1
|
Kell DB. A protet-based model that can account for energy coupling in oxidative and photosynthetic phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149504. [PMID: 39153588 DOI: 10.1016/j.bbabio.2024.149504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Two-stage (e.g. light-dark) phosphorylation experiments showed that there is a stored 'high-energy' intermediate linking electron transport and phosphorylation. Large, artificial electrochemical proton gradients (protonmotive forces or pmfs) can also drive phosphorylation, a fact seen as strongly supportive of the chemiosmotic coupling hypothesis that a pmf is the 'high-energy' intermediate. However, in such experiments there is an experimental threshold (pmf >170 mV, equivalent to ΔpH ∼2.8) below which no phosphorylation is in fact observed, and 220 mV are required to recreate in vivo rates. This leads to the correct question, which is then whether those values of the pmf generated by electron transport are large enough. Even the lower ones as required for any phosphorylation (leave alone those required to explain in vivo rates) are below the threshold [1, 2], whether measured directly with microelectrodes or via the use of membrane-permeant ions and/or acids/bases (which are always transporter substrates [3], so all such measurements are in fact artefactual). The single case that seemed large enough (220 mV) is now admitted to be a diffusion potential artefact [4]. Many other observables (inadequate bulk H+ in 'O2-pulse'-type experiments, alkaliphilic bacteria, dual-inhibitor titrations, uncoupler-binding proteins, etc.) are consistent with the view that values of the pmf, and especially of Δψ, are actually very low. A protet-based charge separation model [2], a protonic version analogous to how energy may be stored in devices called electrets, provides a high-energy intermediate that can explain the entire literature, including the very striking demonstration [5] that close proximity is required between electron transport and ATP synthase complexes for energy coupling between them to allow phosphorylation to occur. A chief purpose of this article is thus to summarise the extensive and self-consistent literature, much of which is of some antiquity and rarely considered by modern researchers, despite its clear message of the inadequacy of chemiosmotic coupling to explain these phenomena.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kgs Lyngby, Denmark; Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
2
|
Theron CW, Salcedo-Sora JE, Grixti JM, Møller-Hansen I, Borodina I, Kell DB. Evidence for the Role of the Mitochondrial ABC Transporter MDL1 in the Uptake of Clozapine and Related Molecules into the Yeast Saccharomyces cerevisiae. Pharmaceuticals (Basel) 2024; 17:938. [PMID: 39065789 PMCID: PMC11279418 DOI: 10.3390/ph17070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Clozapine is an antipsychotic drug whose accumulation in white cells can sometimes prove toxic; understanding the transporters and alleles responsible is thus highly desirable. We used a strategy in which a yeast (Saccharomyces cerevisiae) CRISPR-Cas9 knock-out library was exposed to cytotoxic concentrations of clozapine to determine those transporters whose absence made it more resistant; we also recognised the structural similarity of the fluorescent dye safranin O (also known as safranin T) to clozapine, allowing it to be used as a surrogate marker. Strains lacking the mitochondrial ABC transporter MDL1 (encoded by YLR188W) showed substantial resistance to clozapine. MDL1 overexpression also conferred extra sensitivity to clozapine and admitted a massive increase in the cellular and mitochondrial uptake of safranin O, as determined using flow cytometry and microscopically. Yeast lacking mitochondria showed no such unusual accumulation. Mitochondrial MDL1 is thus the main means of accumulation of clozapine in S. cerevisiae. The closest human homologue of S. cerevisiae MDL1 is ABCB10.
Collapse
Affiliation(s)
- Chrispian W. Theron
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - J. Enrique Salcedo-Sora
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
| | - Justine M. Grixti
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| | - Douglas B. Kell
- GeneMill Biofoundry, Liverpool Shared Research Facilities, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK;
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrated Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Jindal S, Yang L, Day PJ, Kell DB. Involvement of multiple influx and efflux transporters in the accumulation of cationic fluorescent dyes by Escherichia coli. BMC Microbiol 2019; 19:195. [PMID: 31438868 PMCID: PMC6704527 DOI: 10.1186/s12866-019-1561-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background It is widely believed that most xenobiotics cross biomembranes by diffusing through the phospholipid bilayer, and that the use of protein transporters is an occasional adjunct. According to an alternative view, phospholipid bilayer transport is negligible, and several different transporters may be involved in the uptake of an individual molecular type. We recognise here that the availability of gene knockout collections allows one to assess the contributions of all potential transporters, and flow cytometry based on fluorescence provides a convenient high-throughput assay for xenobiotic uptake in individual cells. Results We used high-throughput flow cytometry to assess the ability of individual gene knockout strains of E coli to take up two membrane-permeable, cationic fluorescent dyes, namely the carbocyanine diS-C3(5) and the DNA dye SYBR Green. Individual strains showed a large range of distributions of uptake. The range of modal steady-state uptakes for the carbocyanine between the different strains was 36-fold. Knockouts of the ATP synthase α- and β-subunits greatly inhibited uptake, implying that most uptake was ATP-driven rather than being driven by a membrane potential. Dozens of transporters changed the steady-state uptake of the dye by more than 50% with respect to that of the wild type, in either direction (increased or decreased); knockouts of known influx and efflux transporters behaved as expected, giving credence to the general strategy. Many of the knockouts with the most reduced uptake were transporter genes of unknown function (‘y-genes’). Similarly, several overexpression variants in the ‘ASKA’ collection had the anticipated, opposite effects. Similar results were obtained with SYBR Green (the range being approximately 69-fold). Although it too contains a benzothiazole motif there was negligible correlation between its uptake and that of the carbocyanine when compared across the various strains (although the membrane potential is presumably the same in each case). Conclusions Overall, we conclude that the uptake of these dyes may be catalysed by a great many transporters of putatively broad and presently unknown specificity, and that the very large range between the ‘lowest’ and the ‘highest’ levels of uptake, even in knockouts of just single genes, implies strongly that phospholipid bilayer transport is indeed negligible. This work also casts serious doubt upon the use of such dyes as quantitative stains for representing either bioenergetic parameters or the amount of cellular DNA in unfixed cells (in vivo). By contrast, it opens up their potential use as transporter assay substrates in high-throughput screening. Electronic supplementary material The online version of this article (10.1186/s12866-019-1561-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Srijan Jindal
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Lei Yang
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Philip J Day
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Douglas B Kell
- Department of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK. .,Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs, Lyngby, Denmark. .,Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
5
|
Korotkov S, Konovalova S, Emelyanova L, Brailovskaya I. Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. J Inorg Biochem 2014; 141:1-9. [PMID: 25172992 DOI: 10.1016/j.jinorgbio.2014.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
We showed earlier that diminution of 2,4-dinitrophenol (DNP)-stimulated respiration and increase of both mitochondrial swelling and electrochemical potential (ΔΨmito) dissipation in medium containing TlNO3 and KNO3 were caused by opening of Tl(+)-induced mitochondrial permeability transition pore (MPTP) in the inner membrane of Ca(2+)-loaded rat liver mitochondria. The MPTP opening was studied in the presence of bivalent metal ions (Sr(2+), Ba(2+), Mn(2+), Co(2+) and Ni(2+)), trivalent metal ions (Y(3+) and La(3+)), and ruthenium red. We found that these metal ions (except Ba(2+) and Co(2+)) as well as ruthenium red inhibited to the MPTP opening that manifested in preventing both diminution of the DNP-stimulated respiration and increase of the swelling and of the ΔΨmito dissipation in medium containing TlNO3, KNO3, and Ca(2+). Inhibition of the MPTP opening by Sr(2+) and Mn(2+) is suggested because of their interaction with high affinity Ca(2+) sites, facing the matrix side and participating in the MPTP opening. The inhibitory effects of metal ions (Y(3+), La(3+), and Ni(2+)), and ruthenium red are accordingly discussed in regard to competitive and noncompetitive inhibition of the mitochondrial Ca(2+)-uniporter. High concentrations (50μM) of Y(3+) and La(3+) favored of MPTP opening in the inner membrane of rat liver mitochondria in Ca(2+) free medium containing TlNO3. The latter MPTP opening was markedly eliminated by MPTP inhibitors (cyclosporine A and ADP).
Collapse
Affiliation(s)
- Sergey Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russian Federation.
| | - Svetlana Konovalova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russian Federation
| | - Larisa Emelyanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russian Federation
| | - Irina Brailovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, the Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russian Federation
| |
Collapse
|
6
|
Perevoshchikova I, Zorov D, Antonenko Y. Peak intensity analysis as a method for estimation of fluorescent probe binding to artificial and natural nanoparticles: Tetramethylrhodamine uptake by isolated mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2182-90. [DOI: 10.1016/j.bbamem.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
|
7
|
Korotkov SM, Emel'yanova LV, Yagodina OV. Inorganic phosphate stimulates the toxic effects of Tl+in rat liver mitochondria. J Biochem Mol Toxicol 2008; 22:148-57. [DOI: 10.1002/jbt.20215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Antonenko YN, Pohl P. Coupling of proton source and sink via H+-migration along the membrane surface as revealed by double patch-clamp experiments. FEBS Lett 1998; 429:197-200. [PMID: 9650589 DOI: 10.1016/s0014-5793(98)00590-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long-range proton transfer along the surface of black lipid bilayers was observed between two integral membrane channels (gramicidins), one operating as a proton source, the other as a sink, by patch-clamp technique. In contrast, potassium ions were shown to equilibrate with the aqueous bulk phase before being consumed. Both channels opened and closed simultaneously only if the charge between them was carried by protons. In this case an anomalous high conductance between two patched membrane fragments was measured, each of them containing one single gramicidin channel. The coupled state disappeared when the distance between these two channels was increased above the critical value. The latter was shown to increase with the channel lifetime. Our results support the idea of the 'localized' proton coupling, in which protons that have been pumped across membranes migrate along the membrane surface to reach another membrane protein that utilizes the established pH gradient.
Collapse
Affiliation(s)
- Y N Antonenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| | | |
Collapse
|
9
|
Brustovetsky NN, Egorova MV, Grishina EV, Mayevsky EI. Analysis of the causes of the suppression of oxidative phosphorylation and energy-dependent cationic transport into liver mitochondria of hibernating gophers, Citellus undulatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1992; 103:755-8. [PMID: 1458849 DOI: 10.1016/0305-0491(92)90402-d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The causes of the suppression of oxidative phosphorylation and energy-dependent cationic transport into liver mitochondria of hibernating gophers have been analysed. 2. The decrease of the ATP synthesis rate and suppression of the energy-dependent K(+)- and Ca(2+)-transport into mitochondria during hibernation has been found to be mainly related to a delta psi decrease in mitochondria of hibernating gophers. 3. The increase delta psi upon incubation of the mitochondria of hibernating animals in a hypotonic medium results in an essential acceleration of ATP synthesis and energy-dependent cationic transport.
Collapse
Affiliation(s)
- N N Brustovetsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow Region
| | | | | | | |
Collapse
|
10
|
Kinnally KW, Antonenko YN, Zorov DB. Modulation of inner mitochondrial membrane channel activity. J Bioenerg Biomembr 1992; 24:99-110. [PMID: 1380510 DOI: 10.1007/bf00769536] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three classes of inner mitochondrial membrane (IMM) channel activities have been defined by direct measurement of conductance levels in membranes with patch clamp techniques in 150 mM KCl. The "107 pS activity" is slightly anion selective and voltage dependent (open with matrix positive potentials). "Multiple conductance channel" (MCC) activity includes several levels from about 40 to over 1000 pS and can be activated by voltage or Ca2+. MCC may be responsible for the Ca(2+)-induced permeability transition observed with mitochondrial suspensions. A "low conductance channel" (LCC) is activated by alkaline pH and inhibited by Mg2+. LCC has a unit conductance of about 15 pS and may correspond to the inner membrane anion channel, IMAC, which was proposed from the results obtained from suspension studies. All of the IMM channels defined thus far appear to be highly regulated and have a low open probability under physiological conditions. A summary of what is known about IMM channel regulation and pharmacology is presented and possible physiological roles of these channels are discussed.
Collapse
Affiliation(s)
- K W Kinnally
- Department of Biological Sciences, State University of New York, Albany 12222
| | | | | |
Collapse
|
11
|
Villa RF, Turpeenoja L, Benzi G, Giuffrida Stella AM. Action of L-acetylcarnitine on age-dependent modifications of mitochondrial membrane proteins from rat cerebellum. Neurochem Res 1988; 13:909-16. [PMID: 3216947 DOI: 10.1007/bf00970761] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein patterns of mitochondrial outer membrane, inner membrane, and matrix from non-synaptic (free) mitochondria from rat cerebellum at different ages (4, 8, 12, 16, 20, and 24 months) were analyzed by gel electrophoresis. Acute L-acetylcarnitine treatment was performed by a single i.p. injection (100 mg/kg body weight) of the substance 60 min before the sacrifice of the animals. Different age-dependent changes were obtained for the proteins of the three fractions. The amount of some protein subunits increased and/or decreased after drug treatment. In particular, protein composition of the inner mitochondrial membrane showed significant age-related modifications. This result probably indicates differences in protein synthesis and/or turnover rates in the various mitochondrial compartments during aging. Acute L-acetylcarnitine treatment caused: a high increase in the amount of one inner membrane protein with Mw 16 kDa, at all the ages studied; a decrease in the amount of many other inner membrane proteins; modifications of some matrix proteins. Our results show that in vivo administration of L-acetylcarnitine affects mainly the inner membrane protein composition of cerebellar mitochondria.
Collapse
Affiliation(s)
- R F Villa
- Institute of Pharmacology, Faculty of Science, University of Pavia, Italy
| | | | | | | |
Collapse
|
12
|
The calcium-binding ATPase inhibitor protein from bovine heart mitochondria. Purification and properties. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37985-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Edmunds LN, Laval-Martin DL, Goto K. Cell division cycles and circadian clocks. Modeling a metabolic oscillator in the algal flagellate Euglena. Ann N Y Acad Sci 1987; 503:459-75. [PMID: 3304082 DOI: 10.1111/j.1749-6632.1987.tb40630.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Abstract
The effect of potassium ions on succinic dehydrogenase activity of mitochondria was studied. The results showed that in these organelles K+ induces inhibition of the respiratory control; moreover, in submitochondrial particles potassium inhibits the rate of oxidation of succinate. The results showed also that K+ does not changes the Km for succinate but diminishes the Vmax. In addition, the data provide evidence that mitochondria oxidizing glutamate-malate in a sucrose medium show a higher activity of succinate dehydrogenase than mitochondria incubated in KCl.
Collapse
|
15
|
|
16
|
Wheatley DN, Inglis MS, Malone PC. The concept of the intracellular amino acid pool and its relevance in the regulation of protein metabolism, with particular reference to mammalian cells. CURRENT TOPICS IN CELLULAR REGULATION 1986; 28:107-82. [PMID: 3539533 DOI: 10.1016/b978-0-12-152828-7.50005-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Yamada EW, Huzel NJ. Ca2+-binding properties of a unique ATPase inhibitor protein isolated from mitochondria of bovine heart and rat skeletal muscle. Cell Calcium 1985; 6:469-79. [PMID: 2936456 DOI: 10.1016/0143-4160(85)90022-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous studies showed that Ca2+ induced monomer to active dimer interconversion of a mitochondrial ATPase inhibitor protein from bovine heart or rat skeletal muscle (Yamada, E.W., Huzel, N.J. and Dickison, J.C. (1981) J. Biol. Chem. 256, 10203-10207). Initial equilibrium dialysis measurements of Ca2+ binding showed that this unique protein possesses three binding sites of high affinity with a maximum of one mol of Ca2+ bound/mol of protein monomer. Magnesium (1 mM) did not affect the first association constant but increased the second and third by about 1.2 and 1.5 fold, respectively. That the apparent association constants varied with concentration of protein monomer was in agreement with the self-associating nature of the protein. Scatchard plots at three concentrations of protein intersected at a molar ratio of about 0.5 (Ca2+/monomer). Ka1 and Ka2 values of 4.2 microM and 12.1 microM, respectively, were estimated by extra-polation of apparent constants to infinite dilution of protein. Ka3 (51.3 microM) was estimated by extrapolation of double reciprocal plots of apparent constants versus protein concentration to infinite levels of protein. A model for Ca2+ binding by this self-associating protein is described. Trifluoperazine had no effect on the activity of the inhibitor protein from either tissue.
Collapse
|
18
|
Konji V, Montag A, Sandri G, Nordenbrand K, Ernster L. Transport of Ca2+ and Mn2+ by mitochondria from rat liver, heart and brain. Biochimie 1985; 67:1241-50. [PMID: 4096906 DOI: 10.1016/s0300-9084(85)80133-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The energy-dependent, respiration-supported uptake and the uncoupler- or Na+-induced release of Ca2+ and Mn2+ by mitochondria from rat liver, heart and brain were investigated, using as indicators radioisotopes (45Ca and 54Mn), proton ejection, oxygen consumption, nicotinamide nucleotide oxidation-reduction and, in the case of Ca2+, the metallochromic dye Arsenazo III. Ca2+ uptake in the presence of Pi was rapid in mitochondria from liver and brain, and less rapid in those from heart. Mn2+ uptake was much slower than that of Ca2+ in liver and heart, but only slightly slower in brain. When added together, Ca2+ accelerated the uptake of Mn2+, and Mn2+ retarded the uptake of Ca2+, by mitochondria from all three tissues. When Mn2+ was present during Ca2+ uptake, its own uptake remained accelerated even after Ca2+ uptake was terminated. Mg2+, which was not taken up, inhibited Ca2+ uptake by mitochondria from all three tissues, and, when present during Ca2+ uptake, accelerated the subsequent uptake of Mn2+. The uncoupler CCCP induced a release of both Ca2+ and Mn2+ from all three sources of mitochondria; yet, release of Mn2+ took place only in the absence of Pi. The release followed the same pattern as the uptake, i.e., Ca2+ accelerated the release of Mn2+ and Mn2+ retarded the release of Ca2+. Na+ induced a release of both Ca2+ and Mn2+ from heart and brain but not from liver mitochondria; again, Mn2+ release occurred only in the absence of Pi. The Na+-induced release of Ca2+ was inhibited by Mn2+, but the Na+-induced release of Mn2+ was not accelerated by Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
19
|
Chávez E, Briones R, Michel B, Bravo C, Jay D. Evidence for the involvement of dithiol groups in mitochondrial calcium transport: studies with cadmium. Arch Biochem Biophys 1985; 242:493-7. [PMID: 2932999 DOI: 10.1016/0003-9861(85)90235-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of cadmium on some functions of mitochondria isolated from kidneys of rat was studied. Addition of cadmium chloride to mitochondria induced stimulation of both State 4 respiratory rate and ATPase activity, which are prevented by the addition of ruthenium red. We also show that cadmium inhibits competitively calcium translocation; this inhibitory effect of cadmium is reverted by the addition of dithiothreitol. From these results, it is proposed that, similarly to Ca2+, cadmium penetrates mitochondria and binds to a membrane dithiol group, which is essential for the translocation of the cation.
Collapse
|
20
|
Lipophilic probes rule out a significant membrane potential in mitochondria. Trends Biochem Sci 1985. [DOI: 10.1016/0968-0004(85)90233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Rasheed BK, Diwan JJ, Sanadi DR. Activation of potassium ion transport in mitochondria by cadmium ion. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 144:643-7. [PMID: 6489346 DOI: 10.1111/j.1432-1033.1984.tb08513.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Low levels of Cd2+ (1-5 microM) produce rapid swelling of mitochondria, which is respiration-dependent and uncoupler-sensitive. No cation requirement is apparent, since the swelling occurs in a medium containing only sucrose and the respiratory substrate. The swelling is inhibited by ruthenium red, suggesting that this effect of Cd2+ requires its entry into mitochondria. In medium containing 9 mM K+, addition of Cd2+ along with ruthenium red increases the rate of K+ influx threefold. In the presence of K+, Rb+ or Li+, but not of Na+, addition of Cd2+ produces first efflux of H+ into the medium followed by discharge of the pH gradient or uncoupling. Only the latter effect is inhibited by ruthenium red, showing that the efflux and influx of H+ are independent reactions. The H+ efflux appears to be an antiport response to the induced K+ entry. Its activation by Cd2+ is similar to the known effect of p-chloromercuriphenyl sulfonate. The H+ influx or uncoupling appears to result from binding of Cd2+ to some matrix-facing membrane site, perhaps the dithiol group on coupling factor B, and may relate to apparent permeability changes associated Cd2+-induced swelling.
Collapse
|
22
|
Abstract
Two hypotheses are compared each interpreting mitochondrial energy transduction in terms of a localized form of proton activity. Their differences are seen to be profound and far-reaching. It is concluded that the "chemiosmotic/local energized proton dialogue" as conducted hitherto has offered a very incomplete and restricted analysis of the problems of mitochondrial oxidative phosphorylation.
Collapse
|
23
|
Abstract
A coulombic hypothesis of mitochondrial oxidative phosphorylation is presented, founded upon the evidence for negative fixed charge formation during electron transport chain activity. The intermediary force is electrostatic (psi H) and not electrochemical (delta mu H). The electrochemical potential of the chemiosmotic hypothesis is identified as a "phantom" parameter which owes its delusive existence to the procedures by which it is measured. The connection between psi H and the conditional delta mu H values is examined; it entails the use of a variable conversion factor, f, where delta mu H (mV) = f psi H, and the concept of the "protonic status" of the diffuse double layer. A number of problems which beset the chemiosmotic view are reappraised in the light of the new interpretation, and find authentic solutions.
Collapse
|
24
|
Hitchens GD, Kell DB. On the effects of thiocyanate and venturicidin on respiration-driven proton translocation in Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 766:222-32. [PMID: 6743650 DOI: 10.1016/0005-2728(84)90235-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A fast-responding O2 electrode has been used to confirm and extend observations of a significant kinetic discrepancy between O2 reduction and consequent proton translocation in 'O2-pulse' experiments in intact cells of P. denitrificans. The permeant, chaotropic SCN- ion abolishes this discrepancy, and greatly increases the observable----H+/O ratio, to a value approaching its accepted, true, limiting stoichiometry. The observable H+ decay rates are very slow, particularly in the absence of SCN-. The submaximal----H+/O ratios observed in the absence of SCN- are essentially independent of the size of the O2 pulse, in a manner not easily explained by a delocalised chemiosmotic energy-coupling scheme. Osmotically active protoplasts of P. denitrificans do not show a significant kinetic discrepancy between O2 reduction and H+ translocation, even in the the absence of SCN-. However, the submaximal----H+/O ratios observed in the absence of SCN- are again essentially independent of the size of the O2 pulse. As in intact cells, the observable H+ decay rates are very slow. The energy-transfer inhibitor venturicidin causes a significant increase in the----H+/O ratio observed in protoplasts of P. denitrificans in the absence of SCN-; the decay kinetics of the H+ translocation process are also somewhat modified. Nevertheless, the----H+/O ratio observed in the presence of venturicidin is also independent of the size of the O2 pulse. This observation militates further against arguments in which (a) a non-ohmic leak of protons from the bulk aqueous phase might alone be the cause of the low----H+/O ratios observed in the absence of SCN-, and (b) in which there might be a delta p-dependent change ('redox slip') in the actual----H+/O ratio. It is concluded that the observable protonmotive activity of the respiratory chain of P. denitrificans in the absence of SCN- is directly influenced by the state of the H+-ATP synthetase in the cytoplasmic membrane of this organism. We are unable to explain the data in terms of a model in which the putative protonmotive force may be acting to affect the----H+/O ratio. The possibility is considered that the delocalised bulk-to-bulk phase membrane potential set up in response to protonmotive activity is energetically insignificant.
Collapse
|
25
|
Skulskii IA, Saris NE, Glasunov VV. The effect of the energy state of mitochondria on the kinetics of unidirectional cation fluxes. Arch Biochem Biophys 1983; 226:337-46. [PMID: 6639057 DOI: 10.1016/0003-9861(83)90300-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Unidirectional fluxes of triphenylmethylphosphonium and of Cs+ as its valinomycin complex were studied using trace concentrations of the cations. The rate constants of influx and efflux were estimated mainly at 0 degrees C from the uptake kinetics in respiring mitochondria and the in/out ratios in the steady state. The efflux rate constants in the energized state were also measured after dilution of the mitochondrial suspension in the steady state, and in deenergized mitochondria from the efflux rates of cations after inhibition of respiration. It was found that the energy state of mitochondria had little effect on the rate constants of efflux, while the rate of influx was strongly stimulated by respiration. The former finding is not readily explained by the classical chemiosmotic theory, since a transmembrane potential, negative on the inside, formed on energization would be expected to strongly inhibit the efflux of cations. The data may be explained by a pump-and-leak model in which localized electrical fields in hydrophobic domains of the membrane are coupled to the pumping of hydrophobic cations against an electrochemical gradient, while leaks would effect efflux.
Collapse
|
26
|
Forman NG, Wilson DF. Energetics and stoichiometry of oxidative phosphorylation from NADH to cytochrome c in isolated rat liver mitochondria. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33601-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|