1
|
Anastasova R, Fiorentzis M, Liu H, Dalbah S, Bechrakis NE, Seitz B, Berchner-Pfannschmidt U, Tsimpaki T. Electroporation with Calcium or Bleomycin: First Application in an In Vivo Uveal Melanoma Patient-Derived Xenograft Model. Pharmaceuticals (Basel) 2024; 17:905. [PMID: 39065755 PMCID: PMC11279991 DOI: 10.3390/ph17070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Uveal melanoma (UM) represents a rare tumor of the uveal tract and is associated with a poor prognosis due to the high risk of metastasis. Despite advances in the treatment of UM, the mortality rate remains high, dictating an urgent need for novel therapeutic strategies. The current study introduces the first in vivo analysis of the therapeutic potential of calcium electroporation (CaEP) compared with electrochemotherapy (ECT) with bleomycin in a patient-derived xenograft (PDX) model based on the chorioallantoic membrane (CAM) assay. The experiments were conducted as monotherapy with either 5 or 10 mM calcium chloride or 1 or 2.5 µg/mL bleomycin in combination with EP or EP alone. CaEP and ECT induced a similar reduction in proliferative activity, neovascularization, and melanocytic expansion. A dose-dependent effect of CaEP triggered a significant induction of necrosis, whereas ECT application of 1 µg/mL bleomycin resulted in a significantly increased apoptotic response compared with untreated tumor grafts. Our results outline the prospective use of CaEP and ECT with bleomycin as an adjuvant treatment of UM, facilitating adequate local tumor control and potentially an improvement in metastatic and overall survival rates.
Collapse
Affiliation(s)
- Ralitsa Anastasova
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Miltiadis Fiorentzis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Hongtao Liu
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Sami Dalbah
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Kirrberger Str. 100, 66421 Homburg, Germany;
| | - Utta Berchner-Pfannschmidt
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| | - Theodora Tsimpaki
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany; (R.A.); (H.L.); (S.D.); (N.E.B.); (U.B.-P.); (T.T.)
| |
Collapse
|
2
|
Silva Pedraza Z, Wang Y, Carlos C, Tang Z, Li J, Cai W, Wang X. Development of Ferroelectric P(VDF-TrFE) Microparticles for Ultrasound-Driven Cancer Cell Killing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54304-54311. [PMID: 37962532 PMCID: PMC10867862 DOI: 10.1021/acsami.3c13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Current breast cancer treatments involve aggressive and invasive methods, leaving room for new therapeutic approaches to emerge. In this work, we explore the possibility of using piezoelectric [P(VDF-TrFE)] microparticles (MPs) as a source of inducing irreversible electroporation (IRE) of 4T1 breast cancer cells. We detail the MP formation mechanism and size control and subsequent characterizations of the as-synthesized MPs which confirms the presence of piezoelectric β-phase. Production of the necessary piezoelectric output of the MPs is achieved by ultrasound agitation. We confirm the primary factor of the IRE effect on 4T1 breast cancer cells to be the local electric field produced from the MPs by using confocal imaging and an alamarBlue assay. The results show a 52.6% reduction in cell viability, indicating that the MP treatment can contribute to a reduction of live cancer cells. The proposed method of ultrasound-stimulated P(VDF-TrFE) MPs may offer a more benign cancer treatment approach.
Collapse
Affiliation(s)
- Zulmari Silva Pedraza
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yizhan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Corey Carlos
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Hughes DC, Hardee JP, Waddell DS, Goodman CA. CORP: Gene delivery into murine skeletal muscle using in vivo electroporation. J Appl Physiol (1985) 2022; 133:41-59. [PMID: 35511722 DOI: 10.1152/japplphysiol.00088.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The strategy of gene delivery into skeletal muscles has provided exciting avenues in identifying new potential therapeutics towards muscular disorders and addressing basic research questions in muscle physiology through overexpression and knockdown studies. In vivo electroporation methodology offers a simple, rapidly effective technique for the delivery of plasmid DNA into post-mitotic skeletal muscle fibers and the ability to easily explore the molecular mechanisms of skeletal muscle plasticity. The purpose of this review is to describe how to robustly electroporate plasmid DNA into different hindlimb muscles of rodent models. Further, key parameters (e.g., voltage, hyaluronidase, plasmid concentration) which contribute to the successful introduction of plasmid DNA into skeletal muscle fibers will be discussed. In addition, details on processing tissue for immunohistochemistry and fiber cross-sectional area (CSA) analysis will be outlined. The overall goal of this review is to provide the basic and necessary information needed for successful implementation of in vivo electroporation of plasmid DNA and thus open new avenues of discovery research in skeletal muscle physiology.
Collapse
Affiliation(s)
- David C Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Justin P Hardee
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Karal MAS, Ahamed MK, Ahmed M, Mahbub ZB. Recent developments in the kinetics of ruptures of giant vesicles under constant tension. RSC Adv 2021; 11:29598-29619. [PMID: 35479542 PMCID: PMC9040846 DOI: 10.1039/d1ra04647k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
External tension in membranes plays a vital role in numerous physiological and physicochemical phenomena. In this review, recent developments in the constant electric- and mechanical-tension-induced rupture of giant unilamellar vesicles (GUVs) are considered. We summarize the results relating to the kinetics of GUV rupture as a function of membrane surface charge, ions in the bathing solution, lipid composition, cholesterol content in the membrane, and osmotic pressure. The mechanical stability and line tension of the membrane under these conditions are discussed. The membrane tension due to osmotic pressure and the critical tension of rupture for various membrane compositions are also discussed. The results and their analysis provide a biophysical description of the kinetics of rupture, along with insight into biological processes. Future directions and possible developments in this research area are included.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Zaid Bin Mahbub
- Department of Mathematics and Physics, North South University Dhaka-1229 Bangladesh
| |
Collapse
|
5
|
Fusco R, Di Bernardo E, D'Alessio V, Salati S, Cadossi M. Reduction of muscle contraction and pain in electroporation-based treatments: An overview. World J Clin Oncol 2021; 12:367-381. [PMID: 34131568 PMCID: PMC8173331 DOI: 10.5306/wjco.v12.i5.367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the first studies of electrochemotherapy (ECT), small cutaneous metastases were treated and only mild or moderate pain was observed; therefore, pain was not considered a significant issue. As the procedure began to be applied to larger cutaneous metastases, pain was reported more frequently. For that reason, reduction of both muscle contractions and pain have been investigated over the years.
AIM To present an overview of different protocols described in literature that aim to reduce muscle contractions and pain caused by the electroporation (EP) effect in both ECT and irreversible EP treatments.
METHODS Thirty-three studies published between January 1999 and November 2020 were included. Different protocol designs and electrode geometries that reduce patient pain and the number of muscle contractions and their intensity were analysed.
RESULTS The analysis showed that both high frequency and bipolar/biphasic pulses can be used to reduce pain and muscle contractions in patients who undergo EP treatments. Moreover, adequate electrode design can decrease EP-related morbidity. Particularly, needle length, diameter and configuration of the distance between the needles can be optimised so that the muscle volume crossed by the current is reduced as much as possible. Bipolar/biphasic pulses with an inadequate pulse length seem to have a less evident effect on the membrane permeability compared with the standard pulse protocol. For that reason, the number of pulses and the voltage amplitude, as well as the pulse duration and frequency, must be chosen so that the dose of delivered energy guarantees EP efficacy.
CONCLUSION Pain reduction in EP-based treatments can be achieved by appropriately defining the protocol parameters and electrode design. Most results can be achieved with high frequency and/or bipolar/biphasic pulses. However, the efficacy of these alternative protocols remains a crucial point to be assessed further.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| | - Elio Di Bernardo
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| | - Valeria D'Alessio
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| | - Simona Salati
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| | - Matteo Cadossi
- Department of Medical Oncology, IGEA SpA, Carpi 41012, Modena, Italy
| |
Collapse
|
6
|
Sarkar MK, Karal MAS, Ahmed M, Ahamed MK, Ahammed S, Sharmin S, Shibly SUA. Effects of osmotic pressure on the irreversible electroporation in giant lipid vesicles. PLoS One 2021; 16:e0251690. [PMID: 33989363 PMCID: PMC8121316 DOI: 10.1371/journal.pone.0251690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Irreversible electroporation (IRE) is a nonthermal tumor/cell ablation technique in which a series of high-voltage short pulses are used. As a new approach, we aimed to investigate the rupture of giant unilamellar vesicles (GUVs) using the IRE technique under different osmotic pressures (Π), and estimated the membrane tension due to Π. Two categories of GUVs were used in this study. One was prepared with a mixture of dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylcholine (DOPC) and cholesterol (chol) for obtaining more biological relevance while other with a mixture of DOPG and DOPC, with specific molar ratios. We determined the rate constant (kp) of rupture of DOPG/DOPC/chol (46/39/15)-GUVs and DOPG/DOPC (40/60)-GUVs induced by constant electric tension (σc) under different Π. The σc dependent kp values were fitted with a theoretical equation, and the corresponding membrane tension (σoseq) at swelling equilibrium under Π was estimated. The estimated membrane tension agreed well with the theoretical calculation within the experimental error. Interestingly, the values of σoseq were almost same for both types of synthesized GUVs under same osmotic pressure. We also examined the sucrose leakage, due to large osmotic pressure-induced pore formation, from the inside of DOPG/DOPC/chol(46/39/15)-GUVs. The estimated membrane tension due to large Π at which sucrose leaked out was very similar to the electric tension at which GUVs were ruptured without Π. We explained the σc and Π induced pore formation in the lipid membranes of GUVs.
Collapse
Affiliation(s)
- Malay Kumar Sarkar
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Sabrina Sharmin
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
| | | |
Collapse
|
7
|
Babu Reddiar S, Al-Wassiti H, Pouton CW, Nowell CJ, Matthews MA, Rahman A, Barlow N, Norton RS. Assessing the cellular toxicity of peptide inhibitors of intracellular protein-protein interactions by microinjection. Bioorg Med Chem 2021; 29:115906. [PMID: 33310547 DOI: 10.1016/j.bmc.2020.115906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Inhibitors of protein-protein interactions can be developed through a number of technologies to provide leads that include cell-impermeable molecules. Redesign of these impermeable leads to provide cell-permeable derivatives can be challenging and costly. We hypothesised that intracellular toxicity of leads could be assessed by microinjection prior to investing in the redesign process. We demonstrate this approach for our development of inhibitors of the protein-protein interaction between inducible nitric-oxide synthase (iNOS) and SPRY domain-containing SOCS box proteins (SPSBs). We microinjected a lead molecule into AD-293 cells and were able to perform an intracellular toxicity assessment. We also investigated the intracellular distribution and localisation of injected inhibitor using a fluorescently-labelled analogue. Our findings show that a lead peptide inhibitor, CP2, had no toxicity even at intracellular concentrations four orders of magnitude higher than its Kd for binding to SPSB2. This early toxicity assessment justifies further development of this cell-impermeable lead to confer cell permeability. Our investigation highlights the utility of microinjection as a tool for assessing toxicity during development of drugs targeting protein-protein interactions.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Hareth Al-Wassiti
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Colin W Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Macgregor A Matthews
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Arfatur Rahman
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia
| | - Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
8
|
Tivig I, Moisescu MG, Savopol T. Changes in the packing of bilayer lipids triggered by electroporation: real-time measurements on cells in suspension. Bioelectrochemistry 2020; 138:107689. [PMID: 33296789 DOI: 10.1016/j.bioelechem.2020.107689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/15/2023]
Abstract
Electropermeabilization of the cell membrane is a technique used to facilitate penetration of impermeant molecules into cells. Although there are studies regarding the mechanism of processes occurring after electropermeabilization, the relationship between electropermeabilization and associated phenomena (e.g. generation of reactive oxygen species, endocytosis, lipid peroxidation, etc.) is yet to be elucidated. This work aimed to get information on the changes in the packing of the bilayer lipids and their peroxidation induced by application of electroporation pulses. We used a specially designed system of electrodes which allowed performing electropermeabilization of cells in suspension simultaneously with time-dependent measurements of fluorescence and temperature. The kinetics of membrane packing and production of reactive oxygen species were studied using various conductivity buffers (0.01, 0.04 and 0.14 S/m) and different number of 1 kV/cm bipolar pulses (1-50). Two categories of effects were observed: a thermal effect, consisting in an increased bilayer disorder (a deeper penetration of water into the hydrophobic core), and a nonthermal effect, leading to a higher degree of lipids packing, the latter being attributed to a peroxidation process. An analysis of the permeabilization conditions in which one of these two processes predominates was performed.
Collapse
Affiliation(s)
- Ioan Tivig
- Biophysics and Cellular Biotechnology Dept., University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania; Excellence Center for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania
| | - Mihaela G Moisescu
- Biophysics and Cellular Biotechnology Dept., University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania; Excellence Center for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania.
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Dept., University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania; Excellence Center for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Sector 5, 050474 Bucharest, Romania
| |
Collapse
|
9
|
Mozneb M, Mirtaheri E, Sanabria AO, Li CZ. Bioelectronic properties of DNA, protein, cells and their applications for diagnostic medical devices. Biosens Bioelectron 2020; 167:112441. [PMID: 32763825 DOI: 10.1016/j.bios.2020.112441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023]
Abstract
From a couple of centuries ago, understanding physical properties of biological material, their interference with their natural host and their potential manipulation for employment as a conductor in medical devices, has gathered substantial interest in the field of bioelectronics. With the fast-emerging technologies for fabrication of diagnostic modalities, wearable biosensors and implantable devices, which electrical components are of essential importance, a need for developing novel conductors within such devices has evolved over the past decades. As the possibility of electron transport within small biological molecules, such as DNA and proteins, as well as larger elements such as cells was established, several discoveries of the modern charge characterization technologies were evolved. Development of Electrochemical Scanning Tunneling Microscopy and Nuclear Magnetic Resonance among many other techniques were of vital importance, following the discoveries made in sub-micron scales of biological material. This review covers the most recent understandings of electronic properties within different scale of biological material starting from nanometer range to millimeter-sized organs. We also discuss the state-of-the-art technology that's been made taking advantage of electronic properties of biological material for addressing diseases like Parkinson's Disease and Epilepsy.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Elnaz Mirtaheri
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Arianna Ortega Sanabria
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Chen-Zhong Li
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| |
Collapse
|
10
|
He W, Xing X, Wang X, Wu D, Wu W, Guo J, Mitragotri S. Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201910566] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/16/2020] [Indexed: 01/04/2025]
Abstract
AbstractBiopharmaceuticals have emerged to play a vital role in disease treatment and have shown promise in the rapidly expanding pharmaceutical market due to their high specificity and potency. However, the delivery of these biologics is hindered by various physiological barriers, owing primarily to the poor cell membrane permeability, low stability, and increased size of biologic agents. Since many biological drugs are intended to function by interacting with intracellular targets, their delivery to intracellular targets is of high relevance. In this review, the authors summarize and discuss the use of nanocarriers for intracellular delivery of biopharmaceuticals via endosomal escape and, especially, the routes of direct cytosolic delivery by means including the caveolae‐mediated pathway, contact release, intermembrane transfer, membrane fusion, direct translocation, and membrane disruption. Strategies with high potential for translation are highlighted. Finally, the authors conclude with the clinical translation of promising carriers and future perspectives.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xuyang Xing
- Department of Pharmaceutics School of Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Xiaoling Wang
- School of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Debra Wu
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of Ministry of Education of China School of Pharmacy Fudan University Shanghai 201203 China
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
11
|
An D, Thiyagarajan S, Antipov E, Alcott B, O’shaughnessy B. Membrane pore energetics and the pathways to membrane rupture.. [DOI: 10.1101/2020.06.29.178988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
AbstractBiological membranes owe their strength and low permeability to the phospholipid bilayers at their core. Membrane strength is determined by the energetics and dynamics of membrane pores, whose tension-dependent nucleation and growth leads to rupture. Creation of nanoscale membrane pores is central to exocytosis, trafficking and other processes fundamental to life that require breaching of secure plasma or organelle membranes, and is the basis for biotechnologies using drug delivery, delivery of genetic material for gene editing and antimicrobial peptides. A prevailing view from seminal electroporation and membrane rupture studies is that pore growth and bilayer rupture are controlled by macroscopically long-lived metastable defect states that precede fully developed pores. It was argued that defect nucleation becomes rate-limiting at high tensions, explaining the exponential tension-dependence of rupture times [E. Evans et al., Biophys. J. 85, 2342-2350 (2003)]. Here we measured membrane pore free energies and bilayer rupture using highly coarse-grained simulations that probe very long time scales. We find no evidence of metastable pore states. At lower tensions, small hydrophobic pores mature into large hydrophilic pores on the pathway to rupture, with classical tension dependence of rupture times. Above a critical tension membranes rupture directly from a small hydrophobic pore, and rupture times depend exponentially on tension. Thus, we recover the experimentally reported regimes, but the origin of the high tension exponential regime is unrelated to macroscopically long-lived pre-pore defects. It arises because hydrophilic pores cannot exist above a critical tension, leading to radically altered pore dynamics and rupture kinetics.
Collapse
|
12
|
Karal MAS, Ahamed MK, Mokta NA, Ahmed M, Ahammed S. Influence of cholesterol on electroporation in lipid membranes of giant vesicles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:361-370. [PMID: 32535676 DOI: 10.1007/s00249-020-01443-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
Irreversible electroporation (IRE) is primarily a nonthermal ablative technology that uses a series of high-voltage and ultra-short pulses with high-frequency electrical energy to induce cell death. This paper presents the influence of cholesterol on the IRE-induced probability of pore formation and the rate constant of pore formation in giant unilamellar vesicles (GUVs). The GUVs are prepared by a mixture of dioleoylphosphatidylglycerol (DOPG), dioleoylphosphatidylcholine (DOPC) and cholesterol using the natural swelling method. An IRE signal of frequency 1.1 kHz is applied to the membranes of GUVs. The probability of pore formation and the rate constant of pore formation events are obtained using statistical analysis from several single GUVs. The time-dependent fraction of intact GUVs among all those examined is fitted to a single exponential decay function from where the rate constant of pore formation is calculated. The probability of pore formation and the rate constant of pore formation decreases with an increase in cholesterol content in the membranes of GUVs. Theoretical equations are fitted to the tension-dependent rate constant of pore formation and to the probability of pore formation, which allows us to obtain the line tension of membranes. The obtained line tension increases with an increase in cholesterol in the membranes. The increase in the energy barrier of the prepore state, due to the increase of cholesterol in membranes, is the main factor explaining the decrease in the rate constant of pore formation.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Nadia Akter Mokta
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
13
|
Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:371-381. [PMID: 32494845 DOI: 10.1007/s00249-020-01440-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/10/2020] [Accepted: 05/24/2020] [Indexed: 12/24/2022]
Abstract
Stretching in the plasma membranes of cells and lipid membranes of vesicles plays important roles in various physiological and physicochemical phenomena. Irreversible electroporation (IRE) is a minimally invasive non-thermal tumor ablation technique where a series of short electrical energy pulses with high frequency is applied to destabilize the cell membranes. IRE also induces lateral tension due to stretching in the membranes of giant unilamellar vesicles (GUVs). Here, the kinetics of irreversible pore formation under constant electrical tension in GUVs has been investigated. The GUVs are prepared by a mixture of dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine using the natural swelling method. An IRE signal of frequency 1.1 kHz is applied to the GUVs through a gold-coated electrode system. Stochastic pore formation is observed for several 'single GUVs' at a particular constant tension. The time course of the fraction of intact GUVs among all the examined GUVs is fitted with a single-exponential decay function from which the rate constant of pore formation in the vesicle, kp, is calculated. The value of kp increases with an increase of membrane tension. An increase in the proportion of negatively charged lipids in a membrane gives a higher kp. Theoretical equations are fitted to the tension-dependent kp and to the probability of pore formation, which allows us to obtain the line tension of the membranes. The decrease in the energy barrier for formation of the nano-size nascent or prepore state, due to the increase in electrical tension, is the main factor explaining the increase of kp.
Collapse
|
14
|
|
15
|
A Comprehensive Review of Calcium Electroporation -A Novel Cancer Treatment Modality. Cancers (Basel) 2020; 12:cancers12020290. [PMID: 31991784 PMCID: PMC7073222 DOI: 10.3390/cancers12020290] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/21/2022] Open
Abstract
Calcium electroporation is a potential novel anti-cancer treatment where high calcium concentrations are introduced into cells by electroporation, a method where short, high voltage pulses induce transient permeabilisation of the plasma membrane allowing passage of molecules into the cytosol. Calcium is a tightly regulated, ubiquitous second messenger involved in many cellular processes including cell death. Electroporation increases calcium uptake leading to acute and severe ATP depletion associated with cancer cell death. This comprehensive review describes published data about calcium electroporation applied in vitro, in vivo, and clinically from the first publication in 2012. Calcium electroporation has been shown to be a safe and efficient anti-cancer treatment in clinical studies with cutaneous metastases and recurrent head and neck cancer. Normal cells have been shown to be less affected by calcium electroporation than cancer cells and this difference might be partly induced by differences in membrane repair, expression of calcium transporters, and cellular structural changes. Interestingly, both clinical data and preclinical studies have indicated a systemic immune response induced by calcium electroporation. New cancer treatments are needed, and calcium electroporation represents an inexpensive and efficient treatment with few side effects, that could potentially be used worldwide and for different tumor types.
Collapse
|
16
|
Kryukov AI, Kunelskaya NL, Shershunova EA, Rebrov IE, Yamshchikov VA, Garov EV, Tsarapkin GY, Mishchenko VV. [Topical drug administration to the inner ear. Modern state of the problem and development perspectives]. Vestn Otorinolaringol 2019; 84:6-14. [PMID: 31793520 DOI: 10.17116/otorino2019840516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The work assessed modern methods of drug delivery through biological barriers to the lesion, in particular, through the most studied - skin. The main advantages and disadvantages of the existing methods for the topical administration of drugs into the inner ear - intra-imperial and intra-labyrinth delivery are analyzed. A brief review of medicinal substances for topical administration to the inner ear, both widely used (for example, aminoglycosides, steroid drugs) and undergoing clinical trials, is given. An assessment is made of the prospects for the use of transmembrane drug delivery to the inner ear using an electric field, which has a combined electro-creative and iontophoretic effect.
Collapse
Affiliation(s)
- A I Kryukov
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - N L Kunelskaya
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - E A Shershunova
- The Institute for Electrophysics and Electric Power of the Russian Academy of Sciences, Sanct-Petersburg, Russia, 191186
| | - I E Rebrov
- The Institute for Electrophysics and Electric Power of the Russian Academy of Sciences, Sanct-Petersburg, Russia, 191186
| | - V A Yamshchikov
- The Institute for Electrophysics and Electric Power of the Russian Academy of Sciences, Sanct-Petersburg, Russia, 191186
| | - E V Garov
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - G Yu Tsarapkin
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - V V Mishchenko
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| |
Collapse
|
17
|
Michel O, Błasiak P, Saczko J, Kulbacka J, Drąg-Zalesińska M, Rzechonek A. Electropermeabilization of metastatic chondrosarcoma cells from primary cell culture. Biotechnol Appl Biochem 2019; 66:945-954. [PMID: 31476023 DOI: 10.1002/bab.1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/20/2019] [Indexed: 11/12/2022]
Abstract
Primary cell cultures are challenging, but reliable model reflecting tumor response in vitro. The study was designed to examine if the increased electropermeabilization can overcame initial drug insensitivity in chondrosarcoma cells from lung metastasis. We established a primary cell culture and evaluated the cytotoxic impact of four drugs-cisplatin (CDDP), camptothecin, 2-methoxyestradiol, and leucovorin calcium (LeuCa). After determination of parameters allowing for electropermeabilization, we performed electrochemotherapy in vitro with the least toxic drugs-CDDP and LeuCa. Although combining CDDP and leucovorin together increased their toxicity and supported apoptosis, application of pulsed electric fields (PEFs) brought no advantage for their efficacy. The study emphasizes the need for introduction of primary cell cultures into studies on pulse electric fields as model frequently less sensitive to PEF-based treatments than continuous cell lines.
Collapse
Affiliation(s)
- Olga Michel
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Błasiak
- Department of Thoracic Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Rzechonek
- Department of Thoracic Surgery, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
18
|
Garabalino MA, Olaiz N, Portu A, Saint Martin G, Thorp SI, Pozzi ECC, Curotto P, Itoiz ME, Monti Hughes A, Colombo LL, Nigg DW, Trivillin VA, Marshall G, Schwint AE. Electroporation optimizes the uptake of boron-10 by tumor for boron neutron capture therapy (BNCT) mediated by GB-10: a boron biodistribution study in the hamster cheek pouch oral cancer model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:455-467. [PMID: 31123853 DOI: 10.1007/s00411-019-00796-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/07/2019] [Indexed: 05/17/2023]
Abstract
Boron neutron capture therapy (BNCT) is a promising cancer binary therapy modality that utilizes the nuclear capture reaction of thermal neutrons by boron-10 resulting in a localized release of high- and low-linear energy transfer (LET) radiation. Electrochemotherapy (ECT) is based on electroporation (EP) that induces opening of pores in cell membranes, allowing the entry of compounds. Because EP is applied locally to a tumor, the compound is incorporated preferentially by tumor cells. Based on the knowledge that the therapeutic success of BNCT depends centrally on the boron content in tumor and normal tissues and that EP has proven to be an excellent facilitator of tumor biodistribution of an anti-tumor agent, the aim of this study was to evaluate if EP can optimize the delivery of boronated compounds. We performed biodistribution studies and qualitative microdistribution analyses of boron employing the boron compound sodium decahydrodecaborate (GB-10) + EP in the hamster cheek pouch oral cancer model. Syrian hamsters with chemically induced exophytic squamous cell carcinomas were used. A typical EP treatment was applied to each tumor, varying the moment of application with respect to the administration of GB-10 (early or late). The results of this study showed a significant increase in the absolute and relative tumor boron concentration and optimization of the qualitative microdistribution of boron by the use of early EP + GB-10 versus GB-10 without EP. This strategy could be a tool to improve the therapeutic efficacy of BNCT/GB-10 in vivo.
Collapse
Affiliation(s)
- Marcela A Garabalino
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina.
| | - Nahuel Olaiz
- Departamento de Sistemas complejos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Ciudad Autónoma De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Agustina Portu
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Gisela Saint Martin
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Silvia I Thorp
- Sub-gerencia Instrumentación y Control, Centro Atómico Ezeiza, Camino Real Presbítero González y Aragón 15, B1802AYA, Ezeiza, Provincia Buenos Aires, Argentina
| | - Emiliano C C Pozzi
- Departamento de Reactores de Investigación y Producción, Centro Atómico Ezeiza, Camino Real Presbítero González y Aragón 15, B1802AYA, Ezeiza, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Paula Curotto
- Departamento de Reactores de Investigación y Producción, Centro Atómico Ezeiza, Camino Real Presbítero González y Aragón 15, B1802AYA, Ezeiza, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - María E Itoiz
- Departamento de Anatomía Patología, Facultad de Odontología, Universidad de Buenos Aires, Marcelo T. de Alvear 2142, C1122AAH, Ciudad Autónoma De Buenos Aires, Argentina
| | - Andrea Monti Hughes
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Lucas L Colombo
- Instituto de Oncología Angel H. Roffo, Avenida San Martin 5481, C1417DTB, Ciudad Autónoma De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - David W Nigg
- Idaho National Laboratory, 2525 Fremont Ave, Idaho Falls, ID, 83402, USA
| | - Verónica A Trivillin
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Guillermo Marshall
- Departamento de Sistemas complejos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Ciudad Autónoma De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Amanda E Schwint
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| |
Collapse
|
19
|
Spugnini EP, Baldi A. Electrochemotherapy in Veterinary Oncology: State-of-the-Art and Perspectives. Vet Clin North Am Small Anim Pract 2019; 49:967-979. [PMID: 31176458 DOI: 10.1016/j.cvsm.2019.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor microenvironment represents a key obstacle for the effectiveness of anticancer drugs. Electrochemotherapy involves the systemic or local delivery of lipophobic drugs such as bleomycin and cisplatin, with the application of permeabilizing electric pulses having appropriate amplitude and waveforms. This greatly enhances the uptake of these drugs by an estimated factor of 700-fold for bleomycin and 4 to 8 times for cisplatin. Because of its efficacy and limited morbidity, this therapeutic option is becoming more and more available in veterinary oncology either as an adjuvant to surgery or as first line of treatment with palliative or curative purposes.
Collapse
Affiliation(s)
| | - Alfonso Baldi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University "Luigi Vanvitelli", Via Vivaldi, 43, Caserta 81100, Italy
| |
Collapse
|
20
|
Gallinato O, de Senneville BD, Seror O, Poignard C. Numerical workflow of irreversible electroporation for deep-seated tumor. Phys Med Biol 2019; 64:055016. [PMID: 30669121 DOI: 10.1088/1361-6560/ab00c4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The paper provides a numerical workflow, based on the 'real-life' clinical workflow of irreversible electroporation (IRE) performed for the treatment of deep-seated liver tumors. Thanks to a combination of numerical modeling, image registration algorithm and clinical data, our numerical workflow enables to provide the distribution of the electric field as effectively delivered by the clinical IRE procedure. As a proof of concept, we show on a specific clinical case of IRE ablation of liver tumor that clinical data could be advantageously combined to numerical simulations in a near future, in order to give to the interventional radiologists information on the effective IRE ablation. We also corroborate the simulated treated region with the post-treatment MRI performed 3 d after the treatment.
Collapse
Affiliation(s)
- Olivier Gallinato
- INRIA Bordeaux-Sud-Ouest, CNRS, Bordeaux INP, Univ. Bordeaux, IMB, UMR 5251, F-33400, Talence, France
| | | | | | | |
Collapse
|
21
|
Boc N, Edhemovic I, Kos B, Music MM, Brecelj E, Trotovsek B, Bosnjak M, Djokic M, Miklavcic D, Cemazar M, Sersa G. Ultrasonographic changes in the liver tumors as indicators of adequate tumor coverage with electric field for effective electrochemotherapy. Radiol Oncol 2018; 52:383-391. [PMID: 30352044 PMCID: PMC6287182 DOI: 10.2478/raon-2018-0041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background The aim of the study was to characterize ultrasonographic (US) findings during and after electrochem-otherapy of liver tumors to determine the actual ablation zone and to verify the coverage of the treated tumor with a sufficiently strong electric field for effective electrochemotherapy. Patients and methods US findings from two representative patients that describe immediate and delayed tumor changes after electrochemotherapy of colorectal liver metastases are presented. Results The US findings were interrelated with magnetic resonance imaging (MRI). Electrochemotherapy-treated tumors were exposed to electric pulses based on computational treatment planning. The US findings indicate immediate appearance of hyperechogenic microbubbles along the electrode tracks. Within minutes, the tumors became evenly hyperechogenic, and simultaneously, an oedematous rim was formed presenting as a hypoechogenic formation which persisted for several hours after treatment. The US findings overlapped with computed electric field distribution in the treated tissue, indicating adequate coverage of tumors with sufficiently strong electric field, which may predict an effective treatment outcome. Conclusions US provides a tool for assessment of appropriate electrode insertion for intraoperative electrochemo-therapy of liver tumors and assessment of the appropriate coverage of a tumor with a sufficiently strong electric field and can serve as predictor of the response of tumors.
Collapse
Affiliation(s)
- Nina Boc
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Maja M. Music
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Erik Brecelj
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Blaz Trotovsek
- University Medical Center, Ljubljana, Ljubljana, Slovenia
| | - Masa Bosnjak
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mihajlo Djokic
- University Medical Center, Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
23
|
De Virgilio A, Ralli M, Longo L, Mancini P, Attanasio G, Atturo F, De Vincentiis M, Greco A. Electrochemotherapy in head and neck cancer: A review of an emerging cancer treatment. Oncol Lett 2018; 16:3415-3423. [PMID: 30127943 DOI: 10.3892/ol.2018.9140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Patients affected by aggressive neoplasms with a high propensity to metastasize to the skin, including some types of head and neck cancer, may benefit from electrochemotherapy, a modality that combines the electroporation of cell membranes and chemotherapy to facilitate the transport of non-permeant molecules into cells; the host immune response consequently participates in achieving the abolition of tumors. Electrochemotherapy can be successfully used for skin metastases of head and neck tumors and, with some limitations, for primary and relapsing neoplasms; it can also be applied on an outpatient basis with a favorable cost-benefit ratio and it is a repeatable treatment that, if necessary, can be followed by traditional antineoplastic therapies. Although still a palliative treatment, the good level of tolerability and the high success rates of electrochemotherapy make it worth consideration among treatment options in selected patients.
Collapse
Affiliation(s)
- Armando De Virgilio
- Department of Otolaryngology, Humanitas Clinical and Research Center, I-20089 Milan, Italy
| | - Massimo Ralli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, I-00186 Rome, Italy
| | - Lucia Longo
- Department of Sense Organs, Sapienza University of Rome, I-00186 Rome, Italy
| | - Patrizia Mancini
- Department of Sense Organs, Sapienza University of Rome, I-00186 Rome, Italy
| | - Giuseppe Attanasio
- Department of Sense Organs, Sapienza University of Rome, I-00186 Rome, Italy
| | - Francesca Atturo
- Department of Sense Organs, Sapienza University of Rome, I-00186 Rome, Italy
| | - Marco De Vincentiis
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, I-00186 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, I-00186 Rome, Italy
| |
Collapse
|
24
|
Korem M, Goldberg NS, Cahan A, Cohen MJ, Nissenbaum I, Moses AE. Clinically applicable irreversible electroporation for eradication of micro-organisms. Lett Appl Microbiol 2018; 67:15-21. [PMID: 29679390 DOI: 10.1111/lam.12996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation (IRE) damages cell membranes and is used in medicine for nonthermal ablation of malignant tumours. Our aim was to evaluate the antimicrobial effect of IRE. The pathogenic micro-organisms, Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa and Candida albicans were subjected to IRE. Survival was measured as a function of voltage and the number of pulses applied. Combined use of IRE and oxacillin for eradication of Staph. aureus was also tested. Log10 reduction in micro-organisms positively correlated with the number of applied pulses. The colony count of Strep. pyogenes and E. coli declined by 3·38 and 3·05 orders of magnitude, respectively, using an electric field of 2000 V and 100 pulses. Killing of Staph. aureus and P. aeruginosa was achieved with a double cycle of IRE (2000, 1500 V and repeated 1250 V respectively) of 50-100 IRE pulses. The addition of subclinical inhibitory concentrations of oxacillin to the Staph. aureus suspension prior to IRE led to total bacterial death, demonstrating synergism between oxacillin and IRE. Our results demonstrate that using IRE with clinically established parameters has a marked in vitro effect on pathogenic micro-organisms and highlights the potential of IRE as a treatment modality for deep-seated infections, particularly when combined with low doses of antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Irreversible electroporation (IRE) is utilized in interventional radiology to treat cancer patients. In this study we evaluated in vitro the antimicrobial effect of IRE. We demonstrated that using IRE with clinically established parameters has a marked effect on pathogenic micro-organisms and is synergistic to antimicrobials when both are combined. Our results point to the potential of IRE as a treatment modality for deep-seated infections.
Collapse
Affiliation(s)
- M Korem
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - N S Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - A Cahan
- IBM Research, Yorktown, NY, USA
| | - M J Cohen
- Clalit Health Services, Jerusalem, Israel
| | - I Nissenbaum
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - A E Moses
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
25
|
Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV. Pore formation in lipid membrane II: Energy landscape under external stress. Sci Rep 2017; 7:12509. [PMID: 28970526 PMCID: PMC5624950 DOI: 10.1038/s41598-017-12749-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022] Open
Abstract
Lipid membranes are extremely stable envelopes allowing cells to survive in various environments and to maintain desired internal composition. Membrane permeation through formation of transversal pores requires substantial external stress. Practically, pores are usually formed by application of lateral tension or transmembrane voltage. Using the same approach as was used for obtaining continuous trajectory of pore formation in the stress-less membrane in the previous article, we now consider the process of pore formation under the external stress. The waiting time to pore formation proved a non-monotonous function of the lateral tension, dropping from infinity at zero tension to a minimum at the tension of several millinewtons per meter. Transmembrane voltage, on the contrary, caused the waiting time to decrease monotonously. Analysis of pore formation trajectories for several lipid species with different spontaneous curvatures and elastic moduli under various external conditions provided instrumental insights into the mechanisms underlying some experimentally observed phenomena.
Collapse
Affiliation(s)
- Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia. .,National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russia.
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russia
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Konstantin V Pavlov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya, Moscow, 119435, Russia
| | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,Moscow Institute of Physics and Technology, Institutsky lane 9, 141700, Dolgoprudniy, Russia
| |
Collapse
|
26
|
Akimov SA, Volynsky PE, Galimzyanov TR, Kuzmin PI, Pavlov KV, Batishchev OV. Pore formation in lipid membrane I: Continuous reversible trajectory from intact bilayer through hydrophobic defect to transversal pore. Sci Rep 2017; 7:12152. [PMID: 28939906 PMCID: PMC5610326 DOI: 10.1038/s41598-017-12127-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Lipid membranes serve as effective barriers allowing cells to maintain internal composition differing from that of extracellular medium. Membrane permeation, both natural and artificial, can take place via appearance of transversal pores. The rearrangements of lipids leading to pore formation in the intact membrane are not yet understood in details. We applied continuum elasticity theory to obtain continuous trajectory of pore formation and closure, and analyzed molecular dynamics trajectories of pre-formed pore reseal. We hypothesized that a transversal pore is preceded by a hydrophobic defect: intermediate structure spanning through the membrane, the side walls of which are partially aligned by lipid tails. This prediction was confirmed by our molecular dynamics simulations. Conversion of the hydrophobic defect into the hydrophilic pore required surmounting some energy barrier. A metastable state was found for the hydrophilic pore at the radius of a few nanometers. The dependence of the energy on radius was approximately quadratic for hydrophobic defect and small hydrophilic pore, while for large radii it depended on the radius linearly. The pore energy related to its perimeter, line tension, thus depends of the pore radius. Calculated values of the line tension for large pores were in quantitative agreement with available experimental data.
Collapse
Affiliation(s)
- Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia. .,National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russia.
| | - Pavel E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,National University of Science and Technology "MISiS", 4 Leninskiy prospekt, Moscow, 119049, Russia
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Konstantin V Pavlov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,Federal Research and Clinical Center of Physical-Chemical Medicine, 1a Malaya Pirogovskaya, Moscow, 119435, Russia
| | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.,Moscow Institute of Physics and Technology, 9 Institutsky lane, 141700, Dolgoprudniy, Russia
| |
Collapse
|
27
|
Plaschke CC, Gothelf A, Gehl J, Wessel I. Electrochemotherapy of mucosal head and neck tumors: a systematic review. Acta Oncol 2016; 55:1266-1272. [PMID: 27705053 DOI: 10.1080/0284186x.2016.1207803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Electrochemotherapy, the combination of electroporation and chemotherapy, is mainly used in the palliative setting for treatment of cutaneous and subcutaneous metastases; however, new applications are continuously being explored. Patients with head and neck cancer are primarily treated with surgery and/or radio-chemotherapy. In the setting of local recurrence with no further curative treatment options available, electrochemotherapy could be of value. We therefore performed a systematic search of the present literature. MATERIALS AND METHODS Eligible studies presented data from patients with head and neck cancer treated across the mucosal surface with electrochemotherapy. The search resulted in 11 studies with a total of 72 patients. RESULTS Overall complete response was reported as good, especially in primary small tumors. Side effects were minor in primary tumors whereas large, recurrent tumors displayed more frequent side effects and some serious adverse events. Design and structure of the studies differed considerably, making general comparisons difficult. CONCLUSION Few studies concerning electrochemotherapy on mucosal head and neck tumors are available and they are not easily comparable. Overall response to treatment is good; nonetheless, further systematic studies are warranted.
Collapse
Affiliation(s)
- Christina Caroline Plaschke
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anita Gothelf
- Department of Oncology, Section 5073, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Julie Gehl
- Department of Oncology, Center for Experimental Drug and Gene Electrotransfer, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Irene Wessel
- Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Spugnini EP, Fais S, Azzarito T, Baldi A. Novel Instruments for the Implementation of Electrochemotherapy Protocols: From Bench Side to Veterinary Clinic. J Cell Physiol 2016; 232:490-495. [PMID: 27464761 DOI: 10.1002/jcp.25505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023]
Abstract
Electrochemotherapy (ECT) is a medical strategy that allows an increased efficacy of chemotherapy agents after the application of permeabilizing electric pulses having appropriate characteristics (form, voltage, frequency). In the past 10 years, the clinical efficacy of this therapeutic approach in several spontaneous models of tumors in animals has been shown. Moreover, some of the molecular and cellular mechanisms responsible for this phenomenon have been elucidated. Our group has been deeply involved in the development of new ECT protocols for companion animals, implementing the use of the technique as first line treatment, and evaluating different chemotherapy agents in laboratory animals as well as pets. This article summarizes the most important advances in veterinary ECT, including the development of novel equipment, therapeutic protocols, and their translation to humans. J. Cell. Physiol. 232: 490-495, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Rome, Italy
| | - Tommaso Azzarito
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Rome, Italy
| | | |
Collapse
|
29
|
Bonakdar M, Wasson EM, Lee YW, Davalos RV. Electroporation of Brain Endothelial Cells on Chip toward Permeabilizing the Blood-Brain Barrier. Biophys J 2016; 110:503-513. [PMID: 26789772 DOI: 10.1016/j.bpj.2015.11.3517] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/17/2015] [Indexed: 12/24/2022] Open
Abstract
The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this barrier. In this study we developed a microengineered in vitro model to characterize the permeabilization of adhered brain endothelial cells to large molecules in response to applied pulsed electric fields. We found the distribution of affected cells by reversible and irreversible electroporation, and quantified the uptaken amount of naturally impermeable molecules into the cells as a result of applied pulse magnitude and number of pulses. We achieved 81 ± 1.7% (N = 6) electroporated cells with 17 ± 8% (N = 5) cell death using an electric-field magnitude of ∼580 V/cm and 10 pulses. Our results provide the proper range for applied electric-field intensity and number of pulses for safe permeabilization without significantly compromising cell viability. Our results demonstrate that it is possible to permeabilize the endothelial cells of the BBB in a controlled manner, therefore lending to the feasibility of using pulsed electric fields to increase drug transport across the BBB through the transcellular pathway.
Collapse
Affiliation(s)
- Mohammad Bonakdar
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia.
| | - Elisa M Wasson
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia
| | - Yong W Lee
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia; School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Virginia Tech, Blacksburg, Virginia
| | - Rafael V Davalos
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia; School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
30
|
Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line. J Membr Biol 2016; 249:569-76. [PMID: 27312328 PMCID: PMC4942495 DOI: 10.1007/s00232-016-9910-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 01/05/2023]
Abstract
Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p < 0.05) as well as the immortalized cell line (p < 0.001). This difference in sensitivity was also observed when a viability assay was performed one day after plasma membrane permeabilization by electroporation. Viability in the primary normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81–88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment.
Collapse
|
31
|
Bimonte S, Leongito M, Granata V, Barbieri A, Del Vecchio V, Falco M, Nasto A, Albino V, Piccirillo M, Palaia R, Amore A, Giacomo RD, Lastoria S, Setola SV, Fusco R, Petrillo A, Izzo F. Electrochemotherapy in pancreatic adenocarcinoma treatment: pre-clinical and clinical studies. Radiol Oncol 2016; 50:14-20. [PMID: 27069445 PMCID: PMC4825336 DOI: 10.1515/raon-2016-0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/13/2015] [Indexed: 12/18/2022] Open
Abstract
Background Pancreatic adenocarcinoma is currently one of the deadliest cancers with high mortality rate. This disease leads to an aggressive local invasion and early metastases, and is poorly responsive to treatment with chemotherapy or chemo-radiotherapy. Radical resection is still the only curative treatment for pancreatic cancer, but it is generally accepted that a multimodality strategy is necessary for its management. Therefore, new alternative therapies have been considered for local treatment. Conclusions Chemotherapeutic resistance in pancreatic cancer is associated to a low penetration of drugs into tumour cells due to the presence of fibrotic stroma surrounding cells. In order to increase the uptake of chemotherapeutic drugs into tumour cells, electrochemotherapy can be used for treatment of pancreatic adenocarcinoma leading to an increased tumour response rate. This review will summarize the published papers reported in literature on the efficacy and safety of electrochemotherapy in pre-clinical and clinical studies on pancreatic cancer.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Maddalena Leongito
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Antonio Barbieri
- S.S.D Sperimentazione Animale, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Vitale Del Vecchio
- S.S.D Sperimentazione Animale, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Michela Falco
- S.S.D Sperimentazione Animale, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Aurelio Nasto
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Vittorio Albino
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Mauro Piccirillo
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Palaia
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Alfonso Amore
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raimondo di Giacomo
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Secondo Lastoria
- Division of Nuclear Medicine, Department of Diagnostic Imaging and Radiotherapy, Istituto Nazionale Tumori "Fondazione G.Pascale" IRCCS, Naples, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Roberta Fusco
- Division of Radiology, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Francesco Izzo
- Division of Abdominal Surgical Oncology, Hepatobiliary Unit, Istituto Nazionale per lo studio e la cura dei Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| |
Collapse
|
32
|
Dolat E, Rajabi O, Salarabadi SS, Yadegari-Dehkordi S, Sazgarnia A. Silver nanoparticles and electroporation: Their combinational effect on Leishmania major. Bioelectromagnetics 2015; 36:586-96. [PMID: 26769083 DOI: 10.1002/bem.21945] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 10/27/2015] [Indexed: 11/08/2022]
Abstract
Leishmaniasis is an emerging and uncontrolled disease. The use of routine drugs has been limited due to proven side effects and drug resistance. Interestingly, novel approaches such as nanotechnology have been applied as a therapeutic modality. Silver nanoparticles have shown antileishmanial effects but because of their nonspecific and toxic effects on normal cells, their use has been limited. On the other hand, it has been demonstrated that electric pulses induce electropores on cell membranes resulting in higher entrance of certain molecules into cells. There is a hypothesis proposing that use of electroporation and silver nanoparticles simultaneously can induce greater accumulation of particles in infected cells, besides higher toxicity. In this study, after applying electric pulses with different concentrations of silver nanoparticles (SNPs), cell survival rate was determined by standard viability assays. On the basis of these data, 2 μg/ml of SNPs and 700 V/cm with 100 μs duration of electroporation were selected as the non-lethal condition. Promastigotes and infected macrophage cells received both treatments and the survival percentage and Infection Index were calculated. In parasites and cells receiving both treatments, higher toxicity was observed in comparison to each treatment given individually, showing a synergic effect on promastigotes. Therefore, application of electric pulses could overcome limitations in using the antileishmanial properties of silver nanoparticles.
Collapse
Affiliation(s)
- Elham Dolat
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Faculty of pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Cell adhesion and spreading at a charged interface: Insight into the mechanism using surface techniques and mathematical modelling. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Venslauskas MS, Šatkauskas S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:277-89. [PMID: 25939984 DOI: 10.1007/s00249-015-1025-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 01/19/2023]
Abstract
A short review of biophysical mechanisms for electrotransfer of bioactive molecules through the cell membrane by using electroporation is presented. The concept of transient hydrophilic aqueous pores and membrane electroporation mechanisms of single cells and cells in suspension models are analyzed. Alongside the theoretical approach, some peculiarities of drug and gene electrotransfer into cells and applications in clinical trials are discussed.
Collapse
Affiliation(s)
- Mindaugas S Venslauskas
- Biophysical Research Group, Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania,
| | | |
Collapse
|
35
|
Girelli R, Prejanò S, Cataldo I, Corbo V, Martini L, Scarpa A, Claudio B. Feasibility and safety of electrochemotherapy (ECT) in the pancreas: a pre-clinical investigation. Radiol Oncol 2015; 49:147-54. [PMID: 26029026 PMCID: PMC4387991 DOI: 10.1515/raon-2015-0013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/12/2015] [Indexed: 12/13/2022] Open
Abstract
Background. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease generally refractory to standard chemotherapeutic agents; therefore improvements in anticancer therapies are mandatory. A major determinant of therapeutic resistance in PDAC is the poor drug delivery to neoplastic cells, mainly due to an extensive fibrotic reaction. Electroporation can be used in vivo to increase cancer cells’ local uptake of chemotherapeutics (electrochemotherapy, ECT), thus leading to an enhanced tumour response rate. In the present study, we evaluated the in vivo effects of reversible electroporation in normal pancreas in a rabbit experimental model. We also tested the effect of electroporation on pancreatic cancer cell lines in order to evaluate their increased sensitivity to chemotherapeutic agents. Materials and methods. The application in vivo of the European Standard Operating Procedure of Electrochemotherapy (ESOPE) pulse protocol (1000 V/cm, 8 pulses, 100 μs, 5 KHz) was tested on the pancreas of normal New Zealand White Rabbits and short and long-term toxicity were assessed. PANC1 and MiaPaCa2 cell lines were tested for in vitro electrochemotherapy experiments with and without electroporation. Levels of cell permeabilization were determined by flow cytometry, whereas cell viability and drug (cisplatin and bleomycin) sensitivity of pulsed cells were measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Results. In healthy rabbits, neither systemic nor local toxic effects due to the electroporation procedure were observed, demonstrating the safety of the optimized electric parameters in the treatment of the pancreas in vivo. In parallel, we established an optimized protocol for ECT in vitro that determined an enhanced anti-cancer effect of bleomycin and cisplatin with respect to treatment without electroporation. Conclusions. Our data suggest that electroporation is a safe procedure in the treatment of PDAC because it does not affect normal pancreatic parenchyma, but has a potentiating effect on cytotoxicity of bleomycin in pancreatic tumour cell lines. Therefore, ECT could be considered as a valid alternative for the local control of non-resectable pancreatic cancer.
Collapse
Affiliation(s)
- Roberto Girelli
- Pancreatic Unit - Casa di Cura Pederzoli, Peschiera del Garda (VR), Italy
| | - Simona Prejanò
- ARC-NET Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Ivana Cataldo
- ARC-NET Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Corbo
- ARC-NET Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Lucia Martini
- Laboratory of Preclinical and Surgical Studies and Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli Orthopedic Institute Bologna, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Bassi Claudio
- Department of Surgery and Oncology, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
36
|
Pinyon JL, Tadros SF, Froud KE, Y Wong AC, Tompson IT, Crawford EN, Ko M, Morris R, Klugmann M, Housley GD. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med 2015; 6:233ra54. [PMID: 24760189 DOI: 10.1126/scitranslmed.3008177] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cochlear implant is the most successful bionic prosthesis and has transformed the lives of people with profound hearing loss. However, the performance of the "bionic ear" is still largely constrained by the neural interface itself. Current spread inherent to broad monopolar stimulation of the spiral ganglion neuron somata obviates the intrinsic tonotopic mapping of the cochlear nerve. We show in the guinea pig that neurotrophin gene therapy integrated into the cochlear implant improves its performance by stimulating spiral ganglion neurite regeneration. We used the cochlear implant electrode array for novel "close-field" electroporation to transduce mesenchymal cells lining the cochlear perilymphatic canals with a naked complementary DNA gene construct driving expression of brain-derived neurotrophic factor (BDNF) and a green fluorescent protein (GFP) reporter. The focusing of electric fields by particular cochlear implant electrode configurations led to surprisingly efficient gene delivery to adjacent mesenchymal cells. The resulting BDNF expression stimulated regeneration of spiral ganglion neurites, which had atrophied 2 weeks after ototoxic treatment, in a bilateral sensorineural deafness model. In this model, delivery of a control GFP-only vector failed to restore neuron structure, with atrophied neurons indistinguishable from unimplanted cochleae. With BDNF therapy, the regenerated spiral ganglion neurites extended close to the cochlear implant electrodes, with localized ectopic branching. This neural remodeling enabled bipolar stimulation via the cochlear implant array, with low stimulus thresholds and expanded dynamic range of the cochlear nerve, determined via electrically evoked auditory brainstem responses. This development may broadly improve neural interfaces and extend molecular medicine applications.
Collapse
Affiliation(s)
- Jeremy L Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, UNSW Australia, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Peterson AD, Jaroszeski MJ, Gupta VK. Fluorometric Assay to Compensate for Non-viable Cells during Electroporation. J Fluoresc 2014; 25:159-65. [DOI: 10.1007/s10895-014-1492-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022]
|
38
|
Panov PV, Akimov SA, Batishchev OV. Isoprenoid lipid chains increase membrane resistance to pore formation. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2014. [DOI: 10.1134/s1990747814050067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Olaiz N, Signori E, Maglietti F, Soba A, Suárez C, Turjanski P, Michinski S, Marshall G. Tissue damage modeling in gene electrotransfer: The role of pH. Bioelectrochemistry 2014; 100:105-11. [DOI: 10.1016/j.bioelechem.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 02/05/2023]
|
40
|
Moir J, White SA, French JJ, Littler P, Manas DM. Systematic review of irreversible electroporation in the treatment of advanced pancreatic cancer. Eur J Surg Oncol 2014; 40:1598-604. [PMID: 25307210 DOI: 10.1016/j.ejso.2014.08.480] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/29/2014] [Accepted: 08/26/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Irreversible electroporation (IRE) is a novel procedure to combat pancreatic cancer, whereby high voltage pulses are delivered, resulting in cell death. This represents an ideal alternative to other thermal treatment modalities, as there is no overriding heat effect, therefore reducing the risk of injury to vessels and ducts. METHODS Multiple databases were searched to January 2014. Primary outcome measures were survival and associated morbidity. 41 articles were initially identified; of these 4 studies met the inclusion criteria, yielding 74 patients in total. RESULTS 94.5% of patients had locally advanced tumours, the remainder had metastatic disease. Treated tumour size ranged from 1 to 7 cm. IRE approach included open (70.3%), laparoscopic (2.7%) and percutaneous (27%; ultrasound-guided 30%, CT-guided 70%) Morbidity ranged from 0 to 33%; due to the high number of simultaneous procedures performed (resection/bypass) it was difficult to ascertain IRE-related complications. However no significant bleeding occurred when IRE-alone was performed. Survival statistics suggest a prognostic benefit. Reported survival included: 6 month survival of 40% (n = 5) and 70% (n = 14); PFS and OS 14 and 20 months respectively (n = 54). Results of most interest showed a significant survival benefit in matched IRE vs non-IRE groups (PFS 14 vs 6 mths; p = 0.01, OS 20 vs 11 mths; p = 0.03). CONCLUSION Initial evidence suggests IRE incurs a prognostic benefit with minimal morbidity. More high quality research is required to determine the role IRE may play in the multi-modal management of pancreatic cancers.
Collapse
Affiliation(s)
- J Moir
- HPB Unit, Freeman Hospital, Newcastle Upon Tyne NE7 7DN, UK.
| | - S A White
- HPB Unit, Freeman Hospital, Newcastle Upon Tyne NE7 7DN, UK
| | - J J French
- HPB Unit, Freeman Hospital, Newcastle Upon Tyne NE7 7DN, UK
| | - P Littler
- HPB Unit, Freeman Hospital, Newcastle Upon Tyne NE7 7DN, UK
| | - D M Manas
- HPB Unit, Freeman Hospital, Newcastle Upon Tyne NE7 7DN, UK
| |
Collapse
|
41
|
Sridhara V, Joshi R. Evaluations of a mechanistic hypothesis for the influence of extracellular ions on electroporation due to high-intensity, nanosecond pulsing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1793-800. [DOI: 10.1016/j.bbamem.2014.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
42
|
How medium osmolarity influences dielectrophoretically assisted on-chip electrofusion. Bioelectrochemistry 2014; 100:27-35. [PMID: 25012938 DOI: 10.1016/j.bioelechem.2014.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
Abstract
Cells submitted to an electric field gradient experience dielectrophoresis. Such a force is useful for pairing cells prior to electrofusion. The latter event is induced by the application of electric field pulses leading to membrane fusion while cells are in physical contact. Nevertheless, the efficiency of dielectrophoretic pairing and electrofusion of cells are highly dependent on medium properties (osmolarity and conductivity). In this paper, we examine the effect of medium osmolarity on volume, viability and electrical properties of cells. Then we characterize in real time the impact of electropermeabilization of cells on their dielectrophoretic response. To do so, a microfluidic device, inducing particular field topologies is used. These real time observations are correlated to numerical analysis of the Clausius-Mossotti factor. Taking into account the identified changes, an electrofusion protocol adequate to the optimal medium (100 mOsm, 0.03 S/m) is defined. Up to 75% simultaneous binuclear rapid electrofusions were achieved and monitored with average membrane fusion duration lower than 12s.
Collapse
|
43
|
Liu S, Ma L, Tan R, Lu Q, Geng Y, Wang G, Gu Z. Safe and efficient local gene delivery into skeletal muscle via a combination of Pluronic L64 and modified electrotransfer. Gene Ther 2014; 21:558-65. [PMID: 24694536 DOI: 10.1038/gt.2014.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/25/2013] [Accepted: 01/24/2014] [Indexed: 11/09/2022]
Abstract
Efficient DNA electrotransfer into muscles can be achieved by combining two types of electronic pulses sequentially: short high-voltage (HV) pulse for the cell electropermeabilization and long low-voltage (LV) pulse for the DNA electrophoresis into cells. However, the voltages currently applied can still induce histological and functional damages to tissues. Pluronic L64 has been considered as a molecule possessing cell membrane-disturbing ability. For these reasons, we hope that L64 can be used as a substitute for the HV pulse in cell membrane permeabilization, and a safe LV pulse may still keep the ability to drive plasmid DNA across the permeabilized membrane. In this work, we optimized the electrotransfer parameters to establish a safe and efficient procedure using a clinically applied instrument, and found out that the critical condition for a successful combination of electrotransfer with L64 was that the injection of plasmid/L64 mixture should be applied 1 h before the electrotransfer. In addition, we revealed that the combined procedure could not efficiently transfer plasmid into solid tumor because the uncompressed plasmid may rapidly permeate the leaky tumor vessels and flow away. Altogether, the results demonstrate that the combined procedure has the potential for plasmid-based gene therapy through safe and efficient local gene delivery into skeletal muscles.
Collapse
Affiliation(s)
- S Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - L Ma
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - R Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Q Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Y Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - G Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Z Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Abstract
Membrane electropermeabilization is the observation that the permeability of a cell membrane can be transiently increased when a micro-millisecond external electric field pulse is applied on a cell suspension or on a tissue. Applicative aspects for the transfer of foreign molecules (macromolecules) into the cytoplasm are routinely used. But only a limited knowledge about what is really occurring in the cell and its membranes at the molecular levels is available. This chapter is a critical attempt to report the present state of the art and to point out some of the still open problems. The experimental facts associated to membrane electropermeabilization are firstly reported. They are valid on biological and model systems. Secondly, soft matter approaches give access to the bioelectrochemical description of the thermodynamical constraints supporting the destabilization of simplified models of the biological membrane. It is indeed described as a thin dielectric leaflet, where a molecular transport takes place by electrophoresis and then diffusion. This naïve approach is due to the lack of details on the structural aspects affecting the living systems as shown in a third part. Membranes are part of the cell machinery. The critical property of cells as being an open system from the thermodynamical point of view is almost never present. Computer simulations are now contributing to our knowledge on electropermeabilization. The last part of this chapter is a (very) critical report of all the efforts that have been performed. The final conclusion remains that we still do not know all the details on the reversible structural and dynamical alterations of the cell membrane (and cytoplasm) supporting its electropermeabilization. We have a long way in basic and translational researches to reach a pertinent description.
Collapse
Affiliation(s)
- Justin Teissie
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| |
Collapse
|
45
|
Electroporation-based gene therapy: recent evolution in the mechanism description and technology developments. Methods Mol Biol 2014; 1121:3-23. [PMID: 24510808 DOI: 10.1007/978-1-4614-9632-8_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thirty years after the publication of the first report on gene electrotransfer in cultured cells by the delivery of delivering electric pulses, this technology is starting to be applied to humans. In 2008, at the time of the publication of the first edition of this book, reversible cell electroporation for gene transfer and gene therapy (nucleic acids electrotransfer) was at a cross roads in its development. In 5 years, basic and applied developments have brought gene electrotransfer into a new status. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here, as an introduction to the large range of applications described in this book. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted, as well as the large range of new specialized electrodes, developed also in the frame of the other electroporation-based treatments (electrochemotherapy). Indeed, electric pulses are now routinely applied for localized drug delivery in the treatment of solid tumors by electrochemotherapy. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed: noticeably, the first molecular description of the crossing of a lipid membrane by a nucleic acid was reported in 2012. The progress in the understanding of cell electroporation as well as developments of technological aspects, in silico, in vitro and in vivo, have contributed to bring gene electrotransfer development to the clinical stage. However, spreading of the technology will require not only more clinical trials but also further homogenization of the protocols and the preparation and validation of Standard Operating Procedures.
Collapse
|
46
|
Jahangeer S, Forde P, Soden D, Hinchion J. Review of current thermal ablation treatment for lung cancer and the potential of electrochemotherapy as a means for treatment of lung tumours. Cancer Treat Rev 2013; 39:862-71. [DOI: 10.1016/j.ctrv.2013.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/08/2013] [Accepted: 03/16/2013] [Indexed: 12/21/2022]
|
47
|
The role of pH fronts in tissue electroporation based treatments. PLoS One 2013; 8:e80167. [PMID: 24278257 PMCID: PMC3836965 DOI: 10.1371/journal.pone.0080167] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/30/2013] [Indexed: 01/04/2023] Open
Abstract
Treatments based on electroporation (EP) induce the formation of pores in cell membranes due to the application of pulsed electric fields. We present experimental evidence of the existence of pH fronts emerging from both electrodes during treatments based on tissue EP, for conditions found in many studies, and that these fronts are immediate and substantial. pH fronts are indirectly measured through the evanescence time (ET), defined as the time required for the tissue buffer to neutralize them. The ET was measured through a pH indicator imaged at a series of time intervals using a four-cluster hard fuzzy-c-means algorithm to segment pixels corresponding to the pH indicator at every frame. The ET was calculated as the time during which the number of pixels was 10% of those in the initial frame. While in EP-based treatments such as reversible (ECT) and irreversible electroporation (IRE) the ET is very short (though enough to cause minor injuries) due to electric pulse characteristics and biological buffers present in the tissue, in gene electrotransfer (GET), ET is much longer, enough to denaturate plasmids and produce cell damage. When any of the electric pulse parameters is doubled or tripled the ET grows and, remarkably, when any of the pulse parameters in GET is halved, the ET drops significantly. Reducing pH fronts has relevant implications for GET treatment efficiency, due to a substantial reduction of plasmid damage and cell loss.
Collapse
|
48
|
Thomas P, Smart TG. Use of electrophysiological methods in the study of recombinant and native neuronal ligand-gated ion channels. CURRENT PROTOCOLS IN PHARMACOLOGY 2012; Chapter 11:Unit 11.4. [PMID: 23258597 DOI: 10.1002/0471141755.ph1104s59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Detailed in this unit are protocols for studying the effects of externally and internally applied agents on the behavior of ligand-gated ion channels (LGICs), specifically the GABA(A) receptor. These assays include a number of electrophysiological techniques applied to whole-cell and excised patch recordings of recombinant and native GABA(A) receptor subtypes used in the generation and analysis of a pharmacological data. Although applied to GABA(A) receptors, these techniques are equally applicable to other LGICs. The analysis is extended to incorporate consideration of post-synaptic inhibitory events. In addition, complementary descriptions of how tissues for such studies are prepared for studying recombinant and native receptors are included.
Collapse
Affiliation(s)
- Philip Thomas
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London, United Kingdom
| | | |
Collapse
|
49
|
Calmels L, Al-Sakere B, Ruaud JP, Leroy-Willig A, Mir LM. In vivo MRI Follow-up of Murine Tumors Treated by Electrochemotherapy and other Electroporation-based Treatments. Technol Cancer Res Treat 2012; 11:561-70. [DOI: 10.7785/tcrt.2012.500270] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In vivo cell electropermeabilization can be used alone or in combination with a hydrophilic, nonpermeant cytotoxic drug such as bleomycin (electrochemotherapy) to efficiently treat tumors. We used magnetic resonance imaging to detect rapid structural modifications in tumors treated by electroporation-based methods. Water diffusion coefficient (ADC), transverse relaxation time (T2) and tumor volume of fibrosarcomas xenografted on syngenic mice were measured upon 3 groups of 6 treated mice within the 48 hrs following ECT done with a normal (BE) or a high dose of bleomycin (HBE), and after irreversible electroporation (IRE), and in three control groups. As expected, the tumor volume increased in the control groups at 48 hrs (p < 0.05) and the values of ADC and T2 did not varied significantly in the control groups except for ADC decrease and T2 increase observed between 3 hrs and 24 hrs (p < 0.03) in the group that received bleomycin only. Tumor volumes decreased significantly at 24 hrs in the IRE and HBE groups. The mean tumor ADC increased significantly at 24 hrs (+17.6%, p < 0.03) in the BE group, probably reflecting apoptosis, while in the HBE group the mean tumor ADC increased earlier, at 10 hrs (+19%, p < 0.03) because of the speed of the pseudoapopototic process. In the IRE group, the mean tumor ADC decreased significantly at 1 hrs (p < 0.05) and 3 hrs (p < 0.03), and T2 decreased (p < 0.03), both probably reflecting cell swelling induced by the vascular lock. Thus ADC and T2 changes in the treated tumors correlated with previous histological observations on the same tumor models. Noteworthy, ADC allowed the visualization of early and rapid changes in the treated tumors, when tumor volume monitoring was not yet able to detect any effect of the treatments.
Collapse
Affiliation(s)
- L. Calmels
- Univ. Paris-Sud, IR4M, UMR 8081
- CNRS, IR4M, UMR 8081, Orsay, 91405, France
| | - B. Al-Sakere
- Univ. Paris-Sud, UMR 8203
- CNRS, UMR 8203, Institut Gustave Roussy, Villejuif, 94805, France
| | - J.-P. Ruaud
- Univ. Paris-Sud, IR4M, UMR 8081
- CNRS, IR4M, UMR 8081, Orsay, 91405, France
| | - A. Leroy-Willig
- Univ. Paris-Sud, IR4M, UMR 8081
- CNRS, IR4M, UMR 8081, Orsay, 91405, France
| | - L. M. Mir
- Univ. Paris-Sud, UMR 8203
- CNRS, UMR 8203, Institut Gustave Roussy, Villejuif, 94805, France
| |
Collapse
|
50
|
|