1
|
Tong X, Dong Y, Zhou R, Shen X, Li Y, Jiang Y, Wang H, Wang J, Lin J, Wen C. Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg-2Zn-0.5Ca-0.5Sr/Zr Alloys for Bone-Implant Application. Adv Healthc Mater 2024; 13:e2303975. [PMID: 38235953 DOI: 10.1002/adhm.202303975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/09/2023] [Indexed: 01/19/2024]
Abstract
Magnesium (Mg) alloys are widely used in bone fixation and bone repair as biodegradable bone-implant materials. However, their clinical application is limited due to their fast corrosion rate and poor mechanical stability. Here, the development of Mg-2Zn-0.5Ca-0.5Sr (MZCS) and Mg-2Zn-0.5Ca-0.5Zr (MZCZ) alloys with improved mechanical properties, corrosion resistance, cytocompatibility, osteogenesis performance, and antibacterial capability is reported. The hot-extruded (HE) MZCZ sample exhibits the highest ultimate tensile strength of 255.8 ± 2.4 MPa and the highest yield strength of 208.4 ± 2.8 MPa and an elongation of 15.7 ± 0.5%. The HE MZCS sample shows the highest corrosion resistance, with the lowest corrosion current density of 0.2 ± 0.1 µA cm-2 and the lowest corrosion rate of 4 ± 2 µm per year obtained from electrochemical testing, and a degradation rate of 368 µm per year and hydrogen evolution rate of 0.83 ± 0.03 mL cm-2 per day obtained from immersion testing. The MZCZ sample shows the highest cell viability in relation to MC3T3-E1 cells among all alloy extracts, indicating good cytocompatibility except at 25% concentration. Furthermore, the MZCZ alloy shows good antibacterial capability against Staphylococcus aureus.
Collapse
Affiliation(s)
- Xian Tong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yilong Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Runqi Zhou
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering, Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing, 401174, China
| | - Xinkun Shen
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou, 325016, China
| | - Yuncang Li
- School of Engineering, RMIT University Melbourne, Victoria, 3001, Australia
| | - Yue Jiang
- Key Laboratory of Bionic Engineering of Ministry of Education, College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130025, China
| | - Jinguo Wang
- Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130025, China
| | - Jixing Lin
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Cuie Wen
- School of Engineering, RMIT University Melbourne, Victoria, 3001, Australia
| |
Collapse
|
2
|
Yu Y, Rong K, Yao D, Zhang Q, Cao X, Rao B, Xia Y, Lu Y, Shen Y, Yao Y, Xu H, Ma P, Cao Y, Qin A. The structural pathology for hypophosphatasia caused by malfunctional tissue non-specific alkaline phosphatase. Nat Commun 2023; 14:4048. [PMID: 37422472 PMCID: PMC10329691 DOI: 10.1038/s41467-023-39833-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/30/2023] [Indexed: 07/10/2023] Open
Abstract
Hypophosphatasia (HPP) is a metabolic bone disease that manifests as developmental abnormalities in bone and dental tissues. HPP patients exhibit hypo-mineralization and osteopenia due to the deficiency or malfunction of tissue non-specific alkaline phosphatase (TNAP), which catalyzes the hydrolysis of phosphate-containing molecules outside the cells, promoting the deposition of hydroxyapatite in the extracellular matrix. Despite the identification of hundreds of pathogenic TNAP mutations, the detailed molecular pathology of HPP remains unclear. Here, to address this issue, we determine the crystal structures of human TNAP at near-atomic resolution and map the major pathogenic mutations onto the structure. Our study reveals an unexpected octameric architecture for TNAP, which is generated by the tetramerization of dimeric TNAPs, potentially stabilizing the TNAPs in the extracellular environments. Moreover, we use cryo-electron microscopy to demonstrate that the TNAP agonist antibody (JTALP001) forms a stable complex with TNAP by binding to the octameric interface. The administration of JTALP001 enhances osteoblast mineralization and promoted recombinant TNAP-rescued mineralization in TNAP knockout osteoblasts. Our findings elucidate the structural pathology of HPP and highlight the therapeutic potential of the TNAP agonist antibody for osteoblast-associated bone disorders.
Collapse
Affiliation(s)
- Yating Yu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Kewei Rong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Deqiang Yao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Xiankun Cao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Rao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yi Lu
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Peixiang Ma
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yu Cao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
3
|
Bartlett CL, Ralefatane MG, Cave EM, Crowther NJ, Ferris WF. Differential glycosylation of tissue non-specific alkaline phosphatase in mesenchymal stromal cells differentiated into either an osteoblastic or adipocytic phenotype. Exp Cell Res 2022; 421:113372. [PMID: 36167106 DOI: 10.1016/j.yexcr.2022.113372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022]
Abstract
It has long been known that tissue non-specific alkaline phosphatase (TNAP) is essential for the correct formation of bone, as altered expression or function of this enzyme results in hypophosphatasia, a disease characterised by compromised bone structure, density and strength. However, recent evidence strongly suggests that the enzyme also has a role in lipid accrual and adipogenesis, a function that seems far removed from bone formation. Given that mesenchymal stromal cells (MSCs) are progenitors of both osteoblasts and adipocytes, the question arises of how TNAP is regulated to potentially have a different function when MSCs undergo either osteogenesis or adipogenesis. As the primary protein sequence is unchanged for the enzyme during both types of differentiation, any differences in function must be attributed to post-translational modification and/or localisation. We therefore examined the location of TNAP in bone- or adipose-derived MSCs differentiated into an adipocytic phenotype and compared the glycosylation state of the enzyme in MSCs differentiated into either osteoblasts or adipocytes. TNAP was found to co-locate with perilipin around lipid droplets in MSCs from bone, subcutaneous- and visceral adipose tissue during adipocytic differentiation. Treatment of TNAP with wheat germ lectin followed by electrophoresis showed minor differences in glycosylation between the phosphatase isolated from cells from these tissues, whereas electrophoresis after neuraminidase digestion highlighted differential glycosylation between cell types and during adipogenesis and osteoblastogenesis. This infers that post-translational modification of TNAP is altered during differentiation and is dependent on the eventual phenotype of the cells.
Collapse
Affiliation(s)
- Cara-Lesley Bartlett
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Maile George Ralefatane
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Eleanor Margaret Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Nigel John Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa; Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - William Frank Ferris
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa.
| |
Collapse
|
4
|
Bartlett CL, Cave EM, Crowther NJ, Ferris WF. A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation. Mol Cell Biochem 2022; 477:2093-2106. [PMID: 35471716 DOI: 10.1007/s11010-022-04429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is one of four isozymes, which include germ cell, placental and intestinal alkaline phosphatases. The TNAP isozyme has 3 isoforms (liver, bone and kidney) which differ by tissue expression and glycosylation pattern. Despite a long history of investigation, the exact function of TNAP in many tissues is largely unknown. Only the bone isoform has been well characterised during mineralization where the enzyme hydrolyses pyrophosphate to inorganic phosphate, which combines with calcium to form hydroxyapatite crystals deposited as new bone. The inorganic phosphate also increases gene expression of proteins that support tissue mineralization. Recent studies have shown that TNAP is expressed in preadipocytes from several species, and that inhibition of TNAP activity causes attenuation of intracellular lipid accumulation in these and other lipid-storing cells. The mechanism by which TNAP stimulates lipid accumulation is not known; however, proteins that are important for controlling phosphate levels in bone are also expressed in adipocytes. This review examines the evidence that inorganic phosphate generated by TNAP promotes transcription that enhances the expression of the regulators of lipid storage and consequently, that TNAP has a major function of lipid metabolism.
Collapse
Affiliation(s)
- Cara-Lesley Bartlett
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eleanor Margaret Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Nigel John Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - William Frank Ferris
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
5
|
Le‐Vinh B, Akkuş‐Dağdeviren ZB, Le NN, Nazir I, Bernkop‐Schnürch A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao Le‐Vinh
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Zeynep Burcu Akkuş‐Dağdeviren
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| | - Nguyet‐Minh Nguyen Le
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Imran Nazir
- Department of Pharmacy COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| |
Collapse
|
6
|
Goettsch C, Strzelecka-Kiliszek A, Bessueille L, Quillard T, Mechtouff L, Pikula S, Canet-Soulas E, Luis MJ, Fonta C, Magne D. TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res 2022; 118:84-96. [PMID: 33070177 PMCID: PMC8752354 DOI: 10.1093/cvr/cvaa299] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.
Collapse
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen
University, Aachen, Germany
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| | - Thibaut Quillard
- PHY-OS Laboratory, UMR 1238 INSERM, Université de Nantes, CHU
de Nantes, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France
- CREATIS Laboratory, CNRS UMR 5220, Inserm U1044, Université Claude Bernard
Lyon 1, Lyon, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude
Bernard Lyon 1, Lyon, France
| | - Millan Jose Luis
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery
Institute, La Jolla, CA 92037, USA
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de
Toulouse, France
| | - David Magne
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| |
Collapse
|
7
|
Baev AY, Abramov AY. Inorganic Polyphosphate and F 0F 1-ATP Synthase of Mammalian Mitochondria. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:1-13. [PMID: 35697934 DOI: 10.1007/978-3-031-01237-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inorganic polyphosphate is a polymer which plays multiple important roles in yeast and bacteria. In higher organisms the role of polyP has been intensively studied in last decades and involvements of this polymer in signal transduction, cell death mechanisms, energy production, and many other processes were demonstrated. In contrast to yeast and bacteria, where enzymes responsible for synthesis and hydrolysis of polyP were identified, in mammalian cells polyP clearly plays important role in physiology and pathology but enzymes responsible for synthesis of polyP or consumption of this polymer are still not identified. Here, we discuss the role of mitochondrial F0F1-ATP synthase in polyP synthesis with results, which confirm this proposal. We also discuss the role of other enzymes which may play important roles in polyP metabolism.
Collapse
Affiliation(s)
- Artyom Y Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent, Uzbekistan
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
8
|
Tissue-Nonspecific Alkaline Phosphatase, a Possible Mediator of Cell Maturation: Towards a New Paradigm. Cells 2021; 10:cells10123338. [PMID: 34943845 PMCID: PMC8699127 DOI: 10.3390/cells10123338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
Alkaline phosphatase (ALP) is a ubiquitous membrane-bound glycoprotein capable of providing inorganic phosphate by catalyzing the hydrolysis of organic phosphate esters, or removing inorganic pyrophosphate that inhibits calcification. In humans, four forms of ALP cDNA have been cloned, among which tissue-nonspecific ALP (TNSALP) (TNSALP) is widely distributed in the liver, bone, and kidney, making it an important marker in clinical and basic research. Interestingly, TNSALP is highly expressed in juvenile cells, such as pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells (iPSCs)) and somatic stem cells (i.e., neuronal stem cells and bone marrow mesenchymal stem cells). Hypophosphatasia is a genetic disorder causing defects in bone and tooth development as well as neurogenesis. Mutations in the gene coding for TNSALP are thought to be responsible for the abnormalities, suggesting the essential role of TNSALP in these events. Moreover, a reverse-genetics-based study using mice revealed that TNSALP is important in bone and tooth development as well as neurogenesis. However, little is known about the role of TNSALP in the maintenance and differentiation of juvenile cells. Recently, it was reported that cells enriched with TNSALP are more easily reprogrammed into iPSCs than those with less TNSALP. Furthermore, in bone marrow stem cells, ALP could function as a "signal regulator" deciding the fate of these cells. In this review, we summarize the properties of ALP and the background of ALP gene analysis and its manipulation, with a special focus on the potential role of TNSALP in the generation (and possibly maintenance) of juvenile cells.
Collapse
|
9
|
Tintut Y, Honda HM, Demer LL. Biomolecules Orchestrating Cardiovascular Calcification. Biomolecules 2021; 11:biom11101482. [PMID: 34680115 PMCID: PMC8533507 DOI: 10.3390/biom11101482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular calcification, once considered a degenerative, end-stage, and inevitable condition, is now recognized as a complex process regulated in a manner similar to skeletal bone at the molecular and cellular levels. Since the initial discovery of bone morphogenetic protein in calcified human atherosclerotic lesions, decades of research have now led to the recognition that the regulatory mechanisms and the biomolecules that control cardiovascular calcification overlap with those controlling skeletal mineralization. In this review, we focus on key biomolecules driving the ectopic calcification in the circulation and their regulation by metabolic, hormonal, and inflammatory stimuli. Although calcium deposits in the vessel wall introduce rupture stress at their edges facing applied tensile stress, they simultaneously reduce rupture stress at the orthogonal edges, leaving the net risk of plaque rupture and consequent cardiac events depending on local material strength. A clinically important consequence of the shared mechanisms between the vascular and bone tissues is that therapeutic agents designed to inhibit vascular calcification may adversely affect skeletal mineralization and vice versa. Thus, it is essential to consider both systems when developing therapeutic strategies.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Henry M. Honda
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
| | - Linda L. Demer
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-206-2677
| |
Collapse
|
10
|
Nwafor DC, Brichacek AL, Ali A, Brown CM. Tissue-Nonspecific Alkaline Phosphatase in Central Nervous System Health and Disease: A Focus on Brain Microvascular Endothelial Cells. Int J Mol Sci 2021; 22:5257. [PMID: 34067629 PMCID: PMC8156423 DOI: 10.3390/ijms22105257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is an ectoenzyme bound to the plasma membranes of numerous cells via a glycosylphosphatidylinositol (GPI) moiety. TNAP's function is well-recognized from earlier studies establishing its important role in bone mineralization. TNAP is also highly expressed in cerebral microvessels; however, its function in brain cerebral microvessels is poorly understood. In recent years, few studies have begun to delineate a role for TNAP in brain microvascular endothelial cells (BMECs)-a key component of cerebral microvessels. This review summarizes important information on the role of BMEC TNAP, and its implication in health and disease. Furthermore, we discuss current models and tools that may assist researchers in elucidating the function of TNAP in BMECs.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| | - Ahsan Ali
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M. Brown
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA; (D.C.N.); (A.A.)
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA;
| |
Collapse
|
11
|
Praetorius H. The bacteria and the host: a story of purinergic signaling in urinary tract infections. Am J Physiol Cell Physiol 2021; 321:C134-C146. [PMID: 33979212 DOI: 10.1152/ajpcell.00054.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The local environment forces a selection of bacteria that might invade the urinary tract, allowing only the most virulent to access the kidney. Quite similar to the diet in setting the stage for the gut microbiome, renal function determines the conditions for bacteria-host interaction in the urinary tract. In the kidney, the term local environment or microenvironment is completely justified because the environment literally changes within a few micrometers. The precise composition of the urine is a function of the epithelium lining the microdomain, and the microenvironment in the kidney shows more variation in the content of nutrients, ion composition, osmolality, and pH than any other site of bacteria-host interaction. This review will cover some of the aspects of bacterial-host interaction in this unique setting and how uropathogenic bacteria can alter the condition for bacteria-host interaction. There will be a particular focus on the recent findings regarding how bacteria specifically trigger host paracrine signaling, via release of extracellular ATP and activation of P2 purinergic receptors. These finding will be discussed from the perspective of severe urinary tract infections, including pyelonephritis and urosepsis.
Collapse
|
12
|
Zhong EH, Ledderose C, De Andrade Mello P, Enjyoji K, Lunderberg JM, Junger W, Robson SC. Structural and functional characterization of engineered bifunctional fusion proteins of CD39 and CD73 ectonucleotidases. Am J Physiol Cell Physiol 2020; 320:C15-C29. [PMID: 33052071 DOI: 10.1152/ajpcell.00430.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular diphosphate and triphosphate nucleotides are released from activated or injured cells to trigger vascular and immune P2 purinergic receptors, provoking inflammation and vascular thrombosis. These metabokines are scavenged by ectonucleoside triphosphate diphosphohydrolase-1 (E-NTPDase1 or CD39). Further degradation of the monophosphate nucleoside end products occurs by surface ecto-5'-nucleotidase (NMPase) or CD73. These ectoenzymatic processes work in tandem to promote adenosinergic responses, which are immunosuppressive and antithrombotic. These homeostatic ectoenzymatic mechanisms are lost in the setting of oxidative stress, which exacerbates inflammatory processes. We have engineered bifunctional enzymes made up from ectodomains (ECDs) of CD39 and CD73 within a single polypeptide. Human alkaline phosphatase-ectodomain (ALP-ECD) and human acid phosphatase-ectodomain (HAP-ECD) fusion proteins were also generated, characterized, and compared with these CD39-ECD, CD73-ECD, and bifunctional fusion proteins. Through the application of colorimetrical functional assays and high-performance liquid chromatography kinetic assays, we demonstrate that the bifunctional ectoenzymes express high levels of CD39-like NTPDase activity and CD73-like NMPase activity. Chimeric CD39-CD73-ECD proteins were superior in converting triphosphate and diphosphate nucleotides into nucleosides when compared with ALP-ECD and HAP-ECD. We also note a pH sensitivity difference between the bifunctional fusion proteins and parental fusions, as well as ectoenzymatic property distinctions. Intriguingly, these innovative reagents decreased platelet activation to exogenous agonists in vitro. We propose that these chimeric fusion proteins could serve as therapeutic agents in inflammatory diseases, acting to scavenge proinflammatory ATP and also generate anti-inflammatory adenosine.
Collapse
Affiliation(s)
- Elizabeth H Zhong
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Paola De Andrade Mello
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Keiichi Enjyoji
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Justin Mark Lunderberg
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Wolfgang Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Su Z, Wei Y, Kang XF. Simultaneous High-Resolution Detection of Bioenergetic Molecules using Biomimetic-Receptor Nanopore. Anal Chem 2019; 91:15255-15259. [PMID: 31665602 DOI: 10.1021/acs.analchem.9b04268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel artificial receptor, heptakis-[6-deoxy-6-(2-hydroxy-3-trimethylammonion-propyl) amino]-beta-cyclomaltoheptaose, with similar functions of mitochondrial ADP/ATP carrier protein, was synthesized and harbored in the engineered α-HL (M113R)7 nanopore, forming a single-molecule biosensor for sensing bioenergetic molecules and their transformations. The strategy significantly elevates both selectivity and signal-to-noise, which enables simultaneous recognition and detection of ATP, ADP, and AMP by real-time single-molecule measurement.
Collapse
Affiliation(s)
- Zhuoqun Su
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Yongfeng Wei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , P. R. China
| |
Collapse
|
14
|
Cruz T, Gleizes M, Balayssac S, Mornet E, Marsal G, Millán JL, Malet-Martino M, Nowak LG, Gilard V, Fonta C. Identification of altered brain metabolites associated with TNAP activity in a mouse model of hypophosphatasia using untargeted NMR-based metabolomics analysis. J Neurochem 2017; 140:919-940. [PMID: 28072448 DOI: 10.1111/jnc.13950] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/18/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.
Collapse
Affiliation(s)
- Thomas Cruz
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Marie Gleizes
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Stéphane Balayssac
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Etienne Mornet
- Unité de Génétique Constitutionnelle Prénatale et Postnatale, Service de Biologie, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Grégory Marsal
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Myriam Malet-Martino
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| | - Véronique Gilard
- Groupe de RMN Biomédicale, Laboratoire SPCMIB (CNRS UMR 5068), Université Paul Sabatier, Université de Toulouse, Toulouse Cedex, France
| | - Caroline Fonta
- Centre de Recherche Cerveau et Cognition (CerCo), Université de Toulouse UPS; CNRS UMR 5549, Toulouse, France
| |
Collapse
|
15
|
Garcia AF, Simão AMS, Bolean M, Hoylaerts MF, Millán JL, Ciancaglini P, Costa-Filho AJ. Effects of GPI-anchored TNAP on the dynamic structure of model membranes. Phys Chem Chem Phys 2016; 17:26295-301. [PMID: 26389140 DOI: 10.1039/c5cp02377g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) plays a crucial role during skeletal mineralization, and TNAP deficiency leads to the soft bone disease hypophosphatasia. TNAP is anchored to the external surface of the plasma membranes by means of a GPI (glycosylphosphatidylinositol) anchor. Membrane-anchored and solubilized TNAP displays different kinetic properties against physiological substrates, indicating that membrane anchoring influences the enzyme function. Here, we used Electron Spin Resonance (ESR) measurements along with spin labeled phospholipids to probe the possible dynamic changes prompted by the interaction of GPI-anchored TNAP with model membranes. The goal was to systematically analyze the ESR data in terms of line shape changes and of alterations in parameters such as rotational diffusion rates and order parameters obtained from non-linear least-squares simulations of the ESR spectra of probes incorporated into DPPC liposomes and proteoliposomes. Overall, the presence of TNAP increased the dynamics and decreased the ordering in the three distinct regions probed by the spin labeled lipids DOPTC (headgroup), and 5- and 16-PCSL (acyl chains). The largest change was observed for 16-PCSL, thus suggesting that GPI-anchored TNAP can give rise to long reaching modifications that could influence membrane processes halfway through the bilayer.
Collapse
Affiliation(s)
- A F Garcia
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Hypophosphatasia (HPP) is due to deficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNAP). This enzyme cleaves extracellular substrates inorganic pyrophosphates (PPi), pyridoxal-5'-phosphate (PLP), phosphoethanolamine (PEA) and nucleotides, and probably other substrates not yet identified. During the last 15 years the role of TNAP in mineralization, and to a less degree in brain, has been investigated, providing hypotheses and explanations for both bone and neuronal HPP phenotypes. ALPL, the gene encoding TNAP, is subject to many mutations, mostly missense mutations. A few number of mutations are recurrently found and may be quite frequent in particular populations. This reflects founder effects. The great variety of mutations results in a great number of compound heterozygous genotypes and in highly variable clinical expressivity. A good correlation was observed between the severity of the disease and in vitro enzymatic activity of the mutant protein measured after site-directed mutagenesis. Many missense mutations found in severe hypophosphatasia produced a mutant protein that failed to reach the cell membrane , was accumulated in the cis-Golgi and was subsequently degraded in the proteasome. Missense mutations located in the catalytic site or in the homodimer interface were often shown by site-directed mutagenesis to have a dominant negative effect. Currently molecular diagnosis of HPP is based on the sequencing of the coding sequence of ALPL that allows detection of approximately 95 % of mutations in severe cases. In addition, other genes, especially genes encoding proteins involved in the regulation of extracellular PPi concentration, could modify the phenotype (modifier genes).
Collapse
|
17
|
Cardoso AM, Schetinger MRC, Correia-de-Sá P, Sévigny J. Impact of ectonucleotidases in autonomic nervous functions. Auton Neurosci 2015; 191:25-38. [PMID: 26008223 DOI: 10.1016/j.autneu.2015.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Adenine and uracil nucleotides play key functions in the autonomic nervous system (ANS). For instance, ATP acts as a neurotransmitter, co-transmitter and neuromodulator in the ANS. The purinergic system encompasses (1) receptors that respond to extracellular purines, which are designated as P1 and P2 purinoceptors, (2) purine release and uptake, and (3) a cascade of enzymes that regulate the concentration of purines near the cell surface. Ectonucleotidases and adenosine deaminase (ADA) are enzymes responsible for the hydrolysis of ATP (and other nucleotides such as ADP, UTP, UDP, AMP) and adenosine, respectively. Accordingly, these enzymes are expected to play an important role in the control of neuro-effector transmission in tissues innervated by both the sympathetic and parasympathetic divisions of the ANS. Indeed, ectonucleotidases have the ability to either terminate P2 receptor responses initiated by nucleoside triphosphates (ATP and UTP), and/or to favor the activation of ADP (e.g. P2Y1,12,13) and UDP (e.g. P2Y6) and/or adenosine (P1) specific receptors. In addition, ectonucleotidases can also importantly protect some P2 receptors from desensitization (e.g. P2X1, P2Y1). In this review, we present the (putative) roles of ectonucleotidases and ADA in the ANS with a focus on their regulatory activity at neuro-effector junctions in the following tissues: heart, vas deferens, urinary bladder, salivary glands, blood vessels and the intestine. We also present their implication in nociceptive transmission.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduation Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology of the Center of Natural and Exact Sciences of the Federal University of Santa Maria, Santa Maria Rio Grande do Sul, Brazil
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, MedInUP, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), 4050-313 Porto, Portugal
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec G1V 4G2, Canada.
| |
Collapse
|
18
|
Abstract
In the respiratory system, extracellular nucleotides and nucleosides serve as signaling molecules for a wide spectrum of biological functions regulating airway defenses against infection and toxic material. Their concentrations are controlled by a complex network of cell surface enzymes named ectonucleotidases. This highly integrated metabolic network combines the activities of three dephosphorylating ectonucleotidases, namely nucleoside triphosphate diphosphohydrolases (NTPDases), nucleotide pyrophosphatase/phosphodiesterases (NPPs) and alkaline phosphatases (APs). Extracellular nucleotides are also inter-converted by the transphosphorylating activities of ecto adenylate kinase (ectoAK) and nucleoside diphosphokinase (NDPK). Different cell types use specific combinations of ectonucleotidases to regulate local concentrations of P2 receptor agonists (ATP, UTP, ADP and UDP). In addition, they provide AMP for the activity of ecto 5'-nucleotidase (ecto 5'-NT; CD73), which produces the P1 receptor agonist: adenosine (ADO). Finally, mechanisms are in place to prevent the accumulation of airway ADO, namely adenosine deaminases and nucleoside transporters. This chapter reviews the properties of each enzyme and transporter, and the current knowledge on their distribution and regulation in the airways.
Collapse
|
19
|
Danscher G, Mosekilde L, Rungby J. Histochemical Detection of Zinc in Mineralizing Rat Bone: Autometallographic Tracing of Zinc Ions in the Mineralization Front, Osteocytes, and Osteoblasts. J Histotechnol 2013. [DOI: 10.1179/his.1999.22.2.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Zhang L, Zhao J, Duan M, Zhang H, Jiang J, Yu R. Inhibition of dsDNA-Templated Copper Nanoparticles by Pyrophosphate as a Label-Free Fluorescent Strategy for Alkaline Phosphatase Assay. Anal Chem 2013; 85:3797-801. [DOI: 10.1021/ac4001942] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of
Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jingjin Zhao
- State Key Laboratory of
Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Min Duan
- State Key Laboratory of
Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hua Zhang
- State Key Laboratory of
Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jianhui Jiang
- State Key Laboratory of
Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ruqin Yu
- State Key Laboratory of
Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
21
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
22
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 789] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
23
|
Schmid F, Fliegert R, Westphal T, Bauche A, Guse AH. Nicotinic acid adenine dinucleotide phosphate (NAADP) degradation by alkaline phosphatase. J Biol Chem 2012; 287:32525-34. [PMID: 22851169 DOI: 10.1074/jbc.m112.362715] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a ubiquitous second messenger providing a Ca(2+) trigger in a wide range of cell types. However, its metabolism is not well understood. Here, we demonstrate the presence of endogenous NAADP in HeLa cells. CD38, a promiscuous enzyme described to be involved in NAADP metabolism, was not detectable in HeLa cells. In cell-free extracts of HeLa cells, NAADP was degraded to nicotinic acid adenine dinucleotide (NAAD). The enzyme was enriched in membranes (10,000 × g pellet) and displayed characteristics typical of alkaline phosphatase (AP), e.g. pH optimum at 8-9 and sensitivity to the inhibitors L-homoarginine and L-leucine. Importantly, NAADP at physiological concentrations (50-100 nM) was degraded to NAAD. Expression of AP isoenzymes was analyzed in HeLa cells. Based on the results together with inhibitor studies, the placental AP isoform emerged as the best candidate for NAADP degradation in HeLa cells. In contrast to HeLa cells, Jurkat T cells or HEK293 cells did not express any AP isoenzymes and did not display any NAADP 2'-phosphatase activity. Finally, the placental AP isoform was expressed heterologously in HEK293 cells, resulting in reconstitution of NAADP 2'-phosphatase activity in cell-free extracts. On the basis of the results, we provide evidence for AP as the metabolizing enzyme of NAADP in cells that do not express CD38.
Collapse
Affiliation(s)
- Frederike Schmid
- The Calcium Signalling Group, Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
25
|
Bolean M, Simão AMS, Favarin BZ, Millán JL, Ciancaglini P. Thermodynamic properties and characterization of proteoliposomes rich in microdomains carrying alkaline phosphatase. Biophys Chem 2011; 158:111-8. [PMID: 21676530 DOI: 10.1016/j.bpc.2011.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/18/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is associated to the plasma membrane via a GPI-anchor and plays a key role in the biomineralization process. In plasma membranes, most GPI-anchored proteins are associated with "lipid rafts", ordered microdomains enriched in sphingolipids, glycosphingolipids and cholesterol. In order to better understand the role of lipids present in rafts and their interactions with GPI-anchored proteins, the insertion of TNAP into different lipid raft models was studied using dipalmitoylphosphatidylcholine (DPPC), cholesterol (Chol), sphingomyelin (SM) and ganglioside (GM1). Thus, the membrane models studied were binary systems (9:1 molar ratio) containing DPPC:Chol, DPPC:SM and DPPC:GM1, ternary systems (8:1:1 molar ratio) containing DPPC:Chol:SM, DPPC:Chol:GM1 and DPPC:SM:GM1 and finally, a quaternary system (7:1:1:1 molar ratio) containing DPPC:Chol:SM:GM1. Calorimetry analysis of the liposomes and proteoliposomes indicate that lateral phase segregation could be noted only in the presence of cholesterol, with the formation of cholesterol-rich microdomains centered above Tc=41.5°C. The presence of GM1 and SM into DPPC-liposomes influenced mainly ΔH and Δt(1/2) values. The gradual increase in the complexity of the systems decreased the activity of the enzyme incorporated. The presence of the enzyme also fluidifies the systems, as seen by the intense reduction in ∆H values, but do not alter Tc values significantly. Therefore, the study of different microdomains and its biophysical characterization may contribute to the knowledge of the interactions between the lipids present in MVs and its interactions with TNAP.
Collapse
Affiliation(s)
- M Bolean
- Depto. Química, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), SP, Brazil
| | | | | | | | | |
Collapse
|
26
|
Simão AMS, Yadav MC, Narisawa S, Bolean M, Pizauro JM, Hoylaerts MF, Ciancaglini P, Millán JL. Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem 2010; 285:7598-609. [PMID: 20048161 PMCID: PMC2844207 DOI: 10.1074/jbc.m109.079830] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/15/2009] [Indexed: 01/01/2023] Open
Abstract
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5'-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5'-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5'-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PP(i) were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PP(i) by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.
Collapse
Affiliation(s)
- Ana Maria S. Simão
- From the Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Manisha C. Yadav
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Sonoko Narisawa
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Mayte Bolean
- From the Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil
| | - Joao Martins Pizauro
- the Department of Technology, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista, Jaboticabal SP 14884-900, Brazil, and
| | - Marc F. Hoylaerts
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
- the Center for Molecular and Vascular Biology, University of Leuven, B-3000, Leuven, Belgium
| | - Pietro Ciancaglini
- From the Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - José Luis Millán
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| |
Collapse
|
27
|
Zuo P, Picher M, Okada SF, Lazarowski ER, Button B, Boucher RC, Elston TC. Mathematical model of nucleotide regulation on airway epithelia. Implications for airway homeostasis. J Biol Chem 2008; 283:26805-19. [PMID: 18662982 DOI: 10.1074/jbc.m801516200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the airways, adenine nucleotides support a complex signaling network mediating host defenses. Released by the epithelium into the airway surface liquid (ASL) layer, they regulate mucus clearance through P2 (ATP) receptors, and following surface metabolism through P1 (adenosine; Ado) receptors. The complexity of ASL nucleotide regulation provides an ideal subject for biochemical network modeling. A mathematical model was developed to integrate nucleotide release, the ectoenzymes supporting the dephosphorylation of ATP into Ado, Ado deamination into inosine (Ino), and nucleoside uptake. The model also includes ecto-adenylate kinase activity and feed-forward inhibition of Ado production by ATP and ADP. The parameters were optimized by fitting the model to experimental data for the steady-state and transient concentration profiles generated by adding ATP to polarized primary cultures of human bronchial epithelial (HBE) cells. The model captures major aspects of ATP and Ado regulation, including their >4-fold increase in concentration induced by mechanical stress mimicking normal breathing. The model also confirmed the independence of steady-state nucleotide concentrations on the ASL volume, an important regulator of airway clearance. An interactive approach between simulations and assays revealed that feed-forward inhibition is mediated by selective inhibition of ecto-5'-nucleotidase. Importantly, the model identifies ecto-adenylate kinase as a key regulator of ASL ATP and proposes novel strategies for the treatment of airway diseases characterized by impaired nucleotide-mediated clearance. These new insights into the biochemical processes supporting ASL nucleotide regulation illustrate the potential of this mathematical model for fundamental and clinical research.
Collapse
Affiliation(s)
- Peiying Zuo
- Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:673-94. [PMID: 18302942 DOI: 10.1016/j.bbamcr.2008.01.024] [Citation(s) in RCA: 882] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 12/19/2022]
Abstract
The involvement of extracellular nucleotides and adenosine in an array of cell-specific responses has long been known and appreciated, but the integrative view of purinergic signalling as a multistep coordinated cascade has emerged recently. Current models of nucleotide turnover include: (i) transient release of nanomolar concentrations of ATP and ADP; (ii) triggering of signalling events via a series of ligand-gated (P2X) and metabotropic (P2Y) receptors; (iii) nucleotide breakdown by membrane-bound and soluble nucleotidases, including the enzymes of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family, ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) family, ecto-5'-nucleotidase/CD73, and alkaline phosphatases; (iv) interaction of the resulting adenosine with own nucleoside-selective receptors; and finally, (v) extracellular adenosine inactivation via adenosine deaminase and purine nucleoside phosphorylase reactions and/or nucleoside uptake by the cells. In contrast to traditional paradigms that focus on purine-inactivating mechanisms, it has now become clear that "classical" intracellular ATP-regenerating enzymes, adenylate kinase, nucleoside diphosphate (NDP) kinase and ATP synthase can also be co-expressed on the cell surface. Furthermore, data on the ability of various cells to retain micromolar ATP levels in their pericellular space, as well as to release other related compounds (adenosine, UTP, dinucleotide polyphosphates and nucleotide sugars) gain another important insight into our understanding of mechanisms regulating a signalling cascade. This review summarizes recent advances in this rapidly evolving field, with particular emphasis on the nucleotide-releasing and purine-converting pathways in the vasculature.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory, University of Turku and National Public Health Institute, Turku, Finland.
| |
Collapse
|
29
|
Simão AMS, Beloti MM, Cezarino RM, Rosa AL, Pizauro JM, Ciancaglini P. Membrane-bound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:679-87. [PMID: 16798036 DOI: 10.1016/j.cbpa.2006.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/09/2006] [Accepted: 05/11/2006] [Indexed: 11/26/2022]
Abstract
Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MW(r) of about 120 kDa and specific PNPP activity of 1200 U/mg. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 U/mg), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and beta-glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function.
Collapse
Affiliation(s)
- Ana Maria S Simão
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto-FFCLRP-USP, Departamento de Química, 14040-901, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Millán JL. Alkaline Phosphatases : Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2006; 2:335-41. [PMID: 18404473 PMCID: PMC2254479 DOI: 10.1007/s11302-005-5435-6] [Citation(s) in RCA: 396] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/23/2005] [Accepted: 11/24/2005] [Indexed: 11/30/2022] Open
Abstract
Our knowledge of the structure and function of alkaline phosphatases has increased greatly in recent years. The crystal structure of the human placental isozyme has enabled us to probe salient features of the mammalian enzymes that differ from those of the bacterial enzymes. The availability of knockout mice deficient in each of the murine alkaline phosphatase isozymes has also given deep insights into their in vivo role. This has been particularly true for probing the biological role of bone alkaline phosphatase during skeletal mineralization. Due to space constraints this mini-review focuses exclusively on structural and functional features of mammalian alkaline phosphatases as identified by crystallography and probed by site-directed mutagenesis and kinetic analysis. An emphasis is also placed on the substrate specificity of alkaline phosphatases, their catalytic properties as phosphohydrolases as well as phosphodiesterases and their structural and functional relatedness to a large superfamily of enzymes that includes nucleotide pyrophosphatase/phosphodiesterase.
Collapse
Affiliation(s)
- José Luis Millán
- Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA,
| |
Collapse
|
31
|
Fernandes SS, Furriel RP, Petenusci SO, Leone FA. Streptozotocin-induced diabetes: significant changes in the kinetic properties of the soluble form of rat bone alkaline phosphatase. Biochem Pharmacol 1999; 58:841-9. [PMID: 10449195 DOI: 10.1016/s0006-2952(99)00146-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A soluble form of an alkaline phosphatase, obtained from the osseous plate of streptozotocin-induced diabetic rats, was purified 90-fold with a yield of 26%. The calculated Mr of the purified enzyme was 80,000 by denaturing polyacrylamide gel electrophoresis and 160,000 by gel filtration on Sephacryl S-300, suggesting a dimeric structure for its native form. In the absence of metal ions, the p-nitrophenylphosphatase activity of the purified enzyme was 4223.1 U/mg. Magnesium or calcium ion concentrations up to 2 mM increased the specific activity of the enzyme to 9896.5 and 10,796.2 U/mg, respectively. The enzyme was stimulated to a lesser extent by MnCl2 (5390.1 U/mg) and CoCl2 (5088.2 U/mg). The purified soluble alkaline phosphatase showed a broad substrate specificity, and among the less hydrolyzed substrates were pyrophosphate (1517.6 U/mg) and bis-p-nitrophenylphosphate (499.6 U/mg). The enzyme was relatively stable at 45 degrees for periods as long as 180 min, but was denatured rapidly above 50 degrees, following first order kinetics with T1/2 values ranging from 3.5 to 57.7 min. The results reported herein suggested that the soluble form of alkaline phosphatase from streptozotocin-induced diabetic rats had its kinetic properties altered, apparently as a consequence of changes in metal-binding properties.
Collapse
Affiliation(s)
- S S Fernandes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/Universidade São Paulo, Brasil
| | | | | | | |
Collapse
|
32
|
Leone FA, Ciancaglini P, Pizauro JM. Effect of calcium ions on rat osseous plate alkaline phosphatase activity. J Inorg Biochem 1997; 68:123-7. [PMID: 9336971 DOI: 10.1016/s0162-0134(97)00047-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rat osseous plate alkaline phosphatase is a metalloenzyme with two binding sites for Zn2+ (sites I and III) and one for Mg2+ (site II). This enzyme is stimulated synergistically by Zn2+ and Mg2+ (Ciancaglini et al., 1992) and also by Mn2+ (Leone et al., 1995) and Co2+ (Ciancaglini et al., 1995). This study was aimed to investigate the modulation of enzyme activity by Ca2+. In the absence of Zn2+ and Mg2+, Ca2+ had no effects on the activity of Chelex-treated, Polidocanol-solubilized enzyme. However, in the presence of 10 microM MgCl2, increasing concentration of Ca2+ were inhibitory, suggesting the displacement of Mg2+ from the magnesium-reconstituted enzyme. For calcium-reconstituted enzyme, Zn2+ concentrations up to 0.1 microM were stimulatory, increasing specific activity from 130 U/mg to about 240 U/mg with a K0.5 = 8.5 nM. Above 0.1 microM Zn2+ exerted a strong inhibitory effect and concentrations of Ca2+ up to 1 mM were not enough to counteract this inhibition, indicating that Ca2+ was easily displaced by Zn2+. At fixed concentrations of Ca2+, increasing concentrations of Mg2+ increased the enzyme specific activity from 472 U/mg to about 547 U/mg, but K0.5 values were significantly affected (from 4.4 microM to 38.0 microM). The synergistic effects observed for the activity of Ca2+ plus magnesium-reconstituted enzyme, suggested that these two ions bind to the different sites. A model to explain the effect of Ca2+ on the activity of the enzyme is presented.
Collapse
Affiliation(s)
- F A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, Brasil.
| | | | | |
Collapse
|
33
|
Dong G, Zeikus JG. Purification and characterization of alkaline phosphatase from Thermotoga neapolitana. Enzyme Microb Technol 1997; 21:335-40. [PMID: 9322373 DOI: 10.1016/s0141-0229(97)00002-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A hyperthermophilic alkaline phosphatase was purified from Thermotoga neapolitana by heat treatment at 100 degrees C in the presence of Co2+ followed by ion-exchange and affinity chromatographies. The enzyme was purified 2,880-fold with 44% yield. The purified enzyme showed a single protein band of M(r) 45,000 on SDS-PAGE and an apparent molecular weight of 87,000 estimated by gel filtration chromatography. This suggested a homogenous dimer structure. The optimal pH and temperature for enzyme activity were 9.9 and 85 degrees C, respectively. Under optimal conditions, T. neapolitana alkaline phosphatase displayed 30% higher activity than calf intestine alkaline phosphatase did with p-nitrophenyl-phosphate as substrate. The hyperthermostable enzyme had a half-life of 238 min at 90 degrees C and K(m) and Vmax values of 183 microM and 1,352 U mg-1, respectively. Co2+ enhanced the enzyme activity, thermostability, and ligand affinity during column chromatography. The alkaline phosphatase was twice as active with Co2+ than with either Zn2+ or Mn2+ as the metal cofactor.
Collapse
Affiliation(s)
- G Dong
- Department of Biochemistry, Michigan State University, East Lansing, USA
| | | |
Collapse
|
34
|
Say JC, Furriel RP, Ciancaglini P, Jorge JA, Lourdes M, Polizeli TM, Pizauro JM, Terenzi HF, Leone FA. Conidial alkaline phosphatase from Neurospora crassa. PHYTOCHEMISTRY 1996; 41:71-75. [PMID: 8588877 DOI: 10.1016/0031-9422(95)00534-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An alkaline phosphatase was purified from conidia of a Neurospora crassa wild type strain. The M(r) of the purified native enzyme was estimated as ca 145,000 and 110,000 by gel filtration, in the presence and absence of magnesium ions, respectively. A single polypeptide band of M(r) 36,000 was detected by SDS-PAGE, suggesting that the native enzyme was a tetramer of apparently identical subunits. Conidial alkaline phosphatase was an acidic protein (pl = 4.0 +/- 0.1), with 40% carbohydrate content. Optimal pH was affected by substrate concentration and magnesium ions. Low concentrations of calcium ions (0.1 mM) had slight stimulatory effects, but in excess (5 mM) caused protein aggregates with decreased activity. The enzyme specificity against different substrates was compared with those reported for constitutive or Pi-repressible alkaline phosphatases produced by N. crassa. The results suggested that the conidial alkaline phosphatase represented a different class among other such enzymes synthesized by this organism.
Collapse
Affiliation(s)
- J C Say
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-USP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pizauro JM, Ciancaglini P, Leone FA. Characterization of the phosphatidylinositol-specific phospholipase C-released form of rat osseous plate alkaline phosphatase and its possible significance on endochondral ossification. Mol Cell Biochem 1995; 152:121-9. [PMID: 8751158 DOI: 10.1007/bf01076074] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alkaline phosphatase activity was released up to 100% from the membrane by incubating the rat osseous plate membrane-bound enzyme with phosphatidylinositol-specific phospholipase C. The molecular weight of the released enzyme was 145,000 on Sephacryl S-300 gel filtration and 66,000 on PAGE-SDS, suggesting a dimeric structure. Solubilization of the membrane-bound enzyme with phospholipase C did not destroy its ability to hydrolyse PNPP, ATP and pyrophosphate. The hydrolysis of ATP and PNPP by phosphatidylinositol-specific phospholipase C-released enzyme exhibited 'Michaelian' kinetics with K0.5 = 70 and 979 microM, respectively. For pyrophosphate, K0.5 was 128 microM and site-site interactions were observed (n = 1.4). Magnesium ions were stimulatory (K0.5 = 1.5 mM) and zinc ions were a powerful noncompetitive inhibitor (Ki = 6.2 microM) of phosphatidylinositol-specific phospholipase C-released enzyme. Phosphatidylinositol-specific phospholipase C-released alkaline phosphatase was relatively stable at 40 degrees C. However, with increasing temperature from 40-60 degrees C, the enzyme was inactivated rapidly following first order kinetics and thermal inactivation constants varied from 5.08 x 10(-4) min-1 to 0.684 min-1. Treatment of phosphatydilinositol-specific phospholipase C-released alkaline phosphatase with Chellex 100 depleted to 5% its original PNPPase activity. Magnesium (K0.5 = 29.5 microM), manganese (K0.5 = 5 microM) and cobalt ions (K0.5 = 10.1 microM) restored the activity of Chelex-treated enzyme, demonstrating its metalloenzyme nature. The stimulation of Chelex-treated enzyme by calcium ions (K0.5 = 653 microM) was less effective (only 26%) and occurred with site-site interactions (n = 0.7). Zinc ions had no stimulatory effects. The possibility that the soluble form of the enzyme, detected during endochondral ossification, would arise by the hydrolysis of the Pl-anchored form of osseous plate alkaline phosphatase is discussed.
Collapse
|
36
|
Alkaline phosphatase from Atlantic cod (Gadus morhua). Kinetic and structural properties which indicate adaptation to low temperatures. Comp Biochem Physiol B Biochem Mol Biol 1995. [DOI: 10.1016/0305-0491(94)00171-p] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Pizauro JM, Ciancaglini P, Leone FA. Allosteric modulation by ATP, calcium and magnesium ions of rat osseous plate alkaline phosphatase. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1202:22-8. [PMID: 8396976 DOI: 10.1016/0167-4838(93)90058-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alkaline phosphatase from rat osseous plate is allosterically modulated by ATP, calcium and magnesium at pH 7.5. At pH 9.4, the hydrolysis of ATP and PNPP follows Michaelis-Menten kinetics with K0.5 values of 154 microM and 42 microM, respectively. However, at pH 7.5 both substrates exhibit more complex saturation curves, while only ATP exhibited site-site interactions. Ca(2+)-ATP and Mg(2+)-ATP were effective substrates for the enzyme, while the specific activity of the enzyme for the hydrolysis of ATP at pH 7.5 was 800-900 U/mg and was independent of the ion species. ATP, but not PNPP, was hydrolyzed slowly in the absence of metal ions with a specific activity of 140 U/mg. These data demonstrate that in vitro and at pH 7.5 rat osseous plate alkaline phosphatase is an active calcium or magnesium-activated ATPase.
Collapse
Affiliation(s)
- J M Pizauro
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, USP, Riberirão Pretro, São Paulo, Brazil
| | | | | |
Collapse
|