1
|
Cui H, Li Z, Sun H, Zhao W, Ma H, Hao L, Zhang Z, Hölscher C, Ma D, Zhang Z. The neuroprotective effects of cholecystokinin in the brain: antioxidant, anti-inflammatory, cognition, and synaptic plasticity. Rev Neurosci 2025:revneuro-2024-0142. [PMID: 39832348 DOI: 10.1515/revneuro-2024-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated. Studies have shown in a series of animal models of neurodegenerative diseases that CCK receptor agonists show neuroprotective effects and can effectively alleviate oxidative stress, alleviate chronic inflammation of the central nervous system, improve neuronal synaptic plasticity, prevent neuronal loss, and improve cognitive dysfunction in Alzheimer's disease (AD) model mice and motor activity in animal models of Parkinson's disease. In addition, CCK plays important roles in the amygdala to regulate anxiety and depressive states. Activation of interneurons or inhibition of excitatory neurons can improve anxiety levels. This review summarizes the effects on memory formation and synaptic plasticity, the neuroprotective effects of cholecystokinin and its analogs in neurological diseases such as Alzheimer and Parkinson's disease, and the effects on anxiety and neuronal activity in the amygdala.
Collapse
Affiliation(s)
- Hailiang Cui
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zhonghua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Hongyu Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Wanlin Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - He Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Li Hao
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Christian Hölscher
- Henan Academy of Innovations in Medical Science, Brain Institute, Zhengzhou 451100, Henan Province, China
| | - Dongrui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zijuan Zhang
- School of Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| |
Collapse
|
2
|
Oikawa I, Kondo S, Hashimoto K, Yoshida A, Hamajima M, Tanimoto H, Furukubo-Tokunaga K, Honjo K. A descending inhibitory mechanism of nociception mediated by an evolutionarily conserved neuropeptide system in Drosophila. eLife 2023; 12:RP85760. [PMID: 37310871 DOI: 10.7554/elife.85760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Nociception is a neural process that animals have developed to avoid potentially tissue-damaging stimuli. While nociception is triggered in the peripheral nervous system, its modulation by the central nervous system is a critical process in mammals, whose dysfunction has been extensively implicated in chronic pain pathogenesis. The peripheral mechanisms of nociception are largely conserved across the animal kingdom. However, it is unclear whether the brain-mediated modulation is also conserved in non-mammalian species. Here, we show that Drosophila has a descending inhibitory mechanism of nociception from the brain, mediated by the neuropeptide Drosulfakinin (DSK), a homolog of cholecystokinin (CCK) that plays an important role in the descending control of nociception in mammals. We found that mutants lacking dsk or its receptors are hypersensitive to noxious heat. Through a combination of genetic, behavioral, histological, and Ca2+ imaging analyses, we subsequently revealed neurons involved in DSK-mediated nociceptive regulation at a single-cell resolution and identified a DSKergic descending neuronal pathway that inhibits nociception. This study provides the first evidence for a descending modulatory mechanism of nociception from the brain in a non-mammalian species that is mediated by the evolutionarily conserved CCK system, raising the possibility that the descending inhibition is an ancient mechanism to regulate nociception.
Collapse
Affiliation(s)
- Izumi Oikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Kao Hashimoto
- College of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akiho Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Megumi Hamajima
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Ken Honjo
- Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Watanabe T, Sieg M, Lunde SJ, Taneja P, Baad-Hansen L, Pigg M, Vase L. What is the nocebo effect and does it apply to dentistry? A narrative review. J Oral Rehabil 2022; 49:586-591. [PMID: 35043415 PMCID: PMC9310768 DOI: 10.1111/joor.13306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/08/2021] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
Abstract
Background Evidence for the nocebo effect, a phenomenon characterised by suboptimal treatment efficacy, worsening of symptoms, or the occurrence of adverse events caused by an individual’s negative treatment expectations, is growing across a multitude of medical fields. However, little attention has been paid to patients’ negative expectations and the nocebo effect within dentistry. Aim This review summarises essential evidence of the nocebo phenomenon especially in relation to pain and drug administration. Subsequently, an overview of the current evidence of the nocebo phenomenon in the dental field is presented. Methods A PubMed search was performed using keywords related to “nocebo,” “placebo,” “expectations,” and “dentistry.” In addition to the articles selected from the search, placebo/nocebo researchers and dental researchers added important references from their respective fields. Results Although research on the nocebo effect in dentistry is limited, available current evidence suggests that the factors, which is related to the nocebo effect are likely to play a role in dental practice. Conclusion Preliminary evidence from the review warrants further investigation into the nocebo effect in dentistry. Finally, based on the general knowledge of the nocebo effect, the review indicates fruitful arrays of research into the nocebo effect in dentistry.
Collapse
Affiliation(s)
- Takeshi Watanabe
- Department of Psychology and Behavioural Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark.,Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mette Sieg
- Department of Psychology and Behavioural Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Sigrid Juhl Lunde
- Department of Psychology and Behavioural Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Pankaj Taneja
- Section of Oral and Maxillofacial Surgery and Oral Pathology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Scandinavian Center of Orofacial Neurosciences, Aarhus, Denmark, Malmö, Sweden
| | - Lene Baad-Hansen
- Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark.,Scandinavian Center of Orofacial Neurosciences, Aarhus, Denmark, Malmö, Sweden
| | - Maria Pigg
- Scandinavian Center of Orofacial Neurosciences, Aarhus, Denmark, Malmö, Sweden.,Department of Endodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Lene Vase
- Department of Psychology and Behavioural Sciences, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
CCK2 receptors in chronic pain. NEUROBIOLOGY OF PAIN 2022; 11:100092. [PMID: 35571964 PMCID: PMC9097710 DOI: 10.1016/j.ynpai.2022.100092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022]
Abstract
CCK2R is a historic target for pain management that has shown limited success. We review CCK2Rs and their role in peripheral and central circuits in chronic pain. We discuss the interactions between CCK2Rs and opioids. We highlight recent drug discovery efforts targeting CCK2R for chronic pain.
The cholecystokinin receptor system, specifically cholecystokinin 2 receptor (CCK2R) is a historic target for pain management that has shown limited success. However, new approaches to target CCK2R have incited fresh enthusiasm for this target. In this mini-review, we discuss what is known about CCK2R in peripheral and central circuits under naïve physiological conditions and under conditions of chronic pain, the interactions of CCK2Rs with opioids and briefly, recent efforts to develop new treatments targeting CCK2R for chronic pain.
Collapse
|
5
|
Kaczyńska K, Wojciechowski P. Non-Opioid Peptides Targeting Opioid Effects. Int J Mol Sci 2021; 22:13619. [PMID: 34948415 PMCID: PMC8709238 DOI: 10.3390/ijms222413619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/07/2023] Open
Abstract
Opioids are the most potent widely used analgesics, primarily, but not exclusively, in palliative care. However, they are associated with numerous side effects, such as tolerance, addiction, respiratory depression, and cardiovascular events. This, in turn, can result in their overuse in cases of addiction, the need for dose escalation in cases of developing tolerance, and the emergence of dose-related opioid toxicity, resulting in respiratory depression or cardiovascular problems that can even lead to unintentional death. Therefore, a very important challenge for researchers is to look for ways to counteract the side effects of opioids. The use of peptides and their related compounds, which have been shown to modulate the effects of opioids, may provide such an opportunity. This short review is a compendium of knowledge about the most important and recent findings regarding selected peptides and their modulatory effects on various opioid actions, including cardiovascular and respiratory responses. In addition to the peptides more commonly reported in the literature in the context of their pro- and/or anti-opioid activity-such as neuropeptide FF (NPFF), cholecystokinin (CCK), and melanocyte inhibiting factor (MIF)-we also included in the review nociceptin/orphanin (N/OFQ), ghrelin, oxytocin, endothelin, and venom peptides.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland;
| | | |
Collapse
|
6
|
Hayashi T, Watanabe C, Katsuyama S, Agatsuma Y, Scuteri D, Bagetta G, Sakurada T, Sakurada S. Contribution of Histamine to Nociceptive Behaviors Induced by Intrathecally Administered Cholecystokinin-8. Front Pharmacol 2020; 11:590918. [PMID: 33250769 PMCID: PMC7673449 DOI: 10.3389/fphar.2020.590918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 01/04/2023] Open
Abstract
The involvement of spinal release of histamine in the nociceptive behaviors induced by cholecystokinin-8 (CCK-8) was investigated in mice. Intrathecal (i.t.) injection of CCK-8 elicited the nociceptive behaviors consisting of biting and licking. The nociceptive behaviors induced by i.t. treatment with CCK-8 showed two bell-shaped patterns. The histamine H3 receptor antagonist significantly promoted the nociceptive behaviors induced by CCK-8 at doses of 1–100 fmol and 100 pmol. The nociceptive behaviors elicited by CCK-8 was inhibited by i.t. administration of the CCK-B receptor antagonist in a dose-dependent manner, but not by the CCK-A receptor antagonist. The nociceptive behaviors induced by CCK-8 were markedly suppressed by i.t. pretreatment with antiserum against histamine and were abolished in histidine decarboxylase-deleted gene mice. In histamine H1 receptor-deleted gene mice, the nociceptive behaviors induced at both 10 amol and 10 pmol of CCK-8 were not affected. The tachykinin neurokinin-1 (NK1) receptor antagonists inhibited CCK-8 (10 pmol)-induced nociceptive behaviors in a dose-dependent manner. CCK-8 (10 amol)-induced nociceptive behaviors was not antagonized by co-administration with the tachykinin NK1 receptor antagonists. The nociceptive behaviors elicited by CCK-8 were inhibited by i.t. administration of the antagonist for the N-methyl-D-aspartate (NMDA) receptor in a dose-dependent manner. Our results suggest that the nociceptive behaviors induced by i.t. administration of CCK-8 (10 pmol) are mediated through the spinal release of histamine and are elicited via activation of the tachykinin NK1 and NMDA receptors, whereas the nociceptive behaviors induced by i.t. administration of CCK-8 (10 amol) are mediated through the spinal release of histamine and elicited via NMDA receptor activation.
Collapse
Affiliation(s)
- Takafumi Hayashi
- Laboratory of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chizuko Watanabe
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Soh Katsuyama
- Center for Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, Saitama, Japan
| | - Yasuyuki Agatsuma
- Laboratory of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Damiana Scuteri
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Cosenza, Italy
| | - Tsukasa Sakurada
- Center for Supporting Pharmaceutical Education, Faculty of Pharmaceutical sciences, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
7
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
8
|
Keppel Hesselink JM. Rediscovery of Ceruletide, a CCK Agonist, as an Analgesic Drug. J Pain Res 2020; 13:123-130. [PMID: 32021401 PMCID: PMC6970274 DOI: 10.2147/jpr.s232714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/24/2019] [Indexed: 01/23/2023] Open
Abstract
Ceruletide (CRL) is a decapeptide, originating from the skin of a tropical frog, and is many times more potent that cholecystokinin (CCK) in a number of assays. The compound was first isolated and characterized around 50 years ago, and its analgesic properties were subsequently identified. Since the 1980s it has been available in the clinic as a parenteral solution and is used as a diagnostic tool to characterize pancreas and gall bladder malfunctions. Its analgesic properties were evaluated in a number of indications: cancer pain, burns, colic pains and migraine. Preclinically, CRL reduces pain in low microgram dose range and promotes clear and long-lasting analgesic activity in nanograms when applied centrally. CCK is amongst the most widely expressed neuropeptides in the brain. CCK-induced analgesic effects in response to persistent and inflammatory pain have recently been associated with CCK2 receptor signaling. CRL, a potent CCK agonist, might be worthwhile to rediscover as a putative analgesic drug and could represent a potential analgesic intrathecal strategy to patients with cancer-related pain.
Collapse
Affiliation(s)
- Jan M Keppel Hesselink
- Faculty of Health, University of Witten/Herdecke, Witten, Germany.,Department Research and Development, Institute for Neuropathic Pain, Bosch en Duin, The Netherlands
| |
Collapse
|
9
|
Neurotransmitter systems involved in placebo and nocebo effects in healthy participants and patients with chronic pain: a systematic review. Pain 2019; 161:11-23. [DOI: 10.1097/j.pain.0000000000001682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Song EA, Lim JW, Kim H. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol 2017; 88:60-68. [PMID: 28483666 DOI: 10.1016/j.biocel.2017.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
Abstract
Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells.
Collapse
Affiliation(s)
- Eun Ah Song
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
11
|
Wen D, Sun D, Zang G, Hao L, Liu X, Yu F, Ma C, Cong B. Cholecystokinin octapeptide induces endogenous opioid-dependent anxiolytic effects in morphine-withdrawal rats. Neuroscience 2014; 277:14-25. [DOI: 10.1016/j.neuroscience.2014.06.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/27/2022]
|
12
|
Wen D, Zang G, Sun D, Yang S, Yu F, Li S, Ma C, Cong B. Effects of CCK-8 on the reinstatement of morphine-induced CPP and expression of behavioral sensitization in rats. Neuroscience 2013; 238:230-41. [DOI: 10.1016/j.neuroscience.2013.02.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|
13
|
Cholecystokinin receptors mediate tolerance to the analgesic effect of TENS in arthritic rats. Pain 2009; 148:84-93. [PMID: 19944533 DOI: 10.1016/j.pain.2009.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/25/2009] [Accepted: 10/15/2009] [Indexed: 11/21/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) is a treatment for pain that involves placement of electrical stimulation through the skin for pain relief. Previous work from our laboratory shows that repeated application of TENS produces analgesic tolerance by the fourth day and a concomitant cross-tolerance at spinal opioid receptors. Prior pharmacological studies show that blockade of cholecystokinin (CCK) receptors systemically and spinally prevents the development of analgesic tolerance to repeated doses of opioid agonists. We therefore hypothesized that systemic and intrathecal blockade of CCK receptors would prevent the development of analgesic tolerance to TENS, and cross-tolerance at spinal opioid receptors. In animals with knee joint inflammation (3% kaolin/carrageenan), high (100Hz) or low frequency (4Hz) TENS was applied daily and the mechanical withdrawal thresholds of the muscle and paw were examined. We tested thresholds before and after inflammation, and before and after TENS. Animals treated systemically, prior to TENS, with the CCK antagonist, proglumide, did not develop tolerance to repeated application of TENS on the fourth day. Spinal blockade of CCK-A or CCK-B receptors blocked the development of tolerance to high and low frequency TENS, respectively. In the same animals we show that spinal blockade of CCK-A receptors prevents cross-tolerance at spinal delta-opioid receptors that normally occurs with high frequency TENS; and blockade of CCK-B receptors prevents cross-tolerance at spinal mu-opioid receptors that normally occurs with low frequency TENS. Thus, we conclude that blockade of CCK receptors prevents the development of analgesic tolerance to repeated application of TENS in a frequency-dependent manner.
Collapse
|
14
|
Kurrikoff K, Inno J, Matsui T, Vasar E. Stress-induced analgesia in mice: evidence for interaction between endocannabinoids and cholecystokinin. Eur J Neurosci 2008; 27:2147-55. [DOI: 10.1111/j.1460-9568.2008.06160.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Berna MJ, Tapia JA, Sancho V, Jensen RT. Progress in developing cholecystokinin (CCK)/gastrin receptor ligands that have therapeutic potential. Curr Opin Pharmacol 2007; 7:583-592. [PMID: 17997137 PMCID: PMC2186776 DOI: 10.1016/j.coph.2007.09.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 09/28/2007] [Indexed: 01/09/2023]
Abstract
Gastrin and cholecystokinin (CCK) are two of the oldest hormones and within the past 15 years there has been an exponential increase in knowledge of their pharmacology, cell biology, receptors (CCK1R and CCK2R), and roles in physiology and pathological conditions. Despite these advances there is no approved disease indication for CCK receptor antagonists and only a minor use of agonists. In this review, the important factors determining this slow therapeutic development are reviewed. To assess this it is necessary to briefly review what is known about the roles of CCK receptors (CCK1R and CCK2R) in normal human physiology, their role in pathologic conditions, the selectivity of available potent CCKR agonists/antagonists as well as to review their use in human conditions to date and the results. Despite extensive studies in animals and in humans, recent studies suggest that monotherapy with CCK1R agonists will not be effective in obesity, nor CCK2R antagonists in panic disorders or CCK2R antagonists to inhibit growth of pancreatic cancer. Areas that require more study include the use of CCK2R agonists for imaging tumors and radiotherapy, CCK2R antagonists in hypergastrinemic states especially with long-term PPI use and for potentiation of analgesia as well as use of CCK1R antagonists for a number of gastrointestinal disorders [motility disorders (irritable bowel syndrome, dyspepsia, and constipation) and pancreatitis (acute and chronic)].
Collapse
Affiliation(s)
- Marc J Berna
- Department for Internal Medicine I, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
16
|
Benedetti F, Lanotte M, Lopiano L, Colloca L. When words are painful: Unraveling the mechanisms of the nocebo effect. Neuroscience 2007; 147:260-71. [PMID: 17379417 DOI: 10.1016/j.neuroscience.2007.02.020] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
The nocebo effect is a phenomenon that is opposite to the placebo effect, whereby expectation of a negative outcome may lead to the worsening of a symptom. Thus far, its study has been limited by ethical constraints, particularly in patients, as a nocebo procedure is per se stressful and anxiogenic. It basically consists in delivering verbal suggestions of negative outcomes so that the subject expects clinical worsening. Although some natural nocebo situations do exist, such as the impact of negative diagnoses upon the patient and the patient's distrust in a therapy, the neurobiological mechanisms have been understood in the experimental setting under strictly controlled conditions. As for the placebo counterpart, the study of pain has been fruitful in recent years to understand both the neuroanatomical and the neurochemical bases of the nocebo effect. Recent experimental evidence indicates that negative verbal suggestions induce anticipatory anxiety about the impending pain increase, and this verbally-induced anxiety triggers the activation of cholecystokinin (CCK) which, in turn, facilitates pain transmission. CCK-antagonists have been found to block this anxiety-induced hyperalgesia, thus opening up the possibility of new therapeutic strategies whenever pain has an important anxiety component. Other conditions, such as Parkinson's disease, although less studied, have been found to be affected by nocebo suggestions as well. All these findings underscore the important role of cognition in the therapeutic outcome, and suggest that nocebo and nocebo-related effects might represent a point of vulnerability both in the course of a disease and in the response to a therapy.
Collapse
Affiliation(s)
- F Benedetti
- Department of Neuroscience, University of Turin Medical School, Corso Raffaello 30, 10125 Turin, Italy.
| | | | | | | |
Collapse
|
17
|
Abstract
The under-treatment of postoperative pain has been recognised to delay patient recovery and discharge from hospital. Despite recognition of the importance of effective pain control, up to 70% of patients still complain of moderate to severe pain postoperatively. The mechanistic approach to pain management, based on current understanding of the peripheral and central mechanisms involved in nociceptive transmission, provides newer options for clinicians to manage pain effectively. In this article we review the rationale for a multimodal approach with combinations of analgesics from different classes and different sites of analgesic administration. The pharmacological options of commonly used analgesics, such as opioids, NSAIDs, paracetamol, tramadol and other non-opioid analgesics, and their combinations is discussed. These analgesics have been shown to provide effective pain relief and their combinations demonstrate a reduction in opioid consumption. The basis for using non-opioid analgesic adjuvants is to reduce opioid consumption and consequently alleviate opioid-related adverse effects. We review the evidence on the opioid-sparing effect of ketamine, clonidine, gabapentin and other novel analgesics in perioperative pain management. Most available data support the addition of these adjuvants to routine analgesic techniques to reduce the need for opioids and improve quality of analgesia by their synergistic effect. Local anaesthetic infiltration, epidural and other regional techniques are also used successfully to enhance perioperative analgesia after a variety of surgical procedures. The use of continuous perineural techniques that offer prolonged analgesia with local anaesthetic infusion has been extended to the care of patients beyond hospital discharge. The use of nonpharmacological options such as acupuncture, relaxation, music therapy, hypnosis and transcutaneous nerve stimulation as adjuvants to conventional analgesia should be considered and incorporated to achieve an effective and successful perioperative pain management regimen.
Collapse
Affiliation(s)
- Srinivas Pyati
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
18
|
Noble F, Roques BP. Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin Ther Targets 2007; 11:145-59. [PMID: 17227231 DOI: 10.1517/14728222.11.2.145] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The most efficient drugs to alleviate severe pain are opioid compounds. However, their chronic use could be associated with serious drawbacks, such as tolerance, respiratory depression and constipation. Therefore, there is a need for compounds able to efficiently alleviate inflammatory and neurogenic pain following chronic treatment. The discovery that the endogenous opioid peptides, enkephalins, are inactivated by two metallopeptidases, neutral endopeptidase and aminopeptidase N, which can be blocked by synthetic dual inhibitors, represents a promising way to develop 'physiological' analgesics devoid of morphine side effects. These dual inhibitors also have antidepressant-like properties through enkephalin-related activation of delta-opioid receptors. This is expected to reduce the emotional component of pain in humans. This article reviews the promising data obtained for future development of a new class of analgesic that could be of major interest in a number of severe and chronic pain syndromes.
Collapse
|
19
|
Mitchell JM, Bergren LJ, Chen KS, Fields HL. Cholecystokinin is necessary for the expression of morphine conditioned place preference. Pharmacol Biochem Behav 2006; 85:787-95. [PMID: 17196636 DOI: 10.1016/j.pbb.2006.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/08/2006] [Accepted: 11/20/2006] [Indexed: 11/16/2022]
Abstract
There is evidence that the neuropeptide cholecystokinin (CCK) is important for the rewarding effects of drugs of abuse. However, less is known regarding the role of CCK in drug seeking and craving. The present study investigated whether the CCK(B) antagonist L-365, 260 could block morphine-induced drug seeking using the conditioned place preference paradigm and whether the dopaminergic reward pathway contributes to the effect of L-365, 260 on expression of morphine place preference. We found that systemic administration of the CCK(B) antagonist L-365, 260 attenuates the expression of morphine-induced drug seeking as assessed using conditioned place preference (CPP) and shows that this effect is mediated by CCK(B) receptors in the anterior nucleus accumbens (NAcc). Additionally, we demonstrate that this effect is dependent on D(2) receptor activation in the anterior nucleus accumbens (NAcc). These results indicate that endogenous CCK modulates the incentive-salience of morphine-associated cues and suggest that CCK antagonists may be useful in the treatment of drug craving.
Collapse
Affiliation(s)
- Jennifer M Mitchell
- Department of Neurology, Box 0114, University of California at San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
20
|
Benedetti F, Amanzio M, Vighetti S, Asteggiano G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J Neurosci 2006; 26:12014-22. [PMID: 17108175 PMCID: PMC6674855 DOI: 10.1523/jneurosci.2947-06.2006] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the increasing research on placebos in recent times, little is known about the nocebo effect, a phenomenon that is opposite to the placebo effect and whereby expectations of symptom worsening play a crucial role. By studying experimental ischemic arm pain in healthy volunteers and by using a neuropharmacological approach, we found that verbally induced nocebo hyperalgesia was associated to hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, as assessed by means of adrenocorticotropic hormone and cortisol plasma concentrations. Both nocebo hyperalgesia and HPA hyperactivity were antagonized by the benzodiazepine diazepam, suggesting that anxiety played a major role in these effects. The administration of the mixed cholecystokinin (CCK) type-A/B receptor antagonist proglumide blocked nocebo hyperalgesia completely but had no effect on HPA hyperactivity, which suggests a specific involvement of CCK in the hyperalgesic but not in the anxiety component of the nocebo effect. Importantly, both diazepam and proglumide did not show analgesic properties on basal pain, because they acted only on the nocebo-induced pain increase. These data indicate a close relationship between anxiety and nocebo hyperalgesia, in which the CCKergic systems play a key role in anxiety-induced hyperalgesia. These results, together with previous findings showing that placebo analgesia is mediated by endogenous opioids, suggest that the analgesic placebo/hyperalgesic nocebo phenomenon may involve the opposite activation of endogenous opioidergic and CCKergic systems.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Department of Neuroscience, University of Turin Medical School, 10125 Turin, Italy.
| | | | | | | |
Collapse
|
21
|
Ruiz-Gayo M, Durieux C, Fournié-Zaluski MC, Roques BP. Stimulation of δ-Opioid Receptors Reduces the In Vivo Binding of the Cholecystokinin (CCK)-B-Selective Agonist [3H]pBC 264: Evidence for a Physiological Regulation of CCKergic Systems by Endogenous Enkephalins. J Neurochem 2006; 59:1805-11. [PMID: 1357099 DOI: 10.1111/j.1471-4159.1992.tb11013.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cholecystokinin (CCK) and enkephalins appear to be colocalized in several brain structures, and a physiological interaction between these peptides has been suggested by a large number of pharmacological studies. In this work we have shown, by in vivo binding experiments, that the endogenous enkephalins, protected from degrading enzymes by mixed inhibitors such as kelatorphan and N-[(R,S)-2-benzyl-3-[(S)-2-amino-4-methylthiobutyldithio]-1-oxo pro pyl]- L-phenylalanine benzyl ester (RB 101), a systemically active prodrug, modulate CCK release in mouse brain, leading to an overall increase in the extracellular levels of CCK. This was quantified by measuring the effects of both inhibitors on the in vivo binding of [3H]propionyl-Tyr(SO3H)-gNle-mGly-Trp-(N-Me)Nle-Asp-Phe-NH2 ([3H]pBC 264), a selective and highly potent CCK-B agonist. Thus, intracerebroventricular injection of kelatorphan produced a dose-dependent inhibition of the in vivo binding of [3H]pBC 264 with a maximal effect (40%) at 50 nmol. A similar response was observed after intravenous injection of RB 101 (40 mg/kg). The specific binding of [3H]pBC 264 was also inhibited (25%) by intravenous injection of the selective delta-opioid agonist H-Tyr-D-Cys(StBu)-Gly-Phe-Leu-Thr(OtBu)-OH (BUBUC; 2 mg/kg) but not by the mu-agonist H-Tyr-D-Ala-Gly-(N-Me)Phe-Gly-ol (5 mg/kg), suggesting a preferential involvement of delta-opioid receptors in the modulation of CCK release. This was confirmed by using the selective delta-opioid antagonist naltrindole, which prevented the inhibitory effects of BUBUC and of enkephalin-degrading enzyme inhibitors on [3H]pBC 264 binding.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Ruiz-Gayo
- Département de Chimie Organique, INSERM U. 266, CNRS UA 1500, Paris, France
| | | | | | | |
Collapse
|
22
|
Yang YM, Chung JM, Rhim H. Cellular action of cholecystokinin-8S-mediated excitatory effects in the rat periaqueductal gray. Life Sci 2006; 79:1702-11. [PMID: 16797032 DOI: 10.1016/j.lfs.2006.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/18/2006] [Accepted: 05/31/2006] [Indexed: 11/25/2022]
Abstract
The peptide cholecystokinin (CCK) is one of the major neurotransmitters modulating satiety, nociception, and anxiety behavior. Although many behavioral studies showing anti-analgesic and anxiogenic actions of CCK have been reported, less is known about its cellular action in the central nervous system (CNS). Therefore, we examined the action of CCK in rat dorsolateral periaqueductal gray (PAG) neurons using slice preparations and whole-cell patch-clamp recordings. Application of CCK-8S produced an inward current accompanied by increased spontaneous synaptic activities. The CCK-8S-induced inward current (I(CCK)) was recovered after washout and reproduced by multiple exposures. Current-voltage plots revealed that I(CCK) reversed near the equilibrium potential for K(+) ions with a decreased membrane conductance. When several K(+) channel blockers were used, application of CdCl(2), TEA, or apamin significantly reduced I(CCK). I(CCK) was also significantly reduced by the CCK(2) receptor antagonist, L-365,260, while it was not affected by the CCK(1) receptor antagonist, L-364,718. Furthermore, we examined the effects of CCK-8S on miniature excitatory postsynaptic currents (mEPSCs) in order to determine the mechanism of CCK-mediated increase on synaptic activities. We found that CCK-8S increased the frequency of mEPSCs, but had no effect on mEPSC amplitude. This presynaptic effect persisted in the presence of CdCl(2) or Ca(2+)-free bath solution, but was completely abolished by pre-treatment with BAPTA-AM, thapsigargin or L-365,260. Taken together, our results indicate that CCK can excite PAG neurons at both pre- and postsynaptic loci via the activation of CCK(2) receptors. These effects may be important for the effects of CCK on behavior and autonomic function that are mediated via PAG neurons.
Collapse
Affiliation(s)
- Yu-Mi Yang
- Biomedical Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawholgok-dong Sungbuk-gu, Seoul 136-791, Korea
| | | | | |
Collapse
|
23
|
Agnes RS, Lee YS, Davis P, Ma SW, Badghisi H, Porreca F, Lai J, Hruby VJ. Structure-activity relationships of bifunctional peptides based on overlapping pharmacophores at opioid and cholecystokinin receptors. J Med Chem 2006; 49:2868-75. [PMID: 16686530 PMCID: PMC1484468 DOI: 10.1021/jm050921q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholecystokinin (CCK) has been identified as a pronociceptive endogenous peptide which also possesses antiopioid actions. CCK may be upregulated in conditions of chronic pain or during sustained morphine administration resulting in attenuation of opioid-mediated pain relief. These complex interactions between opioids and endogenous CCK receptor systems have suggested the need for a new paradigm in drug design for some states of chronic pain. In these circumstances the rational design of potential drugs for the treatment of these conditions must be based on one ligand for multiple targets. We have designed a single peptide which can interact with delta and mu opioid receptors as agonists and with CCK receptors as antagonists. The ligands were designed based on a model of overlapping pharmacophores of opioid and CCK peptide ligands, which incorporates opioid pharmacophores at the N-terminal and CCK tetrapeptide pharmacophores at the C-terminal of the designed ligands. We measured binding and activities of our bifunctional peptides at opioid and CCK receptors. Compound 11 (Tyr-d-Ala-Gly-d-Trp-NMeNle-Asp-Phe-NH(2)) demonstrated opioid agonist properties at delta and mu receptors (IC(50) = 63 +/- 27 nM and 150 +/- 65 nM, respectively in MVD and GPI tissue assays) and high binding affinity at CCK-1 and CCK-2 receptors (K(i) = 320 and 1.5 nM, respectively). Compound 9 (Tyr-d-Nle-Gly-Trp-Nle-Asp-Phe-NH(2)) displayed potent agonist activity at delta and mu receptors (IC(50) = 23 +/-10 nM and 210 +/- 52 nM, respectively in MVD and GPI tissue assays), with a balanced binding affinity for CCK-1 and CCK-2 receptors (K(i) = 9.6 and 15 nM, respectively). These results provide evidence supporting the concept that opioid and CCK receptors have overlapping pharmacophores required for binding affinity and biological activity and that designing overlapping pharmacophores of two peptides into a single peptide is a valid drug design approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Victor J. Hruby
- * To whom correspondence should be addressed. Phone: 520-621-6332. Fax: 520-621-8407. E-mail:
| |
Collapse
|
24
|
Juárez-Rojop IE, Granados-Soto V, Díaz-Zagoya JC, Flores-Murrieta FJ, Torres-López JE. Involvement of cholecystokinin in peripheral nociceptive sensitization during diabetes in rats as revealed by the formalin response. Pain 2006; 122:118-25. [PMID: 16527403 DOI: 10.1016/j.pain.2006.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 01/04/2006] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
The possible pronociceptive role of peripheral cholecystokinin (CCK-8) as well as CCK(A) and CCK(B) receptors in diabetic rats was assessed. Subcutaneous injection of 0.5% formalin induced a greater nociceptive behavior in diabetic than in non-diabetic rats. Moreover, local peripheral injection of CCK-8 (0.1-100 microg) significantly increased 0.5% formalin-induced nociceptive activity in diabetic, but not in non-diabetic, rats. This effect was restricted to the formalin-injected paw as administration of CCK-8 into the contralateral paw was ineffective. Local peripheral administration of CCK-8, in the absence of formalin injection, produced a low level of, but significant increase in, flinching behavior in diabetic compared to non-diabetic rats. In addition, local peripheral administration of the non-selective CCK receptor antagonist proglumide (1-100 microg), CCK(A) receptor antagonist lorglumide (0.1-100 microg) or CCK(B) receptor antagonist CR-2945 (0.1-100 microg), but not vehicle or contralateral administration of CCK receptor antagonists, significantly reduced 0.5% formalin-induced flinching in diabetic rats. CR-2945 was the most effective drug in this condition. These effects were not observed in non-diabetic rats. The local peripheral pronociceptive effect of CCK-8 (100 microg) was significantly reduced by proglumide (100 microg), lorglumide (100 microg), and CR-2945 (100 microg). Results suggest that diabetes-induced peripheral sensitization could be due to a local peripheral release of CCK-8, which in turn would act on CCK(B), mainly but also in CCK(A), receptors located on the primary afferent neurons.
Collapse
Affiliation(s)
- Isela E Juárez-Rojop
- Laboratorio Mecanismos del Dolor, Centro de Investigación y Posgrado, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | | | | | | |
Collapse
|
25
|
King T, Ossipov MH, Vanderah TW, Porreca F, Lai J. Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals 2006; 14:194-205. [PMID: 16215302 DOI: 10.1159/000087658] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Indexed: 12/29/2022] Open
Abstract
Opiates are the primary treatment for pain management in cancer patients reporting moderate to severe pain, and are being increasingly used for non-cancer chronic pain. However, prolonged administration of opiates is associated with significant problems including the development of antinociceptive tolerance, wherein higher doses of the drug are required over time to elicit the same amount of analgesia. High doses of opiates result in serious side effects such as constipation, nausea, vomiting, dizziness, somnolence, and impairment of mental alertness. In addition, sustained exposure to morphine has been shown to result in paradoxical pain in regions unaffected by the initial pain complaint, and which may also result in dose escalation, i.e. 'analgesic tolerance'. A concept that has been gaining considerable experimental validation is that prolonged use of opioids elicits paradoxical, abnormal pain. This enhanced pain state requires additional opioids to maintain a constant level of antinociception, and consequently may be interpreted as antinociceptive tolerance. Many substances have been shown to block or reverse antinociceptive tolerance. A non-inclusive list of examples of substances reported to block or reverse opioid antinociceptive tolerance include: substance P receptor (NK-1) antagonists, calcitonin gene-related peptide (CGRP) receptor antagonists, nitric oxide (NO) synthase inhibitors, calcium channel blockers, cyclooxygenase (COX) inhibitors, protein kinase C inhibitors, competitive and non-competitive antagonists of the NMDA (N-methyl-D-aspartate) receptor, AMPA (alpha-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid) antagonists, anti-dynorphin antiserum, and cholecystokinin (CCK) receptor antagonists. Without exception, these substances are also antagonists of pain-enhancing agents. Prolonged opiate administration indeed induces upregulation of substance P (SP) and calcitonin gene-related peptide (CGRP) within sensory fibers in vivo, and this is accompanied by an enhanced release of excitatory neurotransmitters and neuropeptides from primary afferent fibers upon stimulation. The enhanced evoked release of neuropeptides is correlated with the onset of abnormal pain states and opioid antinociceptive tolerance. Importantly, the descending pain modulatory pathway from the brainstem rostral ventromedial medulla (RVM) via the dorsolateral funiculus (DLF) is critical for maintaining the changes observed in the spinal cord, abnormal pain states and antinociceptive tolerance, because animals with lesion of the DLF did not show enhanced evoked neuropeptide release, or develop abnormal pain or antinociceptive tolerance upon sustained exposure to opiates. Microinjection of either lidocaine or a CCK antagonist into the RVM blocked both thermal and touch hypersensitivity as well as antinociceptive tolerance. Thus, prolonged opioid exposure enhances a descending pain facilitatory pathway from the RVM that is mediated at least in part by CCK activity and is essential for the maintenance of antinociceptive tolerance.
Collapse
Affiliation(s)
- Tamara King
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
26
|
Hebb ALO, Poulin JF, Roach SP, Zacharko RM, Drolet G. Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition, and emotion. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1225-38. [PMID: 16242828 DOI: 10.1016/j.pnpbp.2005.08.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 11/22/2022]
Abstract
It is well documented that stressful life experiences contribute to the etiology of human mood disorders. Cholecystokinin (CCK) is a neuropeptide found in high concentrations throughout the central nervous system, where it is involved in numerous physiological functions. A role for CCK in the induction and persistence of anxiety and major depression appears to be conspicuous. While increased CCK has been associated with motivational loss, anxiety and panic attacks, an increase in mesocorticolimbic opioid availability has been associated with coping and mood elevation. The close neuroanatomical distribution of CCK with opioid peptides in the limbic system suggests that there may be an opioid-CCK link in the modulation and expression of anxiety or stressor-related behaviors. In effect, while CCK induces relatively protracted behavioral disturbances in both animal and human subjects following stressor applications, opioid receptor activation may change the course of psychopathology. The antagonistic interaction of CCK and opioid peptides is evident in psychological disturbances as well as stress-induced analgesia. There appears to be an intricate balance between the memory-enhancing and anxiety-provoking effects of CCK on one hand, and the amnesic and anxiolytic effects of opioid peptides on the other hand. Potential anxiogenic and mnemonic influences of site-specific mesocorticolimbic CCK and opioid peptide availability, the relative contributions of specific CCK and opioid receptors, as well as the time course underlying neuronal substrates of long-term behavioral disturbances as a result of stressor manipulations, are discussed.
Collapse
Affiliation(s)
- Andrea L O Hebb
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, Canada B3H 1X5.
| | | | | | | | | |
Collapse
|
27
|
Cohen H, Kaplan Z, Matar MA, Buriakovsky I, Bourin M, Kotler M. Different pathways mediated by CCK1 and CCK2 receptors: effect of intraperitonal mrna antisense oligodeoxynucleotides to cholecystokinin on anxiety-like and learning behaviors in rats. Depress Anxiety 2005; 20:139-52. [PMID: 15487014 DOI: 10.1002/da.20032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholecystokinin (CCK) and its analogs generate anxiety in humans and measurable anxiety-like behaviors in rats. CCK receptor blockers have been reported to have variable effects in the treatment of anxiety disorders. In a prior study, intracerebroventricular administration of CCK-antisense oligodeoxynucleotides (ASODN) for 3 days significantly diminished anxiety-like behavior in rats. Counter to our expectations, intraperitoneal (i.p.) administration of CCK-ASODN significantly increased anxiety-like behavior and impaired retention performance in the Morris water maze. The aim of the present study was to manipulate CCK-mediated anxiety-like behavior and spatial memory in rats by peripheral (i.p.) administration of ASODN to preproCCK in the presence of antagonists to CCK1 and CCK2 receptor subtypes to further elucidate the roles of these two receptors and better understand the effects of i.p. CCK-ASODN. CCK-ASODN was injected i.p. to rats five times at 24-hr intervals with and without administration of CCK1R antagonist PD135158 or CCK2 antagonist benzotrip. Control groups received injections of either a scrambled oligodeoxynucleotide (ScrODN) or vehicle. On Day 6, the rats were assessed in the elevated plus maze paradigm and in the Morris water maze. The rats were sacrificed and their blood was assessed for corticosterone, ACTH, and prolactin levels. The results show that i.p. CCK-ASODN significantly increased anxiety-like behavior and impaired retention performance in the Morris water maze, compared to both control groups, accompanied by increased plasma corticosterone and plasma ACTH concentrations. In contrast, administration of CCK-ASODN together with CCK2R antagonist, but not with CCK1R antagonist, significantly decreased anxiety-like behavior in rats, but still impaired retention performance in the Morris water maze paradigm. Lower levels of plasma corticosterone and ACTH in CCK-ASODN+CCK2R antagonist-treated rats accompanied the reduced anxiety-like behavior. The present study showed an anxiolytic effect of i.p. CCK-ASODN in the presence of CCK2R, but not CCK1R.
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health Mental Health Center, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
28
|
Xie JY, Herman DS, Stiller CO, Gardell LR, Ossipov MH, Lai J, Porreca F, Vanderah TW. Cholecystokinin in the rostral ventromedial medulla mediates opioid-induced hyperalgesia and antinociceptive tolerance. J Neurosci 2005; 25:409-16. [PMID: 15647484 PMCID: PMC6725495 DOI: 10.1523/jneurosci.4054-04.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 11/18/2004] [Accepted: 11/19/2004] [Indexed: 12/13/2022] Open
Abstract
Opioid-induced hyperalgesia is characterized by hypersensitivity to innocuous or noxious stimuli during sustained opiate administration. Microinjection of lidocaine into the rostral ventromedial medulla (RVM), or dorsolateral funiculus (DLF) lesion, abolishes opioid-induced hyperalgesia, suggesting the importance of descending pain facilitation mechanisms. Here, we investigate the possibility that cholecystokinin (CCK), a pronociceptive peptide, may drive such descending facilitation from the RVM during continuous opioid administration. In opioid-naive rats, CCK in the RVM produced acute tactile and thermal hypersensitivity that was antagonized by the CCK2 receptor antagonist L365,260 or by DLF lesion. CCK in the RVM also acutely displaced the spinal morphine antinociceptive dose-response curve to the right. Continuous systemic morphine elicited sustained tactile and thermal hypersensitivity within 3 d. Such hypersensitivity was reversed in a time-dependent manner by L365,260 in the RVM, and blockade of CCK2 receptors in the RVM also blocked the rightward displacement of the spinal morphine antinociceptive dose-response curve. Microdialysis studies in rats receiving continuous morphine showed an approximately fivefold increase in the basal levels of CCK in the RVM when compared with controls. These data suggest that activation of CCK2 receptors in the RVM promotes mechanical and thermal hypersensitivity and antinociceptive tolerance to morphine. Enhanced, endogenous CCK activity in the RVM during sustained morphine exposure may diminish spinal morphine antinociceptive potency by activating descending pain facilitatory mechanisms to exacerbate spinal nociceptive sensitivity. Prevention of opioid-dose escalation in chronic pain states by CCK receptor antagonism represents a potentially important strategy to limit unintended enhanced clinical pain and analgesic tolerance
Collapse
Affiliation(s)
- Jennifer Y Xie
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kurrikoff K, Kõks S, Matsui T, Bourin M, Arend A, Aunapuu M, Vasar E. Deletion of the CCK2 receptor gene reduces mechanical sensitivity and abolishes the development of hyperalgesia in mononeuropathic mice. Eur J Neurosci 2004; 20:1577-86. [PMID: 15355324 DOI: 10.1111/j.1460-9568.2004.03619.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies suggest that cholecystokinin (CCK) is implicated in the modulation of pain sensitivity and the development of neuropathic pain. We used CCK(2) receptor deficient (CCK(2) (-/-)) mice and assessed their mechanical sensitivity using Von Frey filaments, as well as the development and time course of mechanical hyperalgesia in a model of neuropathic pain. We found that CCK(2) (-/-) mice displayed mechanical hyposensitivity, which was reversed to the level of wild-type animals after administration of naloxone (0.1-10 mg/kg). On the other hand, injection of L-365260 (0.01-1 mg/kg), an antagonist of CCK(2) receptors, decreased dose-dependently, mechanical sensitivity in wild-type mice. The mechanism of reduced mechanical sensitivity in CCK(2) (-/-) mice may be explained by changes in interactions between CCK and opioid systems. Indeed, CCK(2) (-/-) mice natively expressed higher levels of lumbar CCK(1), opioid delta and kappa receptors. Next, we found that CCK(2) (-/-) mice did not develop mechanical hyperalgesia in the Bennett's neuropathic pain model. Induction of neuropathy resulted in decrease of lumbar pro-opiomelanocortin (POMC) gene expression in wild-type mice, but increase of POMC expression in CCK(2) (-/-) mice. In addition, induction of neuropathy resulted in further increase of opioid delta receptor in CCK(2) (-/-) mice. Gene expression results indicate up-regulation of opioid system in CCK(2) (-/-) mice, which apparently result in decreased neuropathy score. Our study suggests that not only pain sensitivity, but also mechanical sensitivity and the development of neuropathic pain are regulated by antagonistic interactions between CCK and opioid systems.
Collapse
MESH Headings
- Animals
- Benzodiazepinones/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Dynorphins/genetics
- Dynorphins/metabolism
- Enkephalins/genetics
- Enkephalins/metabolism
- Gene Expression/genetics
- Hyperalgesia/drug therapy
- Hyperalgesia/genetics
- Inflammation/etiology
- Inflammation/pathology
- Ligation/methods
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Naloxone/pharmacology
- Naloxone/therapeutic use
- Narcotic Antagonists/pharmacology
- Narcotic Antagonists/therapeutic use
- Pain Measurement/drug effects
- Pain Measurement/methods
- Pain Threshold/drug effects
- Pain Threshold/physiology
- Phenylurea Compounds/pharmacology
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/biosynthesis
- Receptor, Cholecystokinin B/deficiency
- Receptor, Cholecystokinin B/genetics
- Receptor, Cholecystokinin B/physiology
- Receptors, Cholecystokinin/antagonists & inhibitors
- Receptors, Opioid/classification
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sciatic Neuropathy/drug therapy
- Sciatic Neuropathy/genetics
- Sciatic Neuropathy/pathology
- Time Factors
Collapse
Affiliation(s)
- Kaido Kurrikoff
- Department of Physiology, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
30
|
Maie IA, Dickenson AH. Cholecystokinin fails to block the spinal inhibitory effects of nociceptin in sham operated and neuropathic rats. Eur J Pharmacol 2004; 484:235-40. [PMID: 14744608 DOI: 10.1016/j.ejphar.2003.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cholecystokinin (CCK) has a number of roles in the central nervous system and can reduce the analgesic effect of activation of mu (micro), delta (delta) and kappa (kappa) opioid receptors. CCK has been proposed to be a major reason for reduced effects of morphine after nerve injury. This study examines if CCK modulates the effect of the Opioid Receptor Like-1 (ORL1) agonist, nociceptin on dorsal horn neurone activity in vivo in the spinal nerve ligation model of neuropathic pain compared with sham-operated and naive rats. In naive and neuropathic rats nociceptin alone inhibited the C-fibre evoked response, post-discharge, wind-up and input, while in sham operated rats nociceptin did not cause any inhibition but by contrast caused a facilitation of post-discharge and wind-up. CCK alone had no significant effect, although did cause slight facilitation in the three groups. In the presence of CCK the inhibitory effect of nocieceptin was blocked in naive animals, but in contrast the inhibitory effect of nociceptin was enhanced by CCK in sham and neuropathic rats. These results emphasize the differences between ORL1 and other opioid receptors. This loss of the inhibitory effect of CCK on nociceptin after nerve injury may be of clinical interest in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Idil Ahmed Maie
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
31
|
Ossipov MH, Lai J, King T, Vanderah TW, Malan TP, Hruby VJ, Porreca F. Antinociceptive and nociceptive actions of opioids. ACTA ACUST UNITED AC 2004; 61:126-48. [PMID: 15362157 DOI: 10.1002/neu.20091] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the opioids are the principal treatment options for moderate to severe pain, their use is also associated with the development of tolerance, defined as the progressive need for higher doses to achieve a constant analgesic effect. The mechanisms which underlie this phenomenon remain unclear. Recent studies revealed that cholecystokinin (CCK) is upregulated in the rostral ventromedial medulla (RVM) during persistent opioid exposure. CCK is both antiopioid and pronociceptive, and activates descending pain facilitation mechanisms from the RVM enhancing nociceptive transmission at the spinal cord and promoting hyperalgesia. The neuroplastic changes elicited by opioid exposure reflect adaptive changes to promote increased pain transmission and consequent diminished antinociception (i.e., tolerance).
Collapse
Affiliation(s)
- Michael H Ossipov
- Departments of Pharmacology, Anesthesiology and Chemistry, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Cholecystokinin (CCK) is a regulatory peptide hormone, predominantly found in the gastrointestinal tract, and a neurotransmitter present throughout the nervous system. In the gastrointestinal system CCK regulates motility, pancreatic enzyme secretion, gastric emptying, and gastric acid secretion. In the nervous system CCK is involved in anxiogenesis, satiety, nociception, and memory and learning processes. Moreover, CCK interacts with other neurotransmitters in some areas of the CNS. The biological effects of CCK are mediated by two specific G protein coupled receptor subtypes, termed CCK(1) and CCK(2). Over the past fifteen years the search of CCK receptor ligands has evolved from the initial CCK structure derived peptides towards peptidomimetic or non-peptide agonists and antagonists with improved pharmacokinetic profile. This research has provided a broad assortment of potent and selective CCK(1) and CCK(2) antagonists of diverse chemical structure. These antagonists have been discovered through optimization programs of lead compounds which were designed based on the structures of the C-terminal tetrapeptide, CCK-4, or the non-peptide natural compound, asperlicin, or derived from random screening programs. This review covers the main pharmacological and therapeutic aspects of these CCK(1) and CCK(2) antagonist. CCK(1) antagonists might have therapeutic potential for the treatment of pancreatic disorders and as prokinetics for the treatment of gastroesophageal reflux disease, bowel disorders, and gastroparesis. On the other hand, CCK(2) antagonists might have application for the treatment of gastric acid secretion and anxiety disorders.
Collapse
Affiliation(s)
- Rosario Herranz
- Instituto de Química Medica (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain.
| |
Collapse
|
33
|
Pahl RI, Koppert W, Enk C, Sittl R, Mühldorfer S, Hahn GE, Schmelz M, Schwab D. Different lipid profiles as constituencies of liquid formula diets do not influence pain perception and the efficacy of opioids in a human model of acute pain and hyperalgesia. Pain 2003; 104:519-527. [PMID: 12927624 DOI: 10.1016/s0304-3959(03)00094-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nutritional support and pain control by medication are often used concomitantly, but interactions are hardly investigated. A randomised, double-blind, cross-over study in ten right-handed volunteers was performed evaluating the influence of cholecystokinin (CCK)-excretion on the perception of pain in a standardised model. CCK-excretion was induced by a liquid formula diet with either long- or medium-chain triglycerides (LCT, MCT). Plasma samples were drawn over a 60 min period in 15-min intervals and CCK and somatostatin (SMS) were measured by radioimmunoassay (RIA). Gastric emptying was evaluated by C-13-breath testing. Transcutaneous electrical stimulation at a high current density (5 Hz, 70.1+/-5.8 mA) was used to provoke acute pain and stable areas of secondary mechanical hyperalgesia and pinprick allodynia for 2 h. Ongoing pain ratings as well as extension of pinprick-hyperalgesia and allodynia were compared between both liquid formula diets. In a second series of experiments, alfentanil (4.1+/-0.5 mg) was administered for 90 min using target-controlled infusions and measurements were performed as stated above. Oral administration of LCT as well as MCT may lead to different CCK blood levels, but we found no evidence for CCK-induced effects on pain sensation, touch-evoked allodynia, secondary hyperalgesia or morphine-induced anti-nociception in humans. In our studies, liquid formula diets did not influence acute pain perception or the efficacy of opioids in a human model of pain.
Collapse
Affiliation(s)
- R I Pahl
- Department of Anesthesiology, University of Erlangen, 91054 Erlangen, Germany Department of Medicine I, University of Erlangen, 91054 Erlangen, Germany Department of Anesthesiology, University Heidelberg, 61087 Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Friedrich AE, Gebhart GF. Modulation of visceral hyperalgesia by morphine and cholecystokinin from the rat rostroventral medial medulla. Pain 2003; 104:93-101. [PMID: 12855318 DOI: 10.1016/s0304-3959(02)00469-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using a model of visceral nociception, we examined whether cholecystokinin (CCK) acts as an anti-opioid peptide in the rat rostral ventromedial medulla (RVM). Because such interaction may be affected by inflammation, rats with and without inflamed colons were studied. The visceromotor response to noxious colorectal distension (CRD), quantified electromyographically, was recorded before and after intra-RVM administration of CCK, CCK receptor antagonists, and morphine. Either 50% ethanol/saline (vehicle) or 2,4,6-trinitrobenzenesulfonic acid (TNBS), which inflames the colon, was instilled into the colon 5 days before experiments. Intra-RVM morphine dose-dependently attenuated responses to CRD in intracolonic vehicle-treated rats. In TNBS-treated rats with inflamed colons, responses to CRD were significantly increased and 0.3, 3.0 and 6.0 microg doses of intra-RVM morphine reduced responses to control (i.e. were anti-hyperalgesic); the greatest dose tested (30 microg) further reduced responses to 40% control. In intracolonic vehicle-treated rats, intra-RVM pre-treatment with a selective CCK(B) (but not CCK(A)) receptor antagonist dose-dependently and significantly enhanced the effect of a low dose of morphine. Intra-RVM CCK-8 peptide enhanced responses to CRD in intracolonic vehicle-treated, but not TNBS-treated rats. Intra-RVM naloxone was without effect in intracolonic vehicle-or TNBS-treated rats, suggesting an absence of tonic opioid activity in RVM. These results document a CCK-opioid interaction in RVM, suggesting that colon inflammation leads to tonic activity at CCK(B) receptors in RVM.
Collapse
Affiliation(s)
- Ann E Friedrich
- Department of Pharmacology, College of Medicine, Bowen Science Building, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
35
|
Le Guen S, Mas Nieto M, Canestrelli C, Chen H, Fournié-Zaluski MC, Cupo A, Maldonado R, Roques BP, Noble F. Pain management by a new series of dual inhibitors of enkephalin degrading enzymes: long lasting antinociceptive properties and potentiation by CCK2 antagonist or methadone. Pain 2003; 104:139-48. [PMID: 12855323 DOI: 10.1016/s0304-3959(02)00486-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The discovery that the endogenous morphine-like peptides named enkephalins are inactivated by two metallopeptidases, neutral endopeptidase and aminopeptidase N, which can be blocked by dual inhibitors, represents a promising way to develop 'physiological' analgesics devoid of the side effects of morphine. A new series of dual aminophosphinic inhibitors of the two enkephalin-catabolizing enzymes has been recently designed. In this study, one of these inhibitors, RB3007, was tested in various assays commonly used to select analgesics (mouse hot-plate test, rat tail-flick test, writhing and formalin tests in mice, and paw pressure test in rats), and the extracellular levels of the endogenous enkephalins in the ventrolateral periaqueductal grey have been measured by microdialysis after systemic administration of RB3007. In the mouse hot-plate test, the dual inhibitor induced long-lasting (2 h) antinociceptive effects with a maximum of 35% analgesia 60 min after i.v. or i.p. administration. These antinociceptive responses were antagonized by prior injection of naloxone (0.1 mg/kg, s.c.). Similar long lasting effects were observed in the other animal models used. Very interestingly, injection of RB3007 (50 mg/kg, i.p.) significantly increased (82%) the extracellular levels of Met-enkephalin with a peak 60 min after i.p. injection. This increase parallels the antinociceptive responses observed. In addition, strong facilitatory effects of subanalgesic doses of the CCK(2) receptor antagonist, PD-134,308 or the synthetic opioid agonist, methadone on RB3007-induced antinociceptive responses were observed. These findings may constitute promising data for future development of a new class of analgesics that could be of major interest in a number of severe and persistent pain syndromes.
Collapse
Affiliation(s)
- Stéphanie Le Guen
- Département de Pharmacochimie Moléculaire et Structurale, INSERM U266, CNRS FRE2463, UFR des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l'Observatoire, 75270 Paris Cedex 06, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ossipov MH, Lai J, Vanderah TW, Porreca F. Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance. Life Sci 2003; 73:783-800. [PMID: 12801599 DOI: 10.1016/s0024-3205(03)00410-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Opioid analgesics are frequently used for the long-term management of chronic pain states, including cancer pain. The prolonged use of opioids is associated with a requirement for increasing doses to manage pain at a consistent level, reflecting the phenomenon of analgesic tolerance. It is now becoming clearer that patients receiving long-term opioid therapy can develop unexpected abnormal pain. Such paradoxical opioid-induced pain, as well as tolerance to the antinociceptive actions of opioids, has been reliably measured in animals during the period of continuous opioid delivery. Several recent studies have demonstrated that such pain may be secondary to neuroplastic changes that result, in part, from an activation of descending pain facilitation mechanisms arising from the rostral ventromedial medulla (RVM). One mechanism which may mediate such pain facilitation is through the increased activity of CCK in the RVM. Secondary consequences from descending facilitation may be produced. For example, opioid-induced upregulation of spinal dynorphin levels seem to depend on intact descending pathways from the RVM reflecting spinal neuroplasticity secondary to changes at supraspinal levels. Increased expression of spinal dynorphin reflects a trophic action of sustained opioid exposure which promotes an increased pain state. Spinal dynorphin may promote pain, in part, by enhancing the evoked release of excitatory transmitters from primary afferents. In this regard, opioids also produce trophic actions by increasing CGRP expression in the dorsal root ganglia. Increased pain elicited by opioids is a critical factor in the behavioral manifestation of opioid tolerance as manipulations which block abnormal pain also block antinociceptive tolerance. Manipulations that have blocked enhanced pain and antinociceptive tolerance include reversible and permanent ablation of descending facilitation from the RVM. Thus, opioids elicit systems-level adaptations resulting in pain due to descending facilitation, upregulation of spinal dynorphin and enhanced release of excitatory transmitters from primary afferents. Adaptive changes produced by sustained opioid exposure including trophic effects to enhance pain transmitters suggest the need for careful evaluation of the consequences of long-term opioid administration to patients.
Collapse
Affiliation(s)
- Michael H Ossipov
- Department of Pharmacology, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|
37
|
Iversen L. CCK Antagonist Potentiation of Opioid Analgesia. Pain 2003. [DOI: 10.1201/9780203911259.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
MESH Headings
- Adaptation, Physiological
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/toxicity
- Animals
- Cats
- Dose-Response Relationship, Drug
- Drug Tolerance/physiology
- Humans
- Hyperalgesia/chemically induced
- Models, Neurological
- Narcotic Antagonists/pharmacology
- Neuronal Plasticity/drug effects
- Neuropeptides/pharmacology
- Nitric Oxide/physiology
- Pain/physiopathology
- Protein Kinase C/physiology
- Rats
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Substance Withdrawal Syndrome/etiology
- Substance Withdrawal Syndrome/physiopathology
Collapse
Affiliation(s)
- Guy Simonnet
- Laboratoire Homéostasie-Allostasie-Pathologie, Université Victor-Ségalen Bordeaux 2, France.
| | | |
Collapse
|
39
|
Sabaté JM, Gorbatchef C, Flourié B, Jian R, Coffin B. Cholecystokinin octapeptide increases rectal sensitivity to pain in healthy subjects. Neurogastroenterol Motil 2002; 14:689-95. [PMID: 12464091 DOI: 10.1046/j.1365-2982.2002.00370.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hypersensitivity during rectal distension has been demonstrated in irritable bowel syndrome (IBS). Studies performed in animals and indirect data in humans suggest that cholecystokinin (CCK) could modulate visceral sensations. The aim of this study was to assess the effects of i.v. infused sulphated cholecystokinin octapeptide (CCK-OP) on rectal sensitivity in response to distension. In eight healthy subjects, rectal sensitivity and compliance were determined during a randomized double-blind study, with four sessions each separated by 7 days. Sensory thresholds and rectal compliance were assessed during slow-ramp (40 mL min-1) and rapid-phasic distensions (40 mL s-1, 5 mmHg stepwise, 1-min duration), and were compared before and during continuous infusion of either saline or CCK-OP at 5, or 20 or 40 ng kg-1 h-1. During rapid phasic distension but not during slow ramp distension, CCK-OP at 40 ng kg-1 h-1 produced a significant decrease in sensory thresholds compared with the basal period. Rectal compliance was not modified by any infusion. At pharmacological doses, CCK-OP decreases sensory thresholds during rapid phasic distension that may preferentially stimulate serosal mechanoreceptors, but has no effect on mucosal mechanoreceptors stimulated during slow ramp distensions. Modulation of rectal sensitivity by CCK could be implicated in the pathogenesis of the rectal hypersensitivity observed in IBS.
Collapse
Affiliation(s)
- J-M Sabaté
- Gastroenterology Unit, AP-HP Hopital Louis Mourier, Colombes, France
| | | | | | | | | |
Collapse
|
40
|
Hunt RH, Tougas G. Evolving concepts in functional gastrointestinal disorders: promising directions for novel pharmaceutical treatments. Best Pract Res Clin Gastroenterol 2002; 16:869-83. [PMID: 12473296 DOI: 10.1053/bega.2002.0356] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years there has been an increasing appreciation of the complexity of functional gastrointestinal disorders. These represent a spectrum of conditions which may affect any part of the gastrointestinal tract in which there appears to be dysregulation of visceral function and afferent sensation and a strong association with emotional factors and stress. There is a clear psychological dimension, with up to 60% of irritable bowel syndrome (IBS) patients reported to have psychological co-morbidities and altered pain perception is also common in comparison with control populations. The role of the enteric nervous system, the sensory pathways and the brain as well as the influence of the latter on sympathetic and parasympathetic outflow have likewise attracted increasing interest and have led to exciting new methods to study their complex interactions. The concept of low-grade inflammation, such as might occur after infection, acting as a trigger for neuromuscular dysfunction has also led to the broad integrative hypotheses that help to explain the biopsychosocial dimensions seen in functional gastrointestinal disease. The multi-component model places a major emphasis on neurogastroenterology and enteric and neuro-immune interactions where new approaches to pharmacotherapy lie. Drugs may affect motility, visceral sensation and other aspects of gut function such as secretion or absorption. More particularly, however, has been the search for and attempts to influence important mediators of these primary gut functions. Such targets include serotonin and selected 5-HT receptors, which are involved in gut motility, visceral sensation and other aspects of gut function, CCK receptors which are involved in the mediation of pain in the gut and nociception in the CNS, opioid receptors involved in pain in the brain, spinal cord and periphery, muscarinic M3-receptors, substance P and neurokinin A and B receptors which are involved in motor adaptation and pain transmission in association with inflammation, gabba receptors involved in nociception and cannabinoid receptors which are involved in the control of acetyl choline release in the gut. With a better understanding of the structures and pathways involved in visceral perception and hyperalgesia, in the CNS, spinal cord and the gut and new pharmacological tools we will be better able to elucidate the neuropharmacology of visceral perception and its relationship to gut dysfunction. It is likely that there will be multiple therapeutic options based on the spectrum of abnormalities capable of causing the spectrum of symptoms of functional gastrointestinal disorders in any individual patient.
Collapse
Affiliation(s)
- Richard H Hunt
- Department of Medicine, Division of Gastroenterology, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | | |
Collapse
|
41
|
Cohen H, Matar MA, Buriakovsky I, Zeev K, Kotler M, Bourin M. Effect of intraperitoneal mRNA antisense-oligodeoxynucleotides to cholecystokinin on anxiety-like and learning behaviors in rats: association with pre-experimental stress. Neuropeptides 2002; 36:341-52. [PMID: 12450740 DOI: 10.1016/s0143-4179(02)00088-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RATIONALE Cholecystokinin and its analogs generate anxiety in humans and measurable anxiety-like behaviors in rats. Cholecystokinin receptor blockers have been reported to have variable effects in the treatment of anxiety disorders. We demonstrated that intracerebroventricular administration of Cholecystokinin-antisense oligodeoxynucleotides (ASODN) for 3 days significantly diminished anxiety-like behavior in rats. OBJECTIVE This study was designed to examine the effects of peripheral (intraperitoneal) administration of Cholecystokinin-ASODN on anxiety-like and learning behaviors in rats, in general and in a pre-experiment stress paradigm. METHODS In the first study Cholecystokinin-ASODN was injected intraperitoneally to rats five times at 24-h intervals. Control groups received injections of either a scrambled oligodeoxynucleotide (ScrODN) or vehicle. On the sixth day, the rats were assessed in the elevated plus-maze paradigm and in the Morris water maze. In the second study, rats were pre-exposed to a cat for 10 min as a model for psychological stress, and then treated with intraperitoneal Cholecystokinin-ASODN and tested in both paradigms. RESULTS The results show that for intact rats, intraperitoneal Cholecystokinin-ASODN significantly increased anxiety-like behavior and impaired retention performance in the Morris water maze, compared to both control groups. In stressed rats, Cholecystokinin-ASODN reduced anxiety-like behaviors in the plus-maze and improved performance in the water maze compared with controls. CONCLUSIONS These results indicate that the anxiolytic effect of intraperitoneal Cholecystokinin-ASODN may be dependent on the baseline endogenous level of stress (i.e., on the Cholecystokinin levels). Basal endogenous levels of Cholecystokinin, as well as exogenous dosage of Cholecystokinin agonists and/or anxiolytic agents, appear to play an important role in the expression and/or control of anxiety-related behaviors in rats.
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health Mental Health Center, Faculty of Health Sciences, Anxiety and Stress Research Unit, Ben Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
42
|
Carlberg M, Gundlach AL, Mercer LD, Beart PM. Autoradiographic Localization of Cholecystokinin A and B Receptors in Rat Brain Using [125I]d-Tyr25 (Nle28,31)-CCK 25 - 33S. Eur J Neurosci 2002; 4:563-573. [PMID: 12106342 DOI: 10.1111/j.1460-9568.1992.tb00906.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distribution of receptors for the sulphated octapeptide cholecystokinin 26 - 33 (CCK - 8S) in rat brain was investigated by radioligand binding in conjunction with autoradiography using the novel iodinable, non-oxidizable, amino- and thiolendopeptidase-resistant CCK analogue, d-Tyr25(Nle28,31)-CCK 25 - 33S. Labelling of the peptide was achieved by synthesis utilizing Na125I and Chloramine-T. [125I]d-Tyr25(Nle28,31)-CCK 25 - 33S (100 pM) bound rapidly and reversibly to a single population of sites on slide-mounted coronal sections of rat forebrain with a dissociation constant of 34 pM. Specific binding was fully inhibited by CCK-8S, CCK-8, CCK-4, L-365,260 and L-364,718, with inhibition constants 2.7, 9.8, 35, 7.0 and 130 nM, respectively. These inhibition data may indicate that the [125I] ligand binds preferentially to a CCKB subtype of receptor, but may also reflect the relative paucity of CCKA receptors in the rat forebrain. Optimum conditions for autoradiography combined the preincubation of brain sections in unlabelled 10 pM d-Tyr25(Nle28,31)-CCK 25 - 33S with a 60-min wash after incubation with the [125I] ligand. Analyses of the autoradiograms obtained from the use of coronal and horizontal brain sections were aided by the high levels of specific binding (80 - 90%), and revealed that CCK receptors were topographically distributed through the neuroaxis. High densities of receptor-associated silver grains were found in the olfactory bulb (internal plexiform layer), neocortex (layer III), nucleus accumbens, parasubiculum, subbrachial nucleus, parabigeminal nucleus, dorsal vagal complex, area postrema and the A2 region. Moderate labelling was observed in many telencephalic and diencephalic nuclei. The majority of these receptors were of the CCKB subtype, as shown by the use of subtype-selective antagonists, although CCKA receptors were present in moderate to high densities in the A2 area, area postrema and nucleus tractus solitarii, and at low density in the interpeduncular nucleus and central amygdala. These findings provide further evidence for the widespread, topographic distribution of CCK receptors and indicate that [125I]d-Tyr25(Nle28,31)-CCK 25 - 33S is very suitable for autoradiographic investigations because of its low non-specific binding.
Collapse
Affiliation(s)
- M. Carlberg
- University of Melbourne, Clinical Pharmacology and Therapeutics Unit, Austin Hospital, Heidelberg, Victoria 3084, Australia
| | | | | | | |
Collapse
|
43
|
Massoubre C, Rattner A, Pellet J, Frey J, Chamson A. La cholécystokinine : mise au point. NUTR CLIN METAB 2002. [DOI: 10.1016/s0985-0562(01)00059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Thompson WG, Hungin AP, Neri M, Holtmann G, Sofos S, Delvaux M, Caballero-Plasencia A. The management of irritable bowel syndrome: a European, primary and secondary care collaboration. Eur J Gastroenterol Hepatol 2001; 13:933-9. [PMID: 11507358 DOI: 10.1097/00042737-200108000-00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To develop recommendations for the diagnosis and management of irritable bowel syndrome for European doctors delivering primary care. These recommendations can be adapted by local medical groups according to their language, custom and health-care systems. METHODS Twenty-one general practitioners and gastroenterologists from Europe attended a workshop planned by a steering committee. After a state-of-the-art symposium, four working groups considered the following aspects of irritable bowel syndrome management: what to tell the patient, diagnosis, non-medical treatment and psychosocial management. Current and future drug management was reviewed by the steering committee. The resulting recommendations were considered at two plenary sessions during the meeting, and by circulation of the material during development of the manuscript. RESULTS The process permitted a unique dialogue between general practitioners and gastroenterologists, in which it was necessary to reconcile the specialists' emphasis on thoroughness with the practical, epidemiological and economic realities of primary care. Despite this dichotomy, consensus was achieved. CONCLUSIONS European general practitioners and gastroenterologists have produced recommendations that emphasize education of the patient, a positive symptom-based diagnosis, diet and lifestyle advice, psychological support and a critical analysis of current specific psychological and pharmacological treatments.
Collapse
|
45
|
Tanganelli S, Fuxe K, Antonelli T, O'Connor WT, Ferraro L. Cholecystokinin/dopamine/GABA interactions in the nucleus accumbens: biochemical and functional correlates. Peptides 2001; 22:1229-34. [PMID: 11457515 DOI: 10.1016/s0196-9781(01)00446-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present article reviews our recent biochemical and microdialysis studies showing the evidence for an antagonistic CCK(B)/D(2) receptor interaction in the regulation of dopaminergic transmission in the nucleus accumbens and GABAergic transmission in the ipsilateral ventral pallidum. Since the nucleus accumbens plays a crucial role in regulating the output from the limbic system and consequently motivation, it may be speculated that a dysregulation of this receptor interaction may have consequences in a wide range of central nervous system disorders.
Collapse
Affiliation(s)
- S Tanganelli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
46
|
Kurosawa M, Iijima S, Funakoshi A, Kawanami T, Miyasaka K, Bucinskaite V, Lundeberg T. Cholecystokinin-8 (CCK-8) has no effect on heart rate in rats lacking CCK-A receptors. Peptides 2001; 22:1279-84. [PMID: 11457521 DOI: 10.1016/s0196-9781(01)00452-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heart rate responses to i.v. administration of cholecystokinin-8 (CCK-8) were investigated in Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors and control Long-Evans Tokushima Otsuka (LETO) rats. The heart rate decreased after i.v. administration of 3 nmol.kg(-)(1) of CCK-8 in LETO rats, but not in OLETF rats. Bradycardia in the LETO rats disappeared after treatment with MK-329, but not after treatment with L-365,260. The expression of CCK-A receptor precursor mRNA was found exclusively in the atrium in LETO rats. These results suggest that CCK-8 decreases heart rate via CCK-A receptors located in the atrium of the rats.
Collapse
MESH Headings
- Animals
- Benzodiazepinones/pharmacology
- Blotting, Southern
- Bradycardia
- DNA, Complementary/metabolism
- Devazepide/pharmacology
- Dose-Response Relationship, Drug
- Heart Atria/metabolism
- Heart Rate/drug effects
- Hormone Antagonists/pharmacology
- Male
- Phenylurea Compounds/pharmacology
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred OLETF
- Rats, Long-Evans
- Receptor, Cholecystokinin A
- Receptors, Cholecystokinin/biosynthesis
- Receptors, Cholecystokinin/genetics
- Receptors, Cholecystokinin/physiology
- Sincalide/metabolism
- Sincalide/pharmacology
- Time Factors
Collapse
Affiliation(s)
- M Kurosawa
- Basic Medical Research Center, International University Health and Welfare, Otawara, Tochigi 324-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Gustafsson H, Afrah AW, Stiller CO. Morphine-induced in vivo release of spinal cholecystokinin is mediated by delta-opioid receptors--effect of peripheral axotomy. J Neurochem 2001; 78:55-63. [PMID: 11432973 DOI: 10.1046/j.1471-4159.2001.00393.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphine and other opioid agonists induce spinal in vivo release of cholecystokinin (CCK), a neuropeptide with anti-opioid properties. However, so far the opioid receptor subtype responsible for this effect has not been determined. In the present in vivo microdialysis study, the morphine-induced release of cholecystokinin-like immunoreactivity (CCK-LI) in the dorsal horn was completely blocked by the delta-opioid antagonist naltrindole (10 microM in the perfusion fluid). Neither the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP; 10 microM in the perfusion fluid), nor the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI); 10 microM in the perfusion fluid) had any significant effect in this respect. In addition, systemic administration of the delta-opioid receptor agonist BW373U86 (1 mg/kg, s.c.) and spinal administration of the delta(2)-opioid receptor agonist, Tyr-D-Ala-Phe-Glu-Val-Val-Gly amide ([D-Ala(2)] deltorphin II) (1 microM in the perfusion fluid) induced a significant increase of the CCK-LI level. The effect of BW373U86 on spinal CCK-LI release was completely blocked by spinal administration of naltrindole. The mu-opioid receptor agonist [D-ala(2)-N-Me-Phe(4)-Gly(5)-ol]-enkephalin (DAMGO) (1 microM in the perfusion fluid or 1 mg/kg, s.c.) failed to alter the CCK-LI level. Peripheral nerve lesions have previously been shown to down-regulate mu- and delta-opioid receptors in the dorsal horn, to increase the gene-expression of CCK and CCK-receptor mRNA in dorsal root ganglion neurons and to alter the potassium-induced spinal CCK-LI release. After complete sciatic nerve transection, administration of the two selective delta-opioid receptor agonists induced a significant release of CCK-LI, which was comparable to controls. In contrast, neither systemic nor spinal administration of morphine and DAMGO altered the spinal CCK-LI release in axotomized animals. The present data indicate that the delta-opioid receptor mediates morphine-induced CCK-LI release in the spinal cord.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Axotomy
- Cholecystokinin/metabolism
- Injections, Spinal
- Male
- Morphine/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Sciatic Nerve/physiology
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- H Gustafsson
- Department of Physiology and Pharmacology, Division of Pharmacological Pain Research, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
48
|
Broberger C, Holmberg K, Shi TJ, Dockray G, Hökfelt T. Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res 2001; 903:128-40. [PMID: 11382396 DOI: 10.1016/s0006-8993(01)02468-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cholecystokinin (CCK) is an important satiety factor, acting via the vagus nerve to influence central feeding centers. CCK binding sites have been demonstrated in the vagal sensory nodose ganglion and within the nerve proper. Using in situ hybridization, expression of the CCK(A) and (B) receptors (Rs), as well as of CCK itself, was studied in the normal nodose ganglion (NG), and after vagotomy, starvation and high-fat diet. CCK(A)-R mRNA expression in dorsal root ganglia (DRGs) was also explored. In the NG, 33% of the neuron profiles (NPs) contained CCK(A)-R mRNA and in 9% we observed CCK(B)-R mRNA. CCK mRNA was not found in normal NGs. Peripheral vagotomy decreased the number of CCK(A)-R mRNA-expressing NPs, dramatically increased the number of CCK(B)-R mRNA, and induced CCK mRNA and preproCCK-like immunoreactivity in nodose NPs. No significant differences in the number of NPs labelled for either mRNA species were detected following 48 h food deprivation or in rats fed a high-fat content diet. In DRGs, 10% of the NPs expressed CCK(A)-R mRNA, a number that was not affected by either axotomy or inflammation. This cell population was distinct from neurons expressing calcitonin gene-related peptide mRNA. These results demonstrate that the CCK(A)-R is expressed by both viscero- and somatosensory primary sensory neurons, supporting a role for this receptor as a mediator both of CCK-induced satiety and in sensory processing at the spinal level. The stimulation of CCK and CCK(B)-R gene expression following vagotomy suggests a possible involvement in the response to injury for these molecules.
Collapse
Affiliation(s)
- C Broberger
- Department of Neuroscience, Berzelius Väg 1, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Fox MA, Levine ES, Riley AL. The inability of CCK to block (or CCK antagonists to substitute for) the stimulus effects of chlordiazepoxide. Pharmacol Biochem Behav 2001; 69:77-84. [PMID: 11420071 DOI: 10.1016/s0091-3057(01)00505-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To further examine the relationship between cholecystokinin (CCK) and GABA, the present study assessed the ability of the CCK-A antagonist devazepide and the CCK-B antagonist L-365,260 to substitute for the stimulus effects of chlordiazepoxide (CDP), as well as the ability of CCK-8s to block these effects, in female Long-Evans rats within the conditioned taste aversion baseline of drug discrimination learning. Both devazepide and L-365,260 failed to substitute for the discriminative stimulus properties of CDP, and CCK-8s failed to block its stimulus effects. The benzodiazepine diazepam did substitute for, and the benzodiazepine antagonist flumazenil did block, the stimulus effects of CDP. This suggests that the lack of substitution for, or antagonism of, CDP by the CCK antagonists and CCK-8s, respectively, was not due to the inability of the present design to assess such effects. Possible bases for the current findings, e.g., necessity of an anxiogenic baseline, drug and receptor specificity, as well as the dose-response nature of the interaction, were discussed. Given that a relationship between CCK and GABA has been reported in other designs, the present results suggest that such a relationship may be preparation specific.
Collapse
Affiliation(s)
- M A Fox
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | | | | |
Collapse
|
50
|
Mercadante S, Portenoy RK. Opioid poorly-responsive cancer pain. Part 2: basic mechanisms that could shift dose response for analgesia. J Pain Symptom Manage 2001; 21:255-64. [PMID: 11239748 DOI: 10.1016/s0885-3924(00)00236-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Basic research in experimental pain models may illuminate the phenomenon of cancer pain that is poorly responsive to opioid drugs. Research findings can be valuable in formulating new strategies in clinical practice. This review evaluated experimental observations in terms of the events that occur in cancer patients receiving opioid therapy for pain.
Collapse
Affiliation(s)
- S Mercadante
- Anesthesia and Intensive Care Unit & Pain Relief and Palliative Care Unit, La Maddalena Cancer Center, Palermo, Italy
| | | |
Collapse
|