanding of the evolution and function of the mammalian frontal cortex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016,
- Center for Neural Science, New York University, New York, New York 10003
| | - Michele N Insanally
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
- Center for Neural Science, New York University, New York, New York 10003
| | - Charles D Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Masayoshi Murakami
- Department of Neurophysiology, Division of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Akiko Saiki
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Jeffrey C Erlich
- New York University Shanghai, Shanghai, China 200122
- NYU-ECNU Institute for Brain and Cognitive Science at NYU Shanghai, Shanghai, China 200062, and
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China 200062
| |
Collapse
|
4
|
Baldwin MKL, Young NA, Matrov D, Kaas JH. Cortical projections to the superior colliculus in grey squirrels (Sciurus carolinensis). Eur J Neurosci 2018; 49:1008-1023. [PMID: 29450943 DOI: 10.1111/ejn.13867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 01/07/2023]
Abstract
The superior colliculus is an important midbrain structure involved with integrating information from varying sensory modalities and sending motor signals to produce orienting movements towards environmental stimuli. Because of this role, the superior colliculus receives a multitude of sensory inputs from a wide variety of subcortical and cortical structures. Proportionately, the superior colliculus of grey squirrels is among the largest in size of all studied mammals, suggesting the importance of this structure in the behavioural characteristics of grey squirrels. Yet, our understanding of the connections of the superior colliculus in grey squirrels is lacking, especially with respect to possible cortical influences. In this study, we placed anatomical tracer injections within the medial aspect of the superior colliculus of five grey squirrels (Sciurus carolinensis) and analysed the areal distribution of corticotectal projecting cells in flattened cortex. V1 projections to the superior colliculus were studied in two additional animals. Our results indicate that the superior colliculus receives cortical projections from visual, higher order somatosensory, and higher order auditory regions, as well as limbic, retrosplenial and anterior cingulate cortex. Few, if any, corticotectal projections originate from primary motor, primary somatosensory or parietal cortical regions. This distribution of inputs is similar to the distribution of inputs described in other rodents such as rats and mice, yet the lack of inputs from primary somatosensory and motor cortex is features of corticotectal inputs more similar to those observed in tree shrews and primates, possibly reflecting a behavioural shift from somatosensory (vibrissae) to visual navigation.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA.,Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Nicole A Young
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA.,Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Denis Matrov
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Neuropsychopharmacology, Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA
| |
Collapse
|
5
|
Moore JD, Kleinfeld D, Wang F. How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci 2014; 37:370-80. [PMID: 24890196 DOI: 10.1016/j.tins.2014.05.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 01/23/2023]
Abstract
Mammals perform a multitude of well-coordinated orofacial behaviors such as breathing, sniffing, chewing, licking, swallowing, vocalizing, and in rodents, whisking. The coordination of these actions must occur without fault to prevent fatal blockages of the airway. Deciphering the neuronal circuitry that controls even a single action requires understanding the integration of sensory feedback and executive commands. A far greater challenge is to understand the coordination of multiple actions. Here, we focus on brainstem circuits that drive rhythmic orofacial actions. We discuss three neural computational mechanisms that may enable circuits for different actions to operate without interfering with each other. We conclude with proposed experimental programs for delineating the neural control principles that have evolved to coordinate orofacial behaviors.
Collapse
Affiliation(s)
- Jeffrey D Moore
- Graduate Program in Neurosciences, UC San Diego, La Jolla, CA 92093, USA; Department of Physics, UC San Diego, La Jolla, CA 92093, USA.
| | - David Kleinfeld
- Graduate Program in Neurosciences, UC San Diego, La Jolla, CA 92093, USA; Department of Physics, UC San Diego, La Jolla, CA 92093, USA; Section on Neurobiology, UC San Diego, La Jolla, CA 92093, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Alves JN, Muir EM, Andrews MR, Ward A, Michelmore N, Dasgupta D, Verhaagen J, Moloney EB, Keynes RJ, Fawcett JW, Rogers JH. AAV vector-mediated secretion of chondroitinase provides a sensitive tracer for axonal arborisations. J Neurosci Methods 2014; 227:107-20. [PMID: 24583077 DOI: 10.1016/j.jneumeth.2014.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 01/16/2023]
Abstract
As part of a project to express chondroitinase ABC (ChABC) in neurons of the central nervous system, we have inserted a modified ChABC gene into an adeno-associated viral (AAV) vector and injected it into the vibrissal motor cortex in adult rats to determine the extent and distribution of expression of the enzyme. A similar vector for expression of green fluorescent protein (GFP) was injected into the same location. For each vector, two versions with minor differences were used, giving similar results. After 4 weeks, the brains were stained to show GFP and products of chondroitinase digestion. Chondroitinase was widely expressed, and the AAV-ChABC and AAV-GFP vectors gave similar expression patterns in many respects, consistent with the known projections from the directly transduced neurons in vibrissal motor cortex and adjacent cingulate cortex. In addition, diffusion of vector to deeper neuronal populations led to labelling of remote projection fields which was much more extensive with AAV-ChABC than with AAV-GFP. The most notable of these populations are inferred to be neurons of cortical layer 6, projecting widely in the thalamus, and neurons of the anterior pole of the hippocampus, projecting through most of the hippocampus. We conclude that, whereas GFP does not label the thinnest axonal branches of some neuronal types, chondroitinase is efficiently secreted from these arborisations and enables their extent to be sensitively visualised. After 12 weeks, chondroitinase expression was undiminished.
Collapse
Affiliation(s)
- João Nuno Alves
- John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK; Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Elizabeth M Muir
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Melissa R Andrews
- John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Anneliese Ward
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Nicholas Michelmore
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Debayan Dasgupta
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA Amsterdam, Netherlands
| | - Elizabeth B Moloney
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA Amsterdam, Netherlands
| | - Roger J Keynes
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - John H Rogers
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
7
|
Seki F, Hikishima K, Nambu S, Okanoya K, Okano HJ, Sasaki E, Miura K, Okano H. Multidimensional MRI-CT atlas of the naked mole-rat brain (Heterocephalus glaber). Front Neuroanat 2013; 7:45. [PMID: 24391551 PMCID: PMC3868886 DOI: 10.3389/fnana.2013.00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/13/2022] Open
Abstract
Naked mole-rats have a variety of distinctive features such as the organization of a hierarchical society (known as eusociality), extraordinary longevity, and cancer resistance; thus, it would be worthwhile investigating these animals in detail. One important task is the preparation of a brain atlas database that provide comprehensive information containing multidimensional data with various image contrasts, which can be achievable using a magnetic resonance imaging (MRI). Advanced MRI techniques such as diffusion tensor imaging (DTI), which generates high contrast images of fiber structures, can characterize unique morphological properties in addition to conventional MRI. To obtain high spatial resolution images, MR histology, DTI, and X-ray computed tomography were performed on the fixed adult brain. Skull and brain structures were segmented as well as reconstructed in stereotaxic coordinates. Data were also acquired for the neonatal brain to allow developmental changes to be observed. Moreover, in vivo imaging of naked mole-rats was established as an evaluation tool of live animals. The data obtained comprised three-dimensional (3D) images with high tissue contrast as well as stereotaxic coordinates. Developmental differences in the visual system were highlighted in particular by DTI. Although it was difficult to delineate optic nerves in the mature adult brain, parts of them could be distinguished in the immature neonatal brain. From observation of cortical thickness, possibility of high somatosensory system development replaced to the visual system was indicated. 3D visualization of brain structures in the atlas as well as the establishment of in vivo imaging would promote neuroimaging researches towards detection of novel characteristics of eusocial naked mole-rats.
Collapse
Affiliation(s)
- Fumiko Seki
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Central Institute for Experimental Animals Kanagawa, Japan
| | - Keigo Hikishima
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Central Institute for Experimental Animals Kanagawa, Japan
| | - Sanae Nambu
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute Saitama, Japan
| | - Kazuo Okanoya
- Japan Science and Technology Exploratory Research for Advanced Technology Okanoya Emotional Information Project Saitama, Japan ; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Hirotaka J Okano
- Division of Regenerative Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Erika Sasaki
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Central Institute for Experimental Animals Kanagawa, Japan
| | - Kyoko Miura
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Saitama, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine Tokyo, Japan ; Riken Keio University Joint Research Laboratory, RIKEN Brain Science Institute Saitama, Japan
| |
Collapse
|
8
|
Mitchinson B, Prescott TJ. Whisker movements reveal spatial attention: a unified computational model of active sensing control in the rat. PLoS Comput Biol 2013; 9:e1003236. [PMID: 24086120 PMCID: PMC3784505 DOI: 10.1371/journal.pcbi.1003236] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention.
Collapse
Affiliation(s)
- Ben Mitchinson
- Department Of Psychology, The University Of Sheffield, Sheffield, United Kingdom
| | - Tony J. Prescott
- Department Of Psychology, The University Of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Veronesi C, Maggiolini E, Franchi G. Whisker motor cortex reorganization after superior colliculus output suppression in adult rats. Eur J Neurosci 2013; 38:3169-80. [PMID: 23895333 DOI: 10.1111/ejn.12322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/29/2009] [Accepted: 06/25/2013] [Indexed: 11/30/2022]
Abstract
The effect of unilateral superior colliculus (SC) output suppression on the ipsilateral whisker motor cortex (WMC) was studied at different time points after tetrodotoxin and quinolinic acid injections, in adult rats. The WMC output was assessed by mapping the movement evoked by intracortical microstimulation (ICMS) and by recording the ICMS-evoked electromyographic (EMG) responses from contralateral whisker muscles. At 1 h after SC injections, the WMC showed: (i) a strong decrease in contralateral whisker sites, (ii) a strong increase in ipsilateral whisker sites and in ineffective sites, and (iii) a strong increase in threshold current values. At 6 h after injections, the WMC size had shrunk to 60% of the control value and forelimb representation had expanded into the lateral part of the normal WMC. Thereafter, the size of the WMC recovered, returning to nearly normal 12 h later (94% of control) and persisted unchanged over time (1-3 weeks). The ICMS-evoked EMG response area decreased at 1 h after SC lesion and had recovered its baseline value 12 h later. Conversely, the latency of ICMS-evoked EMG responses had increased by 1 h and continued to increase for as long as 3 weeks following the lesion. These findings provide physiological evidence that SC output suppression persistently withdrew the direct excitatory drive from whisker motoneurons and induced changes in the WMC. We suggest that the changes in the WMC are a form of reversible short-term reorganization that is induced by SC lesion. The persistent latency increase in the ICMS-evoked EMG response suggested that the recovery of basic WMC excitability did not take place with the recovery of normal explorative behaviour.
Collapse
Affiliation(s)
- Carlo Veronesi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, via Fossato di Mortara 19, Ferrara, 44100, Italy
| | | | | |
Collapse
|
10
|
Pais-Vieira M, Lebedev MA, Wiest MC, Nicolelis MAL. Simultaneous top-down modulation of the primary somatosensory cortex and thalamic nuclei during active tactile discrimination. J Neurosci 2013; 33:4076-93. [PMID: 23447616 PMCID: PMC3674835 DOI: 10.1523/jneurosci.1659-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 11/21/2022] Open
Abstract
The rat somatosensory system contains multiple thalamocortical loops (TCLs) that altogether process, in fundamentally different ways, tactile stimuli delivered passively or actively sampled. To elucidate potential top-down mechanisms that govern TCL processing in awake, behaving animals, we simultaneously recorded neuronal ensemble activity across multiple cortical and thalamic areas while rats performed an active aperture discrimination task. Single neurons located in the primary somatosensory cortex (S1), the ventroposterior medial, and the posterior medial thalamic nuclei of the trigeminal somatosensory pathways exhibited prominent anticipatory firing modulations before the whiskers touching the aperture edges. This cortical and thalamic anticipatory firing could not be explained by whisker movements or whisker stimulation, because neither trigeminal ganglion sensory-evoked responses nor EMG activity were detected during the same period. Both thalamic and S1 anticipatory activity were predictive of the animal's discrimination accuracy. Inactivation of the primary motor cortex (M1) with muscimol affected anticipatory patterns in S1 and the thalamus, and impaired the ability to predict the animal's performance accuracy based on thalamocortical anticipatory activity. These findings suggest that neural processing in TCLs is launched in anticipation of whisker contact with objects, depends on top-down effects generated in part by M1 activity, and cannot be explained by the classical feedforward model of the rat trigeminal system.
Collapse
Affiliation(s)
| | - Mikhail A. Lebedev
- Departments of Neurobiology
- Center for Neuroengineering, Duke University, Durham, North Carolina 27710
| | - Michael C. Wiest
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts 02481, and
| | - Miguel A. L. Nicolelis
- Departments of Neurobiology
- Biomedical Engineering, and
- Psychology and Neuroscience and
- Center for Neuroengineering, Duke University, Durham, North Carolina 27710
- Edmond and Lily Safra International Institute for Neuroscience of Natal, 59066-060 Natal, Brazil
| |
Collapse
|
11
|
Kim JN, Yoo JY, Lee JY, Koh KS, Song WC. A mechanism of rat vibrissal movement based on actual morphology of the intrinsic muscle using three-dimensional reconstruction. Cells Tissues Organs 2012; 196:565-9. [PMID: 22722709 DOI: 10.1159/000338332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
The vibrissal capsular muscle (VCM) of the rat is known to differ from the arrector pili muscle. The purpose of the present study was to characterize the rat VCM morphologically using three-dimensional reconstruction. The rat snout skin was fixed, processed with routine histological methods, sectioned serially at a thickness of 10 µm, and then stained with Masson's trichrome. The sectioned images were reconstructed three-dimensionally using 'Reconstruct' software. The findings confirmed that the VCM is a skeletal muscle attached to the vibrissal follicle such that the latter is rooted within the former. The VCM encircles the follicle almost entirely, from base to apex, and hooks around the follicle caudally. Each one of these capsular muscles is connected to two adjacent follicles in the same row. They overlap each other in the lower part, as the rostral follicular muscle that surrounds the caudal follicle. The present findings suggest that the vibrissae are able to move more freely (under voluntary control) than other general arrector pili muscles, in line with their sensory function.
Collapse
Affiliation(s)
- Jeong-Nam Kim
- Department of Anatomy, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Friedman WA, Zeigler HP, Keller A. Vibrissae motor cortex unit activity during whisking. J Neurophysiol 2011; 107:551-63. [PMID: 21994257 DOI: 10.1152/jn.01132.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rats generate stereotyped exploratory (5-12 Hz) vibrissa movements when navigating through their environment. Like other rhythmic behaviors, the production of whisking relies on a subcortical pattern generator. However, the relatively large vibrissae representation in motor cortex (vMCx) suggests that cortex also contributes to the control of whisker movements. The goal of this study was to examine the relationship between neuronal activity in vMCx and the kinematics of vibrissae movements. We recorded multiunit activity (MUA) and single units in the rhythmic region of vMCx while measuring vibrissa position in awake, head-restrained rats. The rats were engaged in one of two behavioral tasks where they were rewarded for either 1) producing noncontact whisking epochs that met specified criteria (epochs ≥4 Hz, whisks >5 mm) or 2) whisking to contact an object. There was significant coherence between the frequency of MUA and vibrissae movements during free-air whisking but not when animals were using their vibrissae to contact an object. Spike rate in vMCx was most frequently correlated with the amplitude of vibrissa movements; correlations with movement frequency did not exceed chance levels. These findings suggest that the specific parameter under cortical control may be the amplitude of whisker movements.
Collapse
Affiliation(s)
- Wendy A Friedman
- Department of Psychology, Hunter College, City University of New York, New York, USA
| | | | | |
Collapse
|
13
|
Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WHT, Ju C, Gong W, Koekkoek SKE, De Zeeuw CI. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 2011; 5:53. [PMID: 22065951 PMCID: PMC3207327 DOI: 10.3389/fnint.2011.00053] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/26/2011] [Indexed: 11/29/2022] Open
Abstract
The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.
Collapse
Affiliation(s)
- Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| | | | - Cullen B. Owens
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Nouk Tanke
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Negah Rahmati
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chiheng Ju
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Wei Gong
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| |
Collapse
|
14
|
Alloway KD, Smith JB, Beauchemin KJ. Quantitative analysis of the bilateral brainstem projections from the whisker and forepaw regions in rat primary motor cortex. J Comp Neurol 2011; 518:4546-66. [PMID: 20886621 DOI: 10.1002/cne.22477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The whisker region in rat primary motor (MI) cortex projects to several brainstem regions, but the relative strength of these projections has not been characterized. We recently quantified the MI projections to bilateral targets in the forebrain (Alloway et al. [2009] J Comp Neurol 515:548-564), and the present study extends those findings by quantifying the MI projections to bilateral targets in the brainstem. We found that both the whisker and forepaw regions in MI project most strongly to the basal pons and superior colliculus. While the MI forepaw region projects mainly to the ipsilateral basilar pons, the MI whisker region has significantly more connections with the contralateral side. This bilateral difference suggests that corticopontine projections from the MI whisker region may have a role in coordinating bilateral whisker movements. Anterograde tracer injections in MI did not reveal any direct projections to the facial nucleus, but retrograde tracer injections in the facial nucleus revealed some labeled neurons in MI cortex. The number of retrogradely labeled neurons in MI, however, was dwarfed by a much larger number of labeled neurons in the superior colliculus and other brainstem regions. Together, our anterograde and retrograde tracing results indicate that the superior colliculus provides the most effective route for transmitting information from MI to the facial nucleus.
Collapse
Affiliation(s)
- Kevin D Alloway
- Department of Neural & Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, USA.
| | | | | |
Collapse
|
15
|
Pietr MD, Knutsen PM, Shore DI, Ahissar E, Vogel Z. Cannabinoids reveal separate controls for whisking amplitude and timing in rats. J Neurophysiol 2010; 104:2532-42. [PMID: 20844105 DOI: 10.1152/jn.01039.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whisking is controlled by multiple, possibly functionally segregated, motor sensory-motor loops. While testing for effects of endocannabinoids on whisking, we uncovered the first known functional segregation of channels controlling whisking amplitude and timing. Channels controlling amplitude, but not timing, were modulated by cannabinoid receptor type 1 (CB1R). Systemic administration of CB1R agonist Δ(9)-tetrahydrocannabinol (Δ(9)-THC) reduced whisking spectral power across all tested doses (1.25-5 mg/kg), whereas whisking frequency was affected at only very high doses (5 mg/kg). Concomitantly, whisking amplitude and velocity were significantly reduced in a dose-dependent manner (25-43 and 26-50%, respectively), whereas cycle duration and bilateral synchrony were hardly affected (3-16 and 3-9%, respectively). Preadministration of CB1R antagonist SR141716A blocked Δ(9)-THC-induced kinematic alterations of whisking, and when administered alone, increased whisking amplitude and velocity but affected neither cycle duration nor synchrony. These findings indicate that whisking amplitude and timing are controlled by separate channels and that endocannabinoids modulate amplitude control channels.
Collapse
|
16
|
Mundiñano IC, Martínez-Millán L. Somatosensory cross-modal plasticity in the superior colliculus of visually deafferented rats. Neuroscience 2009; 165:1457-70. [PMID: 19932888 DOI: 10.1016/j.neuroscience.2009.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
Abstract
The effects of neonatal visual deafferentation on the final adult pattern of cortico-collicular connections from the rat primary somatosensory cortex barrel field were studied by injecting an anterograde tracer (BDA) into different locations of the barrel cortex. Collicular afferents originating in the barrel cortex normally end in the intermediate collicular strata (SGI and SAI). However, neonatal visual deafferentation caused an invasion of abundant somatosensory cortical afferents into the lateral portions of the superficial collicular strata (SGS and SO). Moreover, anterograde-labelled fibers in the intermediate strata were more densely packed in visually deafferented animals. In order to study the activity of the altered somatosensory cortico-collicular connection, the effects of two different types of whisker stimuli on c-fos expression in the SC were analyzed (apomorphine treatment and enriched environment exploration). In stimulated control animals, c-fos expression was clearly evident in neurons of the intermediate layers 2 h after whisker stimulation. Similar stimulation in adult animals that underwent neonatal visual deafferentation triggered higher levels of c-fos expression in the superficial collicular layers that were invaded by cortico-collicular axonal branches. In exploration experiments, increased levels of c-fos expression were also detected in lateral parts of the intermediate layers of visually deafferented animals. These results suggest that the ascending fibers of somatosensory cortical origin can recruit deafferented superficial collicular neurons that enabling them to participate in extravisual behavioural responses mediated by collicular circuits.
Collapse
Affiliation(s)
- I C Mundiñano
- Laboratory of Regenerative Therapy, Department of Neurology and Neuroscience Division, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
17
|
Abstract
This study tested the role of the superior colliculus in generating movements of the mystacial vibrissae--whisking. First, we compared the kinematics of whisking generated by the superior colliculus with those generated by the motor cortex. We found that in anesthetized rats, microstimulation of the colliculus evoked a sustained vibrissa protraction, whereas stimulation of motor cortex produced rhythmic protractions. Movements generated by the superior colliculus are independent of motor cortex and can be evoked at lower thresholds and shorter latencies than those generated by the motor cortex. Next we tested the hypothesis that the colliculus is acting as a simple reflex loop with the neurons that drive vibrissa movement receiving sensory input evoked by vibrissa contacts. We found that most tecto-facial neurons do not receive sensory input. Not only did these neurons not spike in response to sensory stimulation, but field potential analysis revealed that subthreshold sensory inputs do not overlap spatially with tecto-facial neurons. Together these findings suggest that the superior colliculus plays a pivotal role in vibrissa movement--regulating vibrissa set point and whisk amplitude--but does not function as a simple reflex loop. With the motor cortex controlling the whisking frequency, the superior colliculus control of set point and amplitude would account for the main parameters of voluntary whisking.
Collapse
Affiliation(s)
- Marie E Hemelt
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
18
|
Superior sensation: superior colliculus participation in rat vibrissa system. BMC Neurosci 2007; 8:12. [PMID: 17266753 PMCID: PMC1796887 DOI: 10.1186/1471-2202-8-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The superior colliculus, usually considered a visuomotor structure, is anatomically positioned to perform sensorimotor transformations in other modalities. While there is evidence for its potential participation in sensorimotor loops of the rodent vibrissa system, little is known about its functional role in vibrissa sensation or movement. In anesthetized rats, we characterized extracellularly recorded responses of collicular neurons to different types of vibrissa stimuli. RESULTS Collicular neurons had large receptive fields (median = 14.5 vibrissae). Single units displayed responses with short latencies (5.6 +/- 0.2 msec, median = 5.5) and relatively large magnitudes (1.2 +/- 0.1 spikes/stimulus, median = 1.2). Individual neurons could entrain to repetitive vibrissa stimuli delivered at < or = 20 Hz, with little reduction in phase locking, even when response magnitude was decreased. Neurons responded preferentially to vibrissa deflections at particular angles, with 43% of the cells having high (> or = 5) angular selectivity indices. CONCLUSION Results are consistent with a proposed role of the colliculus in somatosensory-mediated orienting. These properties, together with the connections of the superior colliculus in sensorimotor loops, are consistent with its involvement in orienting, alerting and attentive functions related to the vibrissa system.
Collapse
|
19
|
Peeva GP, Angelova SK, Guntinas-Lichius O, Streppel M, Irintchev A, Schütz U, Popratiloff A, Savaskan NE, Bräuer AU, Alvanou A, Nitsch R, Angelov DN. Improved outcome of facial nerve repair in rats is associated with enhanced regenerative response of motoneurons and augmented neocortical plasticity. Eur J Neurosci 2006; 24:2152-62. [PMID: 17074041 DOI: 10.1111/j.1460-9568.2006.05091.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Within a recent study on the vibrissae motor performance after facial nerve repair in strains of blind (SD/RCS) and sighted (SD) rats we found that, despite persisting myotopic disorganization in the facial nucleus, the blind animals fully restored vibrissal whisking. Here we searched for morphological substrates of better recovery in the regenerating motoneurons and in the cerebral motor cortex. Expression analyses of the neurite growth-related proteins f-actin, neuronal class III beta-tubulin and plasticity-related gene-1, and stereological estimates of growth cone densities revealed a more vigorous regenerative response in the proximal nerve stump of blind SD/RCS rats compared with SD animals at 5-7 days after buccal nerve transection. Using c-Fos immunoreactivity as a marker for neuronal activation, we found that the volume of the cortex acutely responding to nerve transection (facial muscles reactive volume, FMRV) in both hemispheres of intact sighted rats was twofold smaller than that measured in blind animals. One month after transection and suture of the right facial nerve (FFA) we found a twofold increase in the FMRV in both rat strains compared with intact animals. The FMRV in SD/RCS animals, but not in SD rats, returned to the values in intact rats 2 months after FFA. Our findings suggest that enhanced plasticity in the CNS and an augmented regenerative response of the injured motoneurons contribute to better functional recovery in blind rats.
Collapse
|
20
|
Lang EJ, Sugihara I, Llinás R. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat. J Physiol 2005; 571:101-20. [PMID: 16357010 PMCID: PMC1805652 DOI: 10.1113/jphysiol.2005.102764] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The vibrissal movements known as whisking are generated in a pulsatile, or non-continuous, fashion and comprise sequences of brief regularly spaced movements. These rhythmic timing sequences imply the existence of periodically issued motor commands. As inferior olivary (IO) neurones generate periodic synchronous discharges that could provide the underlying timing signal, this possibility was tested by determining whether the olivocerebellar system modulates motor cortex (MCtx)-triggered whisker movements in rats. Trains of current pulses were applied to MCtx, and the resulting whisker movements were recorded using a high speed video camera. The evoked movement patterns demonstrated properties consistent with the existence of an oscillatory motor driving rhythm. In particular, movement amplitude showed a bell-shaped dependence on stimulus frequency, with a peak at 11.5+/-2.3 Hz. Moreover, movement trajectories showed harmonic and subharmonic entrainment patterns within specific stimulus frequency ranges. By contrast, movements evoked by facial nerve stimulation showed no such frequency-dependent properties. To test whether the IO was the oscillator in question, IO neuronal properties were modified in vivo by intra-IO picrotoxin injection, which enhances synchronous oscillatory IO activity and reduces its natural frequency. The ensuing changes in the evoked whisker patterns were consistent with these pharmacological effects. Furthermore, in cerebellectomized rats, oscillatory modulation of MCtx-evoked movements was greatly reduced, and intra-IO picrotoxin injections did not affect the evoked movement patterns. Additionally, multielectrode recording of Purkinje cell complex spikes showed a temporal correlation of olivocerebellar activity during MCtx stimulus trains to evoked movement patterns. In sum, the results indicate that MCtx's ability to generate movements is modulated by an oscillatory signal arising in the olivocerebellar system.
Collapse
Affiliation(s)
- Eric J Lang
- Department of Physiology and Neuroscience, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
21
|
Bittencourt AS, Nakamura-Palacios EM, Mauad H, Tufik S, Schenberg LC. Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 2005; 133:873-92. [PMID: 15916856 DOI: 10.1016/j.neuroscience.2005.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 03/04/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
Stimulation of the periaqueductal gray matter (PAG) and the deeper layers of superior colliculus (SC) produces both freezing (tense immobility) and flight (trotting, galloping and jumping) behaviors along with exophthalmus (fully opened bulging eyes) and, less often, micturition and defecation. The topography of these behaviors within the distinct layers of SC remains unclear. Therefore, this study compared the defensive repertoire of intermediate (ILSC) and deep (DLSC) layers of SC to those of dorsolateral periaqueductal gray matter (DLPAG) and lateral periaqueductal gray matter (LPAG) [Neuroscience 125 (2004) 71]. Electrical stimulation was carried out through intensity- (0-70 microA) and frequency-varying (0-130 Hz) pulses. Chemical stimulation employed a slow microinfusion of N-methyl-d-aspartic acid (NMDA, 0-2.3 nmol, 0.5 nmol/min). Probability curves of intensity-, frequency- and NMDA-evoked behaviors, as well as the unbiased estimates of median stimuli, were obtained by threshold logistic analysis. Compared with the PAG, the most important differences were the lack of frequency-evoked jumping in both layers of SC and the lack of NMDA-evoked galloping in the ILSC. Moreover, although galloping and jumping were also elicited by NMDA stimulation of DLSC, effective doses were about three times higher than those of DLPAG, suggesting the spreading of the injectate to the latter structure. In contrast, exophthalmus, immobility and trotting were evoked throughout the tectum structures. However, whatever the response and kind of stimulus, the lowest thresholds were always found in the DLPAG and the highest ones in the ILSC. Besides, neither the appetitive, nor the offensive, muricide or male reproductive behaviors were produced by any kind of stimulus in the presence of appropriate targets. Accordingly, the present data suggest that the deeper layers of SC are most likely involved in the increased attentiveness (exophthalmus, immobility) or restlessness (trotting) behaviors that herald a full-blown flight reaction (galloping, jumping) mediated in the PAG.
Collapse
Affiliation(s)
- A S Bittencourt
- Departamento de Ciências Fisiológicas, Centro Biomédico, Edifício do Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468 (Maruípe), 29043-125 Vitória, ES, Brazil
| | | | | | | | | |
Collapse
|
22
|
Schenberg LC, Póvoa RMF, Costa ALP, Caldellas AV, Tufik S, Bittencourt AS. Functional specializations within the tectum defense systems of the rat. Neurosci Biobehav Rev 2005; 29:1279-98. [PMID: 16087233 DOI: 10.1016/j.neubiorev.2005.05.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 05/03/2005] [Accepted: 05/03/2005] [Indexed: 01/29/2023]
Abstract
Here we review the differential contribution of the periaqueductal gray matter (PAG) and superior colliculus (SC) to the generation of rat defensive behaviors. The results of studies involving sine-wave and rectangular pulse electrical stimulation and chemical (NMDA) stimulation are summarized. Stimulation of SC and PAG produced freezing and flight behaviors along with exophthalmus (fully opened bulged eyes), micturition and defecation. The columnar organization of the PAG was evident in the results obtained. Defecation was elicited primarily by lateral PAG stimulation, while the remaining defensive behaviors were similarly elicited by lateral and dorsolateral PAG stimulation, although with the lowest thresholds in the dorsolateral column. Conversely, the ventrolateral PAG did not appear to participate in unconditioned defensive behaviors, which were only elicited by high intensity stimulation likely to encroach on adjacent regions. In the SC, the most important differences relative to the PAG were the lack of stimulation-evoked jumping in both intermediate and deep layers, and of NMDA-evoked galloping in intermediate layers. Therefore, we conclude that the SC may be only involved in the increased attentiveness (exophthalmus, immobility) and restlessness (trotting) of prey species exposed to the cues of a nearby predator. These responses may be distinct from the full-blown flight reaction that is mediated by the dorsolateral and lateral PAG. However, other evidences suggest the possible influences of stimulation schedule, environment dimensions and rat strain in determining outcomes. Overall our results suggest a dynamically organized representation of defensive behaviors in the midbrain tectum.
Collapse
Affiliation(s)
- L C Schenberg
- Departamento de Ciências Fisiológicas--Centro Biomédico (Edifício do Programa de Pós-Graduação em Ciências Fisiológicas), Universidade Federal do Espírito Santo, Av. Marechal Campos 1468 (Maruípe), 29043-125, Vitória, ES, Brazil.
| | | | | | | | | | | |
Collapse
|
23
|
Hoffer ZS, Arantes HB, Roth RL, Alloway KD. Functional circuits mediating sensorimotor integration: Quantitative comparisons of projections from rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the pons. J Comp Neurol 2005; 488:82-100. [PMID: 15912501 DOI: 10.1002/cne.20579] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Motor performance depends on somatosensory feedback, and consistent with this finding, primary somatosensory (SI) cortex projects to several regions involved in motor control. Although the pathways mediating sensorimotor integration are known, few studies have compared their projection patterns. Therefore, in each animal, we injected two anterograde tracers into SI barrel cortex and compared the relative density and spatial extent of the labeled projections to the primary motor (MI) cortex, neostriatum, superior colliculus, and basal pons. Quantitative analysis revealed that these projections terminated most extensively in the neostriatum, to a lesser extent in MI cortex, and innervated the least amount of neuropil in the superior colliculus and pontine nuclei. Tracer overlap in the pontine nuclei was significantly higher than in the other three brains regions, and was strongly correlated with overlap in the superior colliculus, presumably because some projections to these two brain regions represent collaterals of the same neurons. The density of labeled varicosities was highest in the pons and lowest in MI. As a proportion of total labeling, densely packed clusters of labeled terminals were most prevalent in the pons, less prevalent in neostriatum and superior colliculus, and least prevalent in MI cortex. These results are consistent with physiological evidence indicating strong coherence between SI barrel cortex and the cerebellum during whisking behavior.
Collapse
Affiliation(s)
- Zachary S Hoffer
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, 17033-2255, USA
| | | | | | | |
Collapse
|
24
|
Franchi G, Veronesi C. Time course for the reappearance of vibrissal motor representation following botulinum toxin injection into the vibrissal pad of the adult rat. Eur J Neurosci 2004; 20:1873-84. [PMID: 15380009 DOI: 10.1111/j.1460-9568.2004.03653.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study investigates the time course and pattern of movement representation recovery in the motor cortex during the recovery after a peripheral paralysis. To this end a transitory flaccid paralysis of the vibrissae muscle was induced in adult rats that underwent two unilateral injections of 8 U of botulinum toxin (BTX) into a vibrissal pad, at a duration of 12 days from one another. The compound muscle action potential (MAP) of the vibrissae muscle began to reappear 4 weeks after the first BTX injection. Intracortical microstimulation (ICMS) was used to map rat motor cortices 4, 5, 6, 7 and 8 weeks after the first BTX injection. Findings demonstrated that: (i) contralateral vibrissae movement reappears in the medial part of its normal cortical territory when the MAP is almost 10% of the control value; in the remaining part, ICMS elicits eye, ipsilateral vibrissae, neck and forelimb movements; (ii) the contralateral vibrissae movement reappears in sites where ipsilateral vibrissae and/or neck movement are co-represented; (iii) as MAP recovers, the vibrissae representation expands until it recovers the 90.8% of its territory after 7 weeks, when the MAP was almost 43.4% of the control value; (iv) from 4 to 7 weeks, the ICMS-evoked contralateral vibrissae movement shows a significantly higher electrical threshold vs. the control group; (v) recovery of the baseline excitability uniformly involves the vibrissae representation 1 week later, after its cortical territory has recovered 93.1% of the control value and the MAP has returned to 78.8% of the baseline value.
Collapse
Affiliation(s)
- G Franchi
- Centro di Neuroscienze and Dipartimento di Scienze Biomediche e Terapie Avanzate, Sezione di Fisiologia umana, Università di Ferrara, 44100 Ferrara, Italy.
| | | |
Collapse
|
25
|
Dauvergne C, Ndiaye A, Buisseret-Delmas C, Buisseret P, Vanderwerf F, Pinganaud G. Projections from the superior colliculus to the trigeminal system and facial nucleus in the rat. J Comp Neurol 2004; 478:233-47. [PMID: 15368536 DOI: 10.1002/cne.20262] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To determine the influence of the superior colliculus (SC) in orienting behaviors, we examined SC projections to the sensory trigeminal complex, the juxtatrigeminal region, and the facial motor nucleus in rats. Anterograde tracer experiments in the SC demonstrated predominantly contralateral colliculotrigeminal projections. Microinjections in the deep layers of the lateral portion showed labeled nerve fibers and terminals in the ventromedial parts of the caudal principal nucleus and of the rostral oral subnucleus and in the medial part of the interpolar subnucleus. Some terminals were also observed in the juxtatrigeminal region and in the dorsolateral part of the facial motor nucleus contralaterally, overlying the orbicularis oculi motoneuronal region. Verification by retrograde tracer injections into the trigeminal target regions showed labeled SC neurons mostly in lateral portions of layers 4-7. When the juxtatrigeminal region was involved, a remarkable increase of labeled neurons was observed, having a patch-like arrangement with a decreasing gradient from lateral to medial SC portions. Retrograde tracer injections in the dorsolateral VII nucleus showed bilateral labeled neurons mainly in the deep lateral SC portion. Retrograde BDA microinjections into the same trigeminal or juxtatrigeminal regions, followed by gold-HRP into the dorsolateral VII nucleus, demonstrated a significant number of SC neurons in deep layers 6-7 projecting to both structures by axon collaterals. These neurons are mediolaterally grouped in patches along the rostrocaudal SC extent; a subset of them are immunoreactive for glutamic acid decarboxylase (GAD). They could be involved in the coordination of facial movements. Simultaneous anterograde and retrograde tracer injections into the lateral SC portion and the VII nucleus respectively localized trigeminofacial neurons receiving collicular input in the trigeminal principal nucleus and pars oralis. Therefore the SC should play a crucial role in regulating motor programs of both eye and eyelid movements.
Collapse
Affiliation(s)
- Céline Dauvergne
- Laboratoire de Neuroanatomie Fonctionnelle des Systèmes Sensorimoteurs, 75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
26
|
Berg RW, Kleinfeld D. Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking. J Neurophysiol 2003; 90:2950-63. [PMID: 12904336 DOI: 10.1152/jn.00511.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rhythmic motor activity of the vibrissae that rodents use for the tactile localization of objects provides a model system for understanding patterned motor activity in mammals. Evidence suggests that neural circuitry in the brain stem provides rhythmic drive to the vibrissae. Yet multiple brain structures at higher levels of organization, including vibrissa primary motor cortex (M1), have direct projections to brain stem nuclei that are implicated in whisking. We thus asked whether output from M1 can control vibrissa movement on the approximately 10-Hz scale of the natural rhythmic movement of the vibrissae. Our assay of cortical control made use of periodic intracortical microstimulation (ICMS) to excite a region of vibrissa M1 cortex in awake, behaving animals and measurements of the stimulus-locked electromyogram (EMG) in both the intrinsic and extrinsic muscles that drive the vibrissae. We observed that ICMS evoked a prompt activation of the extrinsic muscles and a delayed and prolonged response in the intrinsic muscles. The relative timing and shape of these waveforms approximates the EMG waveforms seen during natural exploratory whisking. We further observed prompt activation of the intrinsic muscles, an occurrence not seen during exploratory whisking. Despite the latter difference in muscular activation, the motion of the vibrissae evoked by periodic ICMS strongly resembled the motion during natural, exploratory whisking. Interestingly, the extent of the movement was proportional to the level of arousal, as quantified by the amplitude of hippocampal activity in the theta frequency band. We interpret these data as demonstrating that M1 cortex can, in principle, initiate the full pattern of whisking on a cycle-by-cycle basis in aroused animals. Beyond issues of natural motor control, our result may bear on the design of algorithms for neuroprosthetic control of motor output.
Collapse
Affiliation(s)
- Rune W Berg
- Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
27
|
Berg RW, Kleinfeld D. Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 2003; 89:104-17. [PMID: 12522163 DOI: 10.1152/jn.00600.2002] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rhythmic motor activity of the vibrissae that rodents use for the tactile localization of objects provides a model system for understanding patterned motor activity in mammals. The muscles that drive this whisking are only partially fixed relative to bony attachments and thus shift their position along with the movement. As a means to characterize the pattern of muscular dynamics during different patterns of whisking, we recorded electromyogram (EMG) activity from the muscles that propel individual follicles, as well as EMG activity from a muscle group that moves the mystacial pad. The dominant pattern of whisking in our behavioral paradigm, referred to as exploratory whisking, consisted of large amplitude sweeps in the frequency range of 5-15 Hz. The frequency remained remarkably constant within a bout of whisking but changed values between bouts. The extrinsic musculature, which shifts the surface of the pad backwards, was found to be activated in approximate antiphase to that of the intrinsic muscles, which rotate individual vibrissae forward. Thus retraction of the vibrissae was driven by a backward shift in the attachment point of the follicles to the mystacial pad. In a less frequent pattern of whisking, referred to as foveal whisking, the vibrissae are thrust forward and palpate objects with low-amplitude movements that are in the higher frequency range of 15-25 Hz. Protraction of the vibrissae remains driven by the intrinsic muscles, while retraction in this pattern is largely passive. Interestingly, a mechanical argument suggests that activation of the extrinsic muscles during foveal whisking is not expected to affect the angle of the vibrissae. As a means to establish if the phasic control of the intrinsic versus extrinsic muscles depended on sensory feedback, we characterized whisking before and after bilateral transections of the infraorbital branch of the trigeminal sensory nerve. The loss of sensory feedback had no net effect on the antiphase relation between activation of the intrinsic versus extrinsic muscles over the full frequency range for exploratory whisking. These data point to the existence of a dual-phase central pattern generator that drives the vibrissae.
Collapse
Affiliation(s)
- Rune W Berg
- Department of Physics, University of California at San Diego, La Jolla 92093, USA
| | | |
Collapse
|
28
|
Ndiaye A, Pinganaud G, Buisseret-Delmas C, Buisseret P, Vanderwerf F. Organization of trigeminocollicular connections and their relations to the sensory innervation of the eyelids in the rat. J Comp Neurol 2002; 448:373-87. [PMID: 12115700 DOI: 10.1002/cne.10269] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Relationships between the trigeminal component of blinking and the superior colliculus (SC) were studied in rats. To localize primary afferent eyelid projections in the sensory trigeminal complex, neuronal tracing experiments were performed as well as analysis of c-Fos protein expression after supraorbital (SO) nerve stimulation. Labelled nerve fibers were found to enter ventrally within the ipsilateral sensory trigeminal complex. Labelled boutons were observed at the junction of the principal nucleus (5P) and the pars oralis (5o) and in the pars caudalis (5c). The c-Fos immunoreactivity was observed in neurons located in the ipsilateral ventral parts of 5P, 5o, and the pars interpolaris (5i) and bilaterally in 5c. Injections in 5P, 5o, 5i, and 5c resulted in anterogradely labelled fibers, with a contralateral preponderance, within the intermediate and deeper SC layers. Injections in 5P or 5o showed anterogradely labelled nerve fibers, profusely terminating in small patches in the medial and central portions of SC layer 4. Subsequently, dense labelling was found in the lateral portion of SC layers 4-7, without patch-like organization. Injections in SC showed retrogradely labelled neurons predominantly within the contralateral part of the sensory trigeminal complex (28% in 5P, 20% in 5o, 50% in 5i, and 2% in 5c). Colocalization of the retrograde tracer after SC injections and c-Fos immunoreactivity in neurons demonstrated that some 5P, 5o, and 5i neurons receive SO nerve inputs and project to SC. This implies that intermediate and deeper SC layers receive sensory information from the eyelids and may be directly involved in the regulation of eye-eyelid coordination.
Collapse
Affiliation(s)
- Awa Ndiaye
- Laboratoire de Neuroanatomie Fonctionnelle des Systèmes Sensorimoteurs, 75251 Paris, France
| | | | | | | | | |
Collapse
|
29
|
Hattox AM, Priest CA, Keller A. Functional circuitry involved in the regulation of whisker movements. J Comp Neurol 2002; 442:266-76. [PMID: 11774341 PMCID: PMC1800907 DOI: 10.1002/cne.10089] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuroanatomical tract-tracing methods were used to identify the oligosynaptic circuitry by which the whisker representation of the motor cortex (wMCx) influences the facial motoneurons that control whisking activity (wFMNs). Injections of the retrograde tracer cholera toxin subunit B into physiologically identified wFMNs in the lateral facial nucleus resulted in dense, bilateral labeling throughout the brainstem reticular formation and in the ambiguus nucleus as well as predominantly ipsilateral labeling in the paralemniscal, pedunculopontine tegmental, Kölliker-Fuse, and parabrachial nuclei. In addition, neurons in the following midbrain regions projected to the wFMNs: superior colliculus, red nucleus, periaqueductal gray, mesencephalon, pons, and several nuclei involved in oculomotor behaviors. Injections of the anterograde tracer biotinylated dextran amine into the wMCx revealed direct projections to the brainstem reticular formation as well as multiple brainstem and midbrain structures shown to project to the wFMNs. Regions in which retrograde labeling and anterograde labeling overlap most extensively include the brainstem parvocellular, gigantocellular, intermediate, and medullary (dorsal and ventral) reticular formations; ambiguus nucleus; and midbrain superior colliculus and deep mesencephalic nucleus. Other regions that contain less dense regions of combined anterograde and retrograde labeling include the following nuclei: the interstitial nucleus of medial longitudinal fasciculus, the pontine reticular formation, and the lateral periaqueductal gray. Premotoneurons that receive dense inputs from the wMCx are likely to be important mediators of cortical regulation of whisker movements and may be a key component in a central pattern generator involved in the generation of rhythmic whisking activity.
Collapse
Affiliation(s)
- Alexis M Hattox
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
30
|
Vercelli A, Repici M, Garbossa D, Grimaldi A. Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 2000; 51:11-28. [PMID: 10654576 DOI: 10.1016/s0361-9230(99)00229-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the last 20 years, the choice of neural tracers has increased manyfold, and includes newly introduced anterograde tracers that allow quantitation of single-axon morphologies, and retrograde tracers that can be combined with intracellular fills for the study of dendritic arbors of neurons which have a specific projection pattern. The combination of several different tracers now permits the comparison of multiple connections in the same animal, both quantitatively and qualitatively. Moreover, the finding of new virus strains, which infect neural cells without killing them, provides a tool for studying multisynaptic connections that participate in a circuit. In this paper, the labeling characteristics, mechanism of transport and advantages/disadvantages of use are discussed for the following recently introduced neural tracers: carbocyanine dyes, fluorescent latex microspheres, fluorescent dextrans, biocytin, dextran amines, Phaseolus vulgaris leucoagglutinin, cholera toxin and viruses. We also suggest the choice of specific tracers, depending on the experimental animal, age and type of connection to be studied, and discuss quantitative methodologies.
Collapse
Affiliation(s)
- A Vercelli
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Torino, Italy.
| | | | | | | |
Collapse
|
31
|
Differential effects of abnormal tactile experience on shaping representation patterns in developing and adult motor cortex. J Neurosci 1997. [PMID: 9364069 DOI: 10.1523/jneurosci.17-23-09220.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study investigates the influence of early somatosensory experience on shaping movement representation patterns in motor cortex. Electrical microstimulation was used to map bilaterally the motor cortices of adult rats subjected to altered tactile experience by unilateral vibrissa trimming from birth (birth-trimmed group) or for comparable periods that began in adulthood (adult-trimmed group). Findings demonstrated that (1) vibrissa trimming from birth, but not when initiated in adulthood, led to a significantly smaller-sized primary motor cortex (M1) vibrissa representation in the hemisphere contralateral to the trimmed vibrissae, with no evidence for concomitant changes in size of the adjacent forelimb representation or the representation of the intact vibrissae in the opposite (ipsilateral) hemisphere; (2) in the contralateral hemispheres of the birth-trimmed group, an abnormal pattern of evoked vibrissa movement was evident in which bilateral or ipsilateral (intact) vibrissa movement predominated; (3) in both hemispheres of the birth-trimmed group, current thresholds for eliciting movement of the trimmed vibrissa were significantly lower than normal; and (4) in the adult-trimmed group, but not in the birth-trimmed group, there was a decrease bilaterally in the relative frequency of dual forelimb-vibrissa sites that form the common border between these representations. These results show that sensory experience early in life exerts a significant influence in sculpting motor representation patterns in M1. The mature motor cortex is more resistant to the type and magnitude of influence that tactile experience has on developing M1, which may indicate that such an influence is constrained by a developmentally regulated critical period.
Collapse
|
32
|
Künzle H. Connections of the superior colliculus with the tegmentum and the cerebellum in the hedgehog tenrec. Neurosci Res 1997; 28:127-45. [PMID: 9220470 DOI: 10.1016/s0168-0102(97)00034-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Different tracer substances were injected into the superior colliculus (CoS) in order to study its afferents and efferents with the meso-rhombencephalic tegmentum, the precerebellar nuclei and the cerebellum in the Madagascan hedgehog tenrec. The overall pattern of tectal connectivity in tenrec was similar to that in other mammals, as, e.g. the efferents to the contralateral paramedian reticular formation. Similarly the origin of the cerebello-tectal projection in mainly the lateral portions of the tenrec's cerebellar nuclear complex corresponded to the findings in species with little binocular overlap. In comparison to other mammals, however, the tenrec showed a consistent projection to the ipsilateral inferior olivary nucleus, in addition to the classical contralateral tecto-olivary projection. The tenrec's CoS also appeared to receive an unusually prominent monoaminergic input particularly from the substantia nigra, pars compacta. There was a reciprocal tecto-parabigeminal projection, a distinct nuclear aggregation of parabigeminal neurons, however, was difficult to identify. The dorsal lemniscal nucleus did not show perikaryal labeling in contrast to the paralemniscal region. Similar to the cat but unlike the rat there were a few neurons in the nucleus of the central acoustic tract. Unlike the cat, but similar to the rat there was a distinct, predominantly ipsilateral projection to the magnocellular reticular field known to project spinalward.
Collapse
Affiliation(s)
- H Künzle
- Institute of Anatomy, University of Munich, Germany.
| |
Collapse
|