1
|
Functional Mining of the Crotalus Spp. Venom Protease Repertoire Reveals Potential for Chronic Wound Therapeutics. Molecules 2020; 25:molecules25153401. [PMID: 32731325 PMCID: PMC7435869 DOI: 10.3390/molecules25153401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic wounds are a major health problem that cause millions of dollars in expenses every year. Among all the treatments used, active wound treatments such as enzymatic treatments represent a cheaper and specific option with a fast growth category in the market. In particular, bacterial and plant proteases have been employed due to their homology to human proteases, which drive the normal wound healing process. However, the use of these proteases has demonstrated results with low reproducibility. Therefore, alternative sources of proteases such as snake venom have been proposed. Here, we performed a functional mining of proteases from rattlesnakes (Crotalus ornatus, C. molossus nigrescens, C. scutulatus, and C. atrox) due to their high protease predominance and similarity to native proteases. To characterize Crotalus spp. Proteases, we performed different protease assays to measure and confirm the presence of metalloproteases and serine proteases, such as the universal protease assay and zymography, using several substrates such as gelatin, casein, hemoglobin, L-TAME, fibrinogen, and fibrin. We found that all our venom extracts degraded casein, gelatin, L-TAME, fibrinogen, and fibrin, but not hemoglobin. Crotalus ornatus and C. m. nigrescens extracts were the most proteolytic venoms among the samples. Particularly, C. ornatus predominantly possessed low molecular weight proteases (P-I metalloproteases). Our results demonstrated the presence of metalloproteases capable of degrading gelatin (a collagen derivative) and fibrin clots, whereas serine proteases were capable of degrading fibrinogen-generating fibrin clots, mimicking thrombin activity. Moreover, we demonstrated that Crotalus spp. are a valuable source of proteases that can aid chronic wound-healing treatments.
Collapse
|
2
|
Dobson J, Yang DC, Op den Brouw B, Cochran C, Huynh T, Kurrupu S, Sánchez EE, Massey DJ, Baumann K, Jackson TNW, Nouwens A, Josh P, Neri-Castro E, Alagón A, Hodgson WC, Fry BG. Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus. Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:62-69. [PMID: 29074260 PMCID: PMC5825281 DOI: 10.1016/j.cbpc.2017.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
While some US populations of the Mohave rattlesnake (Crotalus scutulatus scutulatus) are infamous for being potently neurotoxic, the Mexican subspecies C. s. salvini (Huamantlan rattlesnake) has been largely unstudied beyond crude lethality testing upon mice. In this study we show that at least some populations of this snake are as potently neurotoxic as its northern cousin. Testing of the Mexican antivenom Antivipmyn showed a complete lack of neutralisation for the neurotoxic effects of C. s. salvini venom, while the neurotoxic effects of the US subspecies C. s. scutulatus were time-delayed but ultimately not eliminated. These results document unrecognised potent neurological effects of a Mexican snake and highlight the medical importance of this subspecies, a finding augmented by the ineffectiveness of the Antivipmyn antivenom. These results also influence our understanding of the venom evolution of Crotalus scutulatus, suggesting that neurotoxicity is the ancestral feature of this species, with the US populations which lack neurotoxicity being derived states.
Collapse
Affiliation(s)
- James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Daryl C Yang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Tam Huynh
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sanjaya Kurrupu
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Department of Chemistry, Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Daniel J Massey
- Arizona Poison and Drug Information Center, 1295 N Martin Room B308, Tucson, AZ 85721, USA; Banner University Medical Center, 1501 N. Campbell Ave, Tucson, AZ 85745, USA
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Peter Josh
- School of Chemistry and Molecular Biology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Edgar Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Wayne C Hodgson
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
3
|
Kumar JR, Basavarajappa BS, Arancio O, Aranha I, Gangadhara NS, Yajurvedi HN, Gowda TV. Isolation and characterization of "Reprotoxin", a novel protein complex from Daboia russelii snake venom. Biochimie 2008; 90:1545-59. [PMID: 18573307 DOI: 10.1016/j.biochi.2008.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/01/2008] [Indexed: 11/17/2022]
Abstract
In snake venoms, non-covalent protein-protein interaction leads to protein complexes with synergistic and, at times, distinct pharmacological activities. Here we describe a new protein complex containing phospholipaseA(2) (PLA(2)), protease, and a trypsin inhibitor. It is isolated from the venom of Daboia russelii by gel permeation chromatography, on a Sephadex G-75 column. This 44.6 kDa complex exhibits only phospholipase A(2) activity. In the presence of 8M urea it is well resolved into protease (29.1 kDa), PLA(2) (13 kDa), and trypsin inhibitor (6.5 kDa) peaks. The complex showed an LD(50) of 5.06 mg/kg body weight in mice. It inhibited the frequency of spontaneous release of neurotransmitter in hippocampal neurons. It also caused peritoneal bleeding, and edema in the mouse foot pads. Interestingly, the complex caused degeneration of both the germ cells and the mouse Leydig cells of mouse testis. A significant reduction in both the diameter of the seminiferous tubules and height of the seminiferous epithelia were observed following intraperitoneal injection of the sub-lethal dose (3 mg/kg body weight). This effect of the toxin is supported by the increase in the activities of acid and alkaline phosphatases and the nitric oxide content in the testes, and a decrease in the ATPase activity. Because of its potent organ atrophic effects on the reproductive organs, the toxin is named "Reprotoxin". This is the first report demonstrating toxicity to the reproductive system by a toxin isolated from snake venom.
Collapse
Affiliation(s)
- J R Kumar
- Department of Biochemistry, University of Mysore, Manasagangothri, Mysore, India
| | | | | | | | | | | | | |
Collapse
|
4
|
Sánchez EE, Galán JA, Powell RL, Reyes SR, Soto JG, Russell WK, Russell DH, Pérez JC. Disintegrin, hemorrhagic, and proteolytic activities of Mohave rattlesnake, Crotalus scutulatus scutulatus venoms lacking Mojave toxin. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:124-32. [PMID: 16005687 DOI: 10.1016/j.cca.2005.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/01/2005] [Accepted: 04/03/2005] [Indexed: 12/01/2022]
Abstract
Venom from the Mohave rattlesnake, Crotalus scutulatus scutulatus, has been reported to be either: (1) neurotoxic; (2) hemorrhagic, or both (3) neurotoxic and hemorrhagic. In this study, 14 Mohave rattlesnakes from Arizona and Texas (USA) were analyzed for the presence of disintegrins and Mojave toxin. All venom samples were analyzed for the presence of hemorrhagic, proteolytic and disintegrin activities. The venoms were each chromatographed by reverse phase and their fractions tested for disintegrin activity. All specimens containing Mojave toxin were the most toxic and lacked proteolytic, hemorrhagic and disintegrin activities. In contrast, the venoms containing these activities lacked Mojave toxin. Two disintegrin genes, scutustatin and mojavestatin, were identified by PCR of genomic sequences. Scutustatin is a highly conserved disintegrin, while mojavestatin shows low conservation to other known disintegrins. Venoms with the highest LD50 measurements lacked both disintegrin genes, while the specimens with intermediate and low LD50 contained both genes. The intermediate LD50 group contained Mojave toxin and both disintegrin genes, but lacked hemorrhagic and disintegrin activity. Our results raise the possibility that scutustatin and mojavestatin are not expressed in the intermediate LD50 group, or that they may not be the same disintegrins responsible for the disintegrin activity found in the venom. Therefore, it is possible that Mohave rattlesnakes may produce more than two disintegrins.
Collapse
Affiliation(s)
- Elda E Sánchez
- Natural Toxins Research Center, College of Arts and Science, Texas A&M University-Kingsville, 700 University Blvd., MSC 158, Kingsville, TX 78363, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Alexander G, Grothusen J, Zepeda H, Schwartzman RJ. Gyroxin, a toxin from the venom of Crotalus durissus terrificus, is a thrombin-like enzyme. Toxicon 1988; 26:953-60. [PMID: 3059581 DOI: 10.1016/0041-0101(88)90260-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report a simple method for the isolation of gyroxin, a protein from the venom of the South American rattlesnake Crotalus durissus terrificus. The intravenous injection of gyroxin into mice produces temporary episodes characterized by opisthotonos and rotations around the long axis of the animal. We found gyroxin to be a glycoprotein with thrombin-like and esterase activities. Gyroxin loses its ability to produce the gyroxin syndrome, its thrombin-like activity and its esterase activity with heat, dithiothreitol, phenylmethylsulfonyl fluoride or diisopropylfluorophosphate. We also report that three other thrombin-like enzymes, crotalase from the eastern diamondback rattlesnake (Crotalus adamanteus), ancrod from the Malayan pit viper (Agkistrodon rhodostoma) and a thrombin-like enzyme from the Central American rattlesnake (Crotalus durissus durissus), produce the gyroxin syndrome in mice. These enzymes may work by releasing neuroactive peptides from endogenous precursors.
Collapse
Affiliation(s)
- G Alexander
- Department of Neurology, Jefferson Medical College, Philadelphia, PA 19107
| | | | | | | |
Collapse
|