1
|
Kim J, Bogdan DM, Elmes MW, Awwa M, Yan S, Che J, Lee G, Deutsch DG, Rizzo RC, Kaczocha M, Ojima I. Incarvillateine produces antinociceptive and motor suppressive effects via adenosine receptor activation. PLoS One 2019; 14:e0218619. [PMID: 31237895 PMCID: PMC6592529 DOI: 10.1371/journal.pone.0218619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/05/2019] [Indexed: 01/19/2023] Open
Abstract
(-)-Incarvillateine (INCA) is a natural product that has garnered attention due to its purported analgesic effects and historical use as a pain reliever in China. α-Truxillic acid monoesters (TAMEs) constitute a class of inhibitors targeting fatty acid binding protein 5 (FABP5), whose inhibition produces analgesia in animal models. The structural similarity between INCA and TAMEs motivated us to assess whether INCA exerts its antinociceptive effects via FABP inhibition. We found that, in contrast to TAMEs, INCA did not exhibit meaningful binding affinities toward four human FABP isoforms (FABP3, FABP4, FABP5 and FABP7) in vitro. INCA-TAME, a putative monoester metabolite of INCA that closely resembles TAMEs also lacked affinity for FABPs. Administration of INCA to mice produced potent antinociceptive effects while INCA-TAME was without effect. Surprisingly, INCA also potently suppressed locomotor activity at the same dose that produces antinociception. The motor suppressive effects of INCA were reversed by the adenosine A2 receptor antagonist 3,7-dimethyl-1-propargylxanthine. Collectively, our results indicate that INCA and INCA-TAME do not inhibit FABPs and that INCA exerts potent antinociceptive and motor suppressive effects at equivalent doses. Therefore, the observed antinociceptive effects of INCA should be interpreted with caution.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Stony Brook University, Stony Brook, New York, United States of America
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, United States of America
| | - Diane M. Bogdan
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Matthew W. Elmes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Monaf Awwa
- Department of Chemistry, Stony Brook University, Stony Brook, New York, United States of America
| | - Su Yan
- Department of Chemistry, Stony Brook University, Stony Brook, New York, United States of America
| | - Joyce Che
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Garam Lee
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Dale G. Deutsch
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Robert C. Rizzo
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, United States of America
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Martin Kaczocha
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, United States of America
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (IO); (MK)
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, New York, United States of America
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (IO); (MK)
| |
Collapse
|
2
|
Degos B, Deniau JM, Chavez M, Maurice N. Chronic but not Acute Dopaminergic Transmission Interruption Promotes a Progressive Increase in Cortical Beta Frequency Synchronization: Relationships to Vigilance State and Akinesia. Cereb Cortex 2008; 19:1616-30. [DOI: 10.1093/cercor/bhn199] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Dejean C, Hyland B, Arbuthnott G. Cortical Effects of Subthalamic Stimulation Correlate with Behavioral Recovery from Dopamine Antagonist Induced Akinesia. Cereb Cortex 2008; 19:1055-63. [PMID: 18787234 DOI: 10.1093/cercor/bhn149] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cyril Dejean
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
4
|
Lee J, Rushlow WJ, Rajakumar N. L-type calcium channel blockade on haloperidol-induced c-Fos expression in the striatum. Neuroscience 2007; 149:602-16. [PMID: 17913375 DOI: 10.1016/j.neuroscience.2007.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 08/01/2007] [Accepted: 09/05/2007] [Indexed: 11/19/2022]
Abstract
Haloperidol-induced c-Fos expression in the lateral part of the neostriatum has been correlated with motor side effects while c-Fos induction in the medial part of the neostriatum and the nucleus accumbens is thought to be associated with the therapeutic effects of the drug. Induction of c-Fos in the striatum by haloperidol involves dopamine D(2) (DA D(2)) receptor antagonism and is dependent on activation of N-methyl-d-aspartate (NMDA) receptors and L-type Ca(2+) channels. In the current study, pretreatment with L-type Ca(2+) channel blockers suppressed haloperidol-induced c-Fos throughout the neostriatum and the nucleus accumbens at 2 h postinjection. However, elevated c-Fos protein expression was observed only in the lateral part of the neostriatum at 5 h postinjection of haloperidol following pretreatment of L-type Ca(2+) channel blocker compared with rats pretreated with vehicle alone. In addition, pretreatment prolonged the duration of haloperidol-induced catalepsy in rats. Infusions of L-type Ca(2+) channel blockers directly into the neostriatum mimicked similar patterns of changes in haloperidol-induced c-Fos expression. Prolonged expression of c-Fos was not observed following coadministration of nifedipine and a dopamine D(1) (DA D(1)) receptor agonist, SKF 81297, but could be mimicked by the DA D(2/3) receptor antagonist raclopride, suggesting that the phenomenon is likely related to DA D(2) receptor antagonism. Moreover, the expression levels of haloperidol-induced zif 268 and haloperidol-induced phosphorylated CREB and phosphorylated Elk-1 were also substantially elevated for a prolonged period of time in the lateral, but not the medial part of the neostriatum, following blockade of L-type Ca(2+) channels. Collectively, the results suggest that coadministration of L-type Ca(2+) channel blockers affects haloperidol signaling in the lateral part of the neostriatum and may exacerbate the development of acute motor side effects.
Collapse
Affiliation(s)
- J Lee
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
5
|
Bespalov A, Dravolina O, Belozertseva I, Adamcio B, Zvartau E. Lowered brain stimulation reward thresholds in rats treated with a combination of caffeine and N-methyl-D-aspartate but not alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate or metabotropic glutamate receptor-5 receptor antagonists. Behav Pharmacol 2006; 17:295-302. [PMID: 16914947 DOI: 10.1097/01.fbp.0000205014.67079.be] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies suggested that adenosine A1 and A2A receptor agonists counteract behavioral effects of N-methyl-D-aspartate (NMDA) receptor antagonists while adenosine receptor antagonists may produce opposite effects enhancing the actions of NMDA receptor antagonists. To further evaluate the effects of combined administration of adenosine receptor antagonist caffeine and various NMDA and non-NMDA glutamate receptor antagonists on brain stimulation reward (discrete-trial threshold current intensity titration procedure), rats with electrodes implanted into the ventral tegmental area were tested after pretreatment with NMDA receptor channel blocker MK-801 (0.01-0.3 mg/kg), competitive antagonist D-CPPene (0.3-5.6 mg/kg), glycine site antagonist L-701,324 (1.25-5 mg/kg), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor antagonist GYKI-53655 (1-10 mg/kg), metabotropic glutamate receptor 5 (mGluR5) antagonist MPEP (1-10 mg/kg) alone and in combination with caffeine (1-30 mg/kg). MK-801 (0.056 and 0.1 mg/kg) was the only tested glutamate antagonist that lowered self-stimulation thresholds, while D-CPPene (5.6 mg/kg) and MPEP (5.6 and 10 mg/kg) had the opposite effects. Threshold-increasing effects of D-CPPene, but not of MPEP, however, were associated with marked impairment of operant performance, reflected by longer latencies to respond and higher rates of responding during the inter-trial intervals. Operant performance was also disrupted by the highest dose of MK-801 (0.3 mg/kg). For subsequent experiments, caffeine (1-30 mg/kg) was combined with the highest doses of NMDA receptor antagonists that did not lower the brain stimulation reward thresholds and did not impair operant performance. Caffeine had no appreciable effects on self-stimulation behavior when given alone. A low dose of caffeine (3 mg/kg) significantly lowered self-stimulation thresholds only when given together with MK-801 (0.03 mg/kg) or D-CPPene (3 mg/kg). Combined with the same antagonist drugs, higher doses of caffeine (10 and 30 mg/kg) facilitated time-out responding. These results indicate that, within a limited dose range, caffeine in combination with an NMDA receptor channel blocker and a competitive antagonist significantly lowers brain stimulation reward thresholds in rats.
Collapse
MESH Headings
- Animals
- Benzodiazepines/pharmacology
- Brain/drug effects
- Brain/physiology
- Caffeine/pharmacology
- Central Nervous System Stimulants/pharmacology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Electric Stimulation
- Excitatory Amino Acid Antagonists/pharmacology
- Male
- N-Methylaspartate/pharmacology
- Piperazines/pharmacology
- Pyridines/pharmacology
- Quinolones/pharmacology
- Rats
- Rats, Wistar
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/physiology
- Receptor, Metabotropic Glutamate 5
- Receptors, AMPA/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Reward
- Self Stimulation
- Ventral Tegmental Area/physiology
Collapse
Affiliation(s)
- Anton Bespalov
- Institute of Pharmacology, IP Pavlov Medical University, St Petersburg, Russia.
| | | | | | | | | |
Collapse
|
6
|
O'Neill M, Brown VJ. The effect of the adenosine A(2A) antagonist KW-6002 on motor and motivational processes in the rat. Psychopharmacology (Berl) 2006; 184:46-55. [PMID: 16344986 DOI: 10.1007/s00213-005-0240-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 10/12/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE It is well established that humans and rats respond to an imperative stimulus more rapidly as a function of the foreperiod preceding the target, and with this decrease in mean response time, there is also an increase in anticipatory (prior to the signal) responses. These changes reflect enhanced motor readiness. Also, reaction times are quicker when the cost of reward (amount of work required) is minimum. Antagonism of the adenosine A(2A) receptor has been shown to effect motor-related processes. OBJECTIVE This study examined the behavioural effects of systemic administration of the adenosine A(2A) antagonist KW-6002 in a cued reaction time task in the rat. The purpose of this study is to ascertain whether KW-6002 would enhance motor readiness and effect performance as a function of reward cost. METHODS Rats were trained on a visually cued reaction time task with variable foreperiods, and the effects of three doses of KW-6002 (0.3, 1.0 and 3.0 mg/kg systemically, compared to vehicle) were examined. RESULTS Increasing doses of KW-6002 resulted in faster reaction times and an increase in the number of anticipatory responses. KW-6002 enhanced the foreperiod effect on reaction time distributions and anticipatory responses. In addition, KW-6002 had differential effects on performance between rewarded and unrewarded trials. CONCLUSION Antagonism of adenosine A(2A) receptors by systemic KW-6002 speeds reaction time and enhanced motor preparatory processes as well as interacting with motivational processes.
Collapse
Affiliation(s)
- Martin O'Neill
- School of Psychology, University of St. Andrews, KY16 9JU Scotland, UK
| | | |
Collapse
|
7
|
Degos B, Deniau JM, Thierry AM, Glowinski J, Pezard L, Maurice N. Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. J Neurosci 2005; 25:7687-96. [PMID: 16107655 PMCID: PMC6725399 DOI: 10.1523/jneurosci.1056-05.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 07/05/2005] [Accepted: 07/11/2005] [Indexed: 11/21/2022] Open
Abstract
High-frequency stimulation (HFS) of the subthalamic nucleus (STN) remarkably alleviates motor disorders in parkinsonian patients. The mechanisms by which STN HFS exerts its beneficial effects were investigated in anesthetized rats, using a model of acute interruption of dopaminergic transmission. Combined systemic injections of SCH-23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5,-tetrahydro-1H-3-benzazepine] and raclopride, antagonists of the D1 and D2 classes of dopaminergic receptors, respectively, were performed, and the parameters of STN HFS that reversed the neuroleptic-induced catalepsy were determined in freely moving animals. The effects of neuroleptics and the impact of STN HFS applied at parameters alleviating neuroleptic-induced catalepsy were analyzed in the substantia nigra pars reticulata (SNR), a major basal ganglia output structure, by recording the neuronal firing pattern and the responses evoked by cortical stimulation. Neuroleptic injection altered the tonic and regular mode of discharge of SNR neurons, most of them becoming irregular with bursts of spikes and pauses. The inhibitory component of the cortically evoked response, which is attributable to the activation of the direct striatonigral circuit, was decreased, whereas the late excitatory response resulting from the indirect striato-pallido-subthalamo-nigral circuit was reinforced. During STN HFS, the spontaneous firing of SNR cells was either increased or decreased with a global enhancement of the firing rate in the overall population of SNR cells recorded. However, in all of the cases, SNR firing pattern was regularized, and the bias between the trans-striatal and trans-subthalamic circuits was reversed. By these effects, STN HFS restores the functional properties of the circuits by which basal ganglia contribute to motor activity.
Collapse
Affiliation(s)
- Bertrand Degos
- Institut National de la Santé et de la Recherche Médicale Unité 667, Collège de France, 75231 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
8
|
Wardas J, Pietraszek M, Dziedzicka-Wasylewska M. SCH 58261, a selective adenosine A2A receptor antagonist, decreases the haloperidol-enhanced proenkephalin mRNA expression in the rat striatum. Brain Res 2003; 977:270-7. [PMID: 12834887 DOI: 10.1016/s0006-8993(03)02759-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the striatum, dopamine D(2) receptors are co-localized with adenosine A(2A) receptors on the GABAergic neurons of the striopallidal pathway. Moreover, blockade of A(2A) receptors has been previously shown to suppress parkinsonian-like symptoms (catalepsy, akinesia, muscle rigidity) in rodent and primate models of Parkinson's disease (PD). Since it is believed that main motor symptoms of PD are due to the overactivity of the GABAergic striopallidal pathway, the aim of the present study was to find out whether SCH 58261, a selective antagonist of the adenosine A(2A) receptors, is capable of counteracting both the catalepsy and the enhancement of proenkephalin (PENK) mRNA expression in the rat striatum, induced by haloperidol administered at 1.5 mg/kg s.c. 3 times, every 3 h. Systemic administration of SCH 58261 (5 mg/kg i.p., 3 times, every 3 h, 10 min before haloperidol), partially decreased the haloperidol-induced catalepsy and the increase in the PENK mRNA expression in both dorsolateral and ventrolateral parts of the striatum at all three examined levels. No such changes were seen in the medial striatum and in the nucleus accumbens. Moreover, SCH 58261 given alone did not influence the level of PENK mRNA in any examined part of the striatum. The present results suggest that similarly to other A(2A) receptor antagonists, SCH 58261 normalizes activity of the striopallidal pathway, enhanced by blockade of dopamine D(2) receptors with haloperidol, which may result in recovery of motor functions.
Collapse
Affiliation(s)
- Jadwiga Wardas
- Department of NeuroPsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Kraków, Poland.
| | | | | |
Collapse
|
9
|
Wardas J, Konieczny J, Pietraszek M. Influence of CGS 21680, a selective adenosine A(2A) agonist, on the phencyclidine-induced sensorimotor gating deficit and motor behaviour in rats. Psychopharmacology (Berl) 2003; 168:299-306. [PMID: 12684736 DOI: 10.1007/s00213-003-1439-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Accepted: 02/24/2003] [Indexed: 02/07/2023]
Abstract
RATIONALE Recently it has been suggested that adenosine A(2A) receptor agonists may be potential antipsychotic drugs. It is, however, not clear whether these compounds may exert their antipsychotic effect without producing extrapyramidal side-effects (e.g. catalepsy, muscle rigidity, ataxia). It is known that such side-effects may be due to overactivation of the GABAergic strio-pallidal pathway, which may be estimated as an increased expression of proenkephalin (PENK) mRNA in the striatum. OBJECTIVE The aim of this study was to determine whether CGS 21680, a selective adenosine A(2A) receptor agonist, can reverse the disruption of prepulse inhibition (PPI) of the acoustic startle response induced by the non-competitive antagonist of NMDA receptors phencyclidine (PCP) without producing motor side-effects in rats. RESULTS Systemic administration of PCP (5 mg/kg) produced profound reduction of the PPI, which was reversed by CGS 21680 (1 mg/kg). CGS 21680 (0.1 and 1 mg/kg) was without effect on catalepsy, muscle rigidity and rotarod performance in rats as well as on the PENK mRNA expression in the striatum estimated by in situ hybridization. Only after the highest dose used (5 mg/kg) were signs of catalepsy (measured using a 9-cm cork test), disturbed balance and a loss of hind limb control (measured in the rotarod test) seen. Moreover, increased muscle resistance during passive extension measured mechanomyographically after this dose of CGS 21680 was observed. CONCLUSIONS The present results support the hypothesis that adenosine A(2A) receptor agonists may be potentially useful antipsychotic agents with the low incidence of extrapyramidal side-effects.
Collapse
Affiliation(s)
- Jadwiga Wardas
- Department of Neuropsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland.
| | | | | |
Collapse
|
10
|
Chen JF, Schwarzschild MA. Gene knockout approach to adenosine A2A receptors in Parkinson's disease. Drug Dev Res 2003. [DOI: 10.1002/ddr.10215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Pinna A, Corsi C, Carta AR, Valentini V, Pedata F, Morelli M. Modification of adenosine extracellular levels and adenosine A(2A) receptor mRNA by dopamine denervation. Eur J Pharmacol 2002; 446:75-82. [PMID: 12098587 DOI: 10.1016/s0014-2999(02)01818-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Adenosine A(2A) receptor antagonists have been proposed as an effective therapy in the treatment of Parkinson's disease. To explore the possibility that dopamine denervation may produce modifications in adenosine A(2A) transmission, we measured the extracellular concentration of adenosine and adenosine A(2A) receptor mRNA in the striatum of rats infused unilaterally with 6-hydroxydopamine in the medial forebrain bundle. Fifteen days after 6-hydroxydopamine infusion, extracellular adenosine levels, measured by in vivo microdialysis, were significantly lower (-35%) in the dopamine-denervated striatum. At the time of the decrease in adenosine levels, an increase in striatal adenosine A(2A) receptor mRNA levels (+20%), measured by in situ hybridization, was observed. Modifications in adenosine A(2A) transmission, following nigrostriatal dopamine neuron degeneration, establish a potential neural basis for the effectiveness of adenosine A(2A) receptor antagonists in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Annalisa Pinna
- CNR Center for Neuropharmacology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Carta AR, Pinna A, Cauli O, Morelli M. Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittent L-dopa and A2A receptor blockade plus L-dopa in dopamine-denervated rats. Synapse 2002; 44:166-74. [PMID: 11954048 DOI: 10.1002/syn.10066] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenosine A2A receptor antagonists have been proposed as an effective therapy in the treatment of Parkinson's disease. In the present study, we compared the modifications on striatal glutamate decarboxylase (GAD67), enkephalin, and dynorphin mRNA levels produced by a chronic-intermittent administration of L-3,4-dihydroxyphenyl-alanine (L-dopa) (6 mg/kg) with those produced by the adenosine A2A receptor antagonist SCH 58261 (5 mg/kg) plus L-dopa (3 mg/kg) in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. As previously reported, L-dopa (6 mg/kg) and SCH 58261 (5 mg/kg) plus L-dopa (3 mg/kg) produced the same degree of turning behavior after the first administration. However, while L-dopa (6 mg/kg) induced a sensitized turning behavior response during the course of the treatment, which indicated a dyskinetic potential, SCH 58261 (5 mg/kg) plus L-dopa (3 mg/kg) produced a stable turning behavior response, which was predictive of absence of dyskinetic side effects. Unilateral 6-OHDA lesion produced an elevation in striatal GAD67 and enkephalin mRNA levels and to a decrease in dynorphin mRNA levels. Chronic-intermittent L-dopa (6 mg/kg) treatment increased the striatal levels of GAD67, dynorphin, and enkephalin mRNA in the lesioned side as compared to the vehicle treatment. Chronic-intermittent SCH 58261 (5 mg/kg) plus L-dopa (3 mg/kg) as well as L-dopa (3 mg/kg) or SCH 58261 (5 mg/kg) alone did not produce any significant modification in GAD67, dynorphin, or enkephalin mRNA levels in the lesioned striatum as compared to the striatum of vehicle-treated rats. The results show that combined SCH 58261 plus L-dopa did not produce long-term changes in markers of striatal efferent neurons activity and suggest that the lack of modifications in GAD67 and dynorphin mRNA after SCH 58261 plus L-dopa might correlate with the lack of turning behavior sensitization which predicts drug dyskinetic potential.
Collapse
Affiliation(s)
- Anna R Carta
- Department of Toxicology, University of Cagliari, 09124, Italy
| | | | | | | |
Collapse
|
13
|
Wardas J, Konieczny J, Lorenc-Koci E. SCH 58261, an A(2A) adenosine receptor antagonist, counteracts parkinsonian-like muscle rigidity in rats. Synapse 2001; 41:160-71. [PMID: 11400182 DOI: 10.1002/syn.1070] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of the present study was to find out whether blockade of adenosine A(2A) receptors by a selective antagonist, SCH 58261, influenced parkinsonian-like muscle rigidity. Muscle tone was examined using a combined mechano- and electromyographic method which simultaneously measured muscle resistance (MMG) of a rat hindfoot to passive extension and flexion in the ankle joint and electromyographic activity (EMG) of the antagonistic muscles of that joint: gastrocnemius and tibialis anterior. Muscle rigidity produced by reserpine (5 mg/kg + alpha-methyl-p-tyrosine, 250 mg/kg) was antagonized by SCH 58261 (0.1-5 mg/kg). SCH 58261 (5 mg/kg) also reduced reserpine-enhanced tonic and reflex EMG activities in both the gastrocnemius and the tibialis muscles. Moreover, SCH 58261 in doses of 1 and 5 mg/kg abolished muscle resistance induced by haloperidol (0.5 mg/kg). However, only the highest dose of SCH 58261 (5 mg/kg) decreased tonic EMG activity enhanced by haloperidol. Administration of L-DOPA (75 and 100 mg/kg) dose-dependently decreased the muscle resistance as well as tonic EMG activity evoked by haloperidol. Combined administration of SCH 58261 (0.1 mg/kg) and L-DOPA (50 mg/kg) in doses which did not affect the haloperidol-induced muscle rigidity produced a pronounced synergistic effect. The ability of SCH 58261 to diminish the parkinsonian-like muscle rigidity and to potentiate the effect of L-DOPA in this model seems to indicate a therapeutic value of this compound in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- J Wardas
- Department of NeuroPsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, PL-31-343 Kraków, Poland.
| | | | | |
Collapse
|
14
|
A common signaling pathway for striatal NMDA and adenosine A2a receptors: implications for the treatment of Parkinson's disease. J Neurosci 2001. [PMID: 11027242 DOI: 10.1523/jneurosci.20-20-07782.2000] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The striatum is the major input region of the basal ganglia, playing a pivotal role in the selection, initiation, and coordination of movement both physiologically and in pathophysiological situations such as Parkinson's disease. In the present study, we characterize interactions between NMDA receptors, adenosine receptors, and cAMP signaling within the striatum. Both NMDA (100 micrometer) and the adenosine A(2a) receptor agonist CPCA (3 micrometer) increased cAMP levels (218.9 +/- 19.9% and 395.7 +/- 67.2%, respectively; cf. basal). The NMDA-induced increase in cAMP was completely blocked when slices were preincubated with either the NMDA receptor antagonist 7-chlorokynurenate or the adenosine A(2) receptor antagonist DMPX (100 micrometer), suggesting that striatal NMDA receptors increase cAMP indirectly via stimulation of adenosine A(2a) receptors. Thus, NMDA receptors and adenosine A(2a) receptors might share a common signaling pathway within the striatum. In striatal slices prepared from the 6-hydroxydopamine-lesioned rat model of Parkinson's disease, NMDA receptor-mediated increases in cAMP were greater on the lesioned side compared with the unlesioned side (349.6 +/- 40.2% compared with 200.9 +/- 21.9% of basal levels, respectively). This finding substantiates previous evidence implicating overactivity of striatal NMDA receptors in parkinsonism and suggests that a common NMDA receptor-adenosine A(2a) receptor-cAMP signaling cascade might be an important mechanism responsible for mediating parkinsonian symptoms.
Collapse
|
15
|
Wardas J, Konieczny J, Lorenc-Koci E. The role of striatal adenosine A2A receptors in regulation of the muscle tone in rats. Neurosci Lett 1999; 276:79-82. [PMID: 10624796 DOI: 10.1016/s0304-3940(99)00779-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to assess contribution of striatal adenosine A2A receptors to regulation of the muscle tone in rats. The muscle tone was examined by a combined mechano- and electromyographic method, which measured simultaneously muscle resistance (MMG) of a rats hind foot to passive extension and flexion in the ankle joint and the electromyographic activity (EMG) of the antagonistic muscles: gastrocnemius and tibialis anterior. CGS 21680 (1 and 2 microg/0.5 microl), injected bilaterally into the rostral part of the striatum, dose-dependently increased both MMG and the EMG. The present results show that stimulation of striatal adenosine A2A receptors by CGS 21680 evokes parkinsonian-like muscle rigidity which may be due to activation of the GABAergic strio-pallidal pathway.
Collapse
Affiliation(s)
- J Wardas
- Department of NeuroPsychopharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków.
| | | | | |
Collapse
|
16
|
Hauber W, Lutz S. Dopamine D1 or D2 receptor blockade in the globus pallidus produces akinesia in the rat. Behav Brain Res 1999; 106:143-50. [PMID: 10595430 DOI: 10.1016/s0166-4328(99)00102-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present study, the involvement of dopamine D1 and D2 receptors in the dorsal globus pallidus (GP) in motor control was investigated in rats. Results show that bilateral microinfusions of the dopamine D1 receptor antagonist SCH23390 or the dopamine D2 antagonist S( - )-sulpiride into the GP induced akinesia determined by means of the catalepsy test. These findings indicate that pallidal dopamine D1 and D2 receptors are critically involved in the control of motor behaviour. The findings further imply that defective dopaminergic transmission in the GP might contribute to akinesia due to lesion- or drug-induced dopamine hypofunction in experimental animals and in neurodegenerative diseases, e.g. Parkinson's disease, affecting the nigrostriatal dopamine system.
Collapse
Affiliation(s)
- W Hauber
- Abteilung Tierphysiologie, Biologisches Institut, Universität Stuttgart, Germany.
| | | |
Collapse
|
17
|
Gracy KN, Clarke CL, Meyers MB, Pickel VM. N-methyl-D-aspartate receptor 1 in the caudate-putamen nucleus: ultrastructural localization and co-expression with sorcin, a 22,000 mol. wt calcium binding protein. Neuroscience 1999; 90:107-17. [PMID: 10188938 DOI: 10.1016/s0306-4522(98)00440-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Entry of calcium through N-methyl-D-aspartate-type glutamate receptors in the caudate-putamen nucleus is essential for normal motor activity, but can produce cytotoxicity with continued stimulation and subsequent release of intracellular calcium. To determine potential functional sites for N-methyl-D-aspartate receptor activation in this region, we examined the ultrastructural localization of the R1 subunit of the N-methyl-D-aspartate receptor (NMDAR1) in rat brain. In addition, we comparatively examined the localization of NMDAR1 and sorcin, a 22,000 mol. wt calcium binding protein present in certain striatal neurons and involved in calcium-induced calcium release. NMDAR1-like immunoreactivity was seen at synaptic and non-synaptic sites on neuronal plasma membranes. Of 1514 NMDAR1-labeled profiles, 62% were dendrites and dendritic spines and the remainder were mainly unmyelinated axons and axon terminals. Sorcin-like immunoreactivity was present in 39% of the profiles that contained NMDAR1 labeling, most (533/595) of which were dendrites and dendritic spines. Of 1807 sorcin-labeled profiles, 42% were identified, however, as small processes including spine necks and unmyelinated axons or axon terminals. These profiles also occasionally contained NMDAR1 or showed synaptic or appositional contacts with other NMDAR1-immunoreactive neurons. The results of this study suggest that in the caudate-putamen nucleus, activation of NMDA receptors permits calcium influx at plasmalemmal sites mainly on dendrites where sorcin may play a role in calcium-induced calcium release. The presence of sorcin in some, but not all NMDA-containing neurons in the caudate-putamen nucleus has potential implications for the known differential vulnerability of certain striatal neurons to excitotoxins.
Collapse
Affiliation(s)
- K N Gracy
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
18
|
Hauber W, Koch M. Adenosine A2a receptors in the nucleus accumbens modulate prepulse inhibition of the startle response. Neuroreport 1997; 8:1515-8. [PMID: 9172165 DOI: 10.1097/00001756-199704140-00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prepulse inhibition (PPI) of the acoustic startle response (ASR) was disrupted by systemic administration of apomorphine (APO) (2 mg/kg, i.p.). Microinfusion of the selective adenosine A2a-recceptor agonist CGS21680 (0.05 microgram in 1.0 microliter per side) into the nucleus accumbens (NAc), had no significant effect in animals with systemic vehicle pretreatment, but significantly reversed the disruption of PPI in rats pretreated with APO. Adenosine is, therefore, involved in the control of PPI through its actions on A2a receptors in the NAc. APO-induced disruption of PPI is considered to represent an animal model useful for screening both typical and atypical antipsychotic agents. The present results add further support to the view that A2a-receptor agonists may be potentially useful antipsychotic agents.
Collapse
Affiliation(s)
- W Hauber
- Department of Animal Physiology, University of Stuttgart, Germany
| | | |
Collapse
|
19
|
Hauber W, Münkle M. Motor depressant effects mediated by dopamine D2 and adenosine A2A receptors in the nucleus accumbens and the caudate-putamen. Eur J Pharmacol 1997; 323:127-31. [PMID: 9128830 DOI: 10.1016/s0014-2999(97)00040-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We compared hypolocomotion and catalepsy mediated by striatal dopamine D2 and adenosine A2A receptors using microinfusions of the adenosine A2A receptor agonist 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS21680) and the dopamine D2 receptor antagonist raclopride into the nucleus accumbens and the caudate-putamen. The effective doses (ED25/50) of CGS21680 and raclopride which produced equivalent reductions of spontaneous locomotion after microinfusion into the nucleus accumbens were found to induce similar degrees of catalepsy after microinfusion into the caudate-putamen. This comparable, little separation of the effective doses of a dopamine D2 receptor antagonist and an adenosine A2A receptor agonist to produce locomotor inhibition and catalepsy support the idea that adenosine A2A receptor agonists as potential antipsychotic agents may have a similar therapeutic profile as dopamine D2 receptor antagonists.
Collapse
Affiliation(s)
- W Hauber
- Department of Animal Physiology, University of Stuttgart, Germany.
| | | |
Collapse
|