1
|
Hewlett SE, Delahunt Smoleniec JD, Wareham DM, Pyne TM, Barron AB. Biogenic amine modulation of honey bee sociability and nestmate affiliation. PLoS One 2018; 13:e0205686. [PMID: 30359390 PMCID: PMC6201892 DOI: 10.1371/journal.pone.0205686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
Biogenic amines modulate a range of social behaviours, including sociability and mechanisms of group cohesion, in both vertebrates and invertebrates. Here, we tested if the biogenic amines modulate honey bee (Apis mellifera) sociability and nestmate affiliation. We examined the consequences of treatments with biogenic amines, agonists and antagonists on a bee’s approach to, and subsequent social interactions with, conspecifics in both naturally hive-reared bees and isolated bees. We used two different treatment methods. Bees were first treated topically with compounds dissolved in the solvent dimethylformamide (dMF) applied to the dorsal thorax, but dMF had a significant effect on the locomotion and behaviour of the bees during the behavioural test that interfered with their social responses. Our second method used microinjection to deliver biogenic amines to the head capsule via the ocellar tract. Microinjection of dopamine and a dopamine antagonist had strong effects on bee sociability, likelihood of interaction with bees, and nestmate affiliation. Octopamine treatment reduced social interaction with other bees, and serotonin increased the likelihood of social interactions. HPLC measurements showed that isolation reduced brain levels of biogenic amines compared to hive-reared bees. Our findings suggest that dopamine is an important neurochemical component of social motivation in bees. This finding advances a comparative understanding of the processes of social evolution.
Collapse
Affiliation(s)
- Susie E. Hewlett
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail: (SH); (AB)
| | | | - Deborah M. Wareham
- Department of Health Professions, Macquarie University, Sydney, New South Wales, Australia
| | - Thomas M. Pyne
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail: (SH); (AB)
| |
Collapse
|
2
|
PeaTAR1B: Characterization of a Second Type 1 Tyramine Receptor of the American Cockroach, Periplaneta americana. Int J Mol Sci 2017; 18:ijms18112279. [PMID: 29084141 PMCID: PMC5713249 DOI: 10.3390/ijms18112279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
The catecholamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. In insects; these neuroactive substances are functionally replaced by the phenolamines octopamine and tyramine. Phenolamines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Type 1 tyramine receptors are better activated by tyramine than by octopamine. In contrast; type 2 tyramine receptors are almost exclusively activated by tyramine. Functionally; activation of type 1 tyramine receptors leads to a decrease in the intracellular concentration of cAMP ([cAMP]i) whereas type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. Here; we report that the American cockroach (Periplaneta americana) expresses a second type 1 tyramine receptor (PeaTAR1B) in addition to PeaTAR1A (previously called PeaTYR1). When heterologously expressed in flpTM cells; activation of PeaTAR1B by tyramine leads to a concentration-dependent decrease in [cAMP]i. Its activity can be blocked by a series of established antagonists. The functional characterization of two type 1 tyramine receptors from P. americana; PeaTAR1A and PeaTAR1B; which respond to tyramine by changing cAMP levels; is a major step towards understanding the actions of tyramine in cockroach physiology and behavior; particularly in comparison to the effects of octopamine.
Collapse
|
3
|
French AS, Simcock KL, Rolke D, Gartside SE, Blenau W, Wright GA. The role of serotonin in feeding and gut contractions in the honeybee. JOURNAL OF INSECT PHYSIOLOGY 2014; 61:8-15. [PMID: 24374107 PMCID: PMC3969292 DOI: 10.1016/j.jinsphys.2013.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/20/2013] [Accepted: 12/17/2013] [Indexed: 05/19/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is involved in the regulation of feeding and digestion in many animals from worms to mammals. In insects, 5-HT functions both as a neurotransmitter and as a systemic hormone. Here we tested its role as a neurotransmitter in feeding and crop contractions and its role as a systemic hormone that affected feeding in adult foraging honeybees. We found 5-HT immunoreactive processes throughout the gut, including on the surface of the oesophagus, crop, proventriculus, and the midgut, as well as in the ventral nerve cord. mRNA transcripts for all four of the known bee 5-HT receptors (Am5-ht1A,2α,2β,7) were expressed in the crop and the midgut suggesting a functional role for 5-HT in these locations. Application of a cocktail of antagonists with activity against these known receptors to the entire gut in vivo reduced the rate of spontaneous contraction in the crop and proventriculus. Although feeding with sucrose caused a small elevation of endogenous 5-HT levels in the haemolymph, injection of exogenous 5-HT directly into the abdomen of the bee to elevate 5-HT in the haemolymph did not alter food intake. However, when 5-HT was injected into directly into the brain there was a reduction in intake of carbohydrate, amino acid, or toxin-laced food solutions. Our data demonstrate that 5-HT inhibits feeding in the brain and excites muscle contractions in the gut, but general elevation of 5-HT in the bee's haemolymph does not affect food intake.
Collapse
Affiliation(s)
- Alice S French
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kerry L Simcock
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daniel Rolke
- Department of Biochemistry and Biology, University of Potsdam, Potsdam D-14476, Germany
| | - Sarah E Gartside
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Wolfgang Blenau
- Department of Cell Biology and Neuroscience, Goethe University Frankfurt, Oberursel D-61440, Germany
| | - Geraldine A Wright
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
4
|
Characterization of an invertebrate-type dopamine receptor of the American cockroach, Periplaneta americana. Int J Mol Sci 2014; 15:629-53. [PMID: 24398985 PMCID: PMC3907829 DOI: 10.3390/ijms15010629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022] Open
Abstract
We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2) from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology.
Collapse
|
5
|
Blenau W, Thamm M. Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: lessons from Drosophila melanogaster and Apis mellifera. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:381-394. [PMID: 21272662 DOI: 10.1016/j.asd.2011.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) plays a key role in regulating and modulating various physiological and behavioral processes in both protostomes and deuterostomes. The specific functions of serotonin are mediated by its binding to and subsequent activation of membrane receptors. The vast majority of these receptors belong to the superfamily of G-protein-coupled receptors. We report here the in vivo expression pattern of a recently characterized 5-HT(1) receptor of the honeybee Apis mellifera (Am5-HT(1A)) in the mushroom bodies. In addition, we summarize current knowledge on the distribution of serotonin and serotonin receptor subtypes in the brain and specifically in the mushroom bodies of the fruit fly Drosophila melanogaster and the honeybee. Functional studies in these two species have shown that serotonergic signaling participates in various behaviors including aggression, sleep, circadian rhythms, responses to visual stimuli, and associative learning. The molecular, pharmacological, and functional properties of identified 5-HT receptor subtypes from A. mellifera and D. melanogaster will also be summarized in this review.
Collapse
Affiliation(s)
- Wolfgang Blenau
- Institute of Biochemistry and Biology, University of Potsdam, Germany.
| | | |
Collapse
|
6
|
Mustard JA, Pham PM, Smith BH. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:422-30. [PMID: 19945462 PMCID: PMC2834802 DOI: 10.1016/j.jinsphys.2009.11.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/21/2009] [Accepted: 11/23/2009] [Indexed: 05/25/2023]
Abstract
Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States.
| | | | | |
Collapse
|
7
|
Troppmann B, Walz B, Blenau W. Pharmacology of serotonin-induced salivary secretion in Periplaneta americana. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:774-81. [PMID: 17475273 DOI: 10.1016/j.jinsphys.2007.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/01/2007] [Accepted: 02/02/2007] [Indexed: 05/15/2023]
Abstract
The acinar salivary gland of the cockroach, Periplaneta americana, is innervated by dopaminergic and serotonergic nerve fibers. Stimulation of the glands by serotonin (5-hydroxytryptamine, 5-HT) results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, dopamine acts selectively on ion-transporting peripheral cells within the acini, and 5-HT acts on protein-producing central cells. We have investigated the pharmacology of the 5-HT-induced secretory activity of isolated salivary glands of P. americana by testing several 5-HT receptor agonists and antagonists. The effects of 5-HT can be mimicked by the non-selective 5-HT receptor agonist 5-methoxytryptamine. All tested agonists that display at least some receptor subtype specificity in mammals, i.e., 5-carboxamidotryptamine, (+/-)-8-OH-DPAT, (+/-)-DOI, and AS 19, were ineffective in stimulating salivary secretion. 5-HT-induced secretion can be blocked by the vertebrate 5-HT receptor antagonists methiothepin, cyproheptadine, and mianserin. Our pharmacological data indicate that the pharmacology of arthropod 5-HT receptors is remarkably different from that of their vertebrate counterparts.
Collapse
Affiliation(s)
- Britta Troppmann
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
8
|
Schlenstedt J, Balfanz S, Baumann A, Blenau W. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera). J Neurochem 2006; 98:1985-98. [PMID: 16945110 DOI: 10.1111/j.1471-4159.2006.04012.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.
Collapse
Affiliation(s)
- Jana Schlenstedt
- Institute of Biochemistry and Biology, University of Potsdam, Golm, Germany
| | | | | | | |
Collapse
|
9
|
Fussnecker BL, Smith BH, Mustard JA. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2006; 52:1083-92. [PMID: 17028016 PMCID: PMC1712669 DOI: 10.1016/j.jinsphys.2006.07.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/21/2006] [Accepted: 07/24/2006] [Indexed: 05/12/2023]
Abstract
The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially affected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception.
Collapse
Affiliation(s)
| | | | - Julie A. Mustard
- * Corresponding Author: ; 480 965 1070 (phone); 480 965 6899 (FAX)
| |
Collapse
|
10
|
Marg S, Walz B, Blenau W. The effects of dopamine receptor agonists and antagonists on the secretory rate of cockroach (Periplaneta americana) salivary glands. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:821-830. [PMID: 15350502 DOI: 10.1016/j.jinsphys.2004.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 05/24/2023]
Abstract
The acinar salivary glands of the cockroach, Periplaneta americana, are innervated by dopaminergic and serotonergic nerve fibers. Serotonin stimulates the secretion of protein-rich saliva, whereas dopamine causes the production of protein-free saliva. This suggests that dopamine acts selectively on ion-transporting peripheral cells within the acini and the duct cells, and that serotonin acts on the protein-producing central cells of the acini. We have investigated the pharmacology of the dopamine-induced secretory activity of the salivary gland of Periplaneta americana by testing several dopamine receptor agonists and antagonists. The effects of dopamine can be mimicked by the non-selective dopamine receptor agonist 6,7-ADTN and, less effectively, by the vertebrate D1 receptor-selective agonist chloro-APB. The vertebrate D1 receptor-selective agonist SKF 38393 and vertebrate D2 receptor-selective agonist R(-)-TNPA were ineffective. R(+)-Lisuride induces a secretory response with a slower onset and a lower maximal response compared with dopamine-induced secretion. However, lisuride-stimulated glands continue secreting saliva, even after lisuride-washout. Dopamine-induced secretions can be blocked by the vertebrate dopamine receptor antagonists cis(Z)-flupenthixol, chlorpromazine, and S(+)-butaclamol. Our pharmacological data do not unequivocally indicate whether the dopamine receptors on the Periplaneta salivary glands belong to the D1 or D2 subfamily of dopamine receptors, but we can confirm that the pharmacology of invertebrate dopamine receptors is remarkably different from that of their vertebrate counterparts.
Collapse
Affiliation(s)
- Susanna Marg
- Department of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Haus 26, 14476 Golm, Germany
| | | | | |
Collapse
|
11
|
|
12
|
Blenau W, Baumann A. Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2001; 48:13-38. [PMID: 11519073 DOI: 10.1002/arch.1055] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the central nervous system (CNS) of both vertebrates and invertebrates, biogenic amines are important neuroactive molecules. Physiologically, they can act as neurotransmitters, neuromodulators, or neurohormones. Biogenic amines control and regulate various vital functions including circadian rhythms, endocrine secretion, cardiovascular control, emotions, as well as learning and memory. In insects, amines like dopamine, tyramine, octopamine, serotonin, and histamine exert their effects by binding to specific membrane proteins that primarily belong to the superfamily of G protein-coupled receptors. Especially in Drosophila melanogaster and Apis mellifera considerable progress has been achieved during the last few years towards the understanding of the functional role of these receptors and their intracellular signaling systems. In this review, the present knowledge on the biochemical, molecular, and pharmacological properties of biogenic amine receptors from Drosophila and Apis will be summarized. Arch.
Collapse
Affiliation(s)
- W Blenau
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
13
|
McPartland J, Di Marzo V, De Petrocellis L, Mercer A, Glass M. Cannabinoid receptors are absent in insects. J Comp Neurol 2001; 436:423-9. [PMID: 11447587 DOI: 10.1002/cne.1078] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The endocannabinoid system exerts an important neuromodulatory role in mammals. Knockout mice lacking cannabinoid (CB) receptors exhibit significant morbidity. The endocannabinoid system also appears to be phylogenetically ancient--it occurs in mammals, birds, amphibians, fish, sea urchins, leeches, mussels, and even the most primitive animal with a nerve network, the Hydra. The presence of CB receptors, however, has not been examined in terrestrial invertebrates (or any member of the Ecdysozoa). Surprisingly, we found no specific binding of the synthetic CB ligands [(3)H]CP55,940 and [(3)H]SR141716A in a panel of insects: Apis mellifera, Drosophila melanogaster, Gerris marginatus, Spodoptera frugiperda, and Zophobas atratus. A lack of functional CB receptors was confirmed by the inability of tetrahydrocannabinol (THC) and HU210 to activate G-proteins in insect tissues, utilizing a guanosine-5'-O-(3-[(35)]thio)-triphosphate (GTP gamma S) assay. No orthologs of human CB receptors were located in the Drosophila genome, nor did we find orthologs of fatty acid amide hydrolase. This loss of CB receptors appears to be unique in the field of comparative neurobiology. No other known mammalian neuroreceptor is understood to be missing in insects. We hypothesized that CB receptors were lost in insects because of a dearth of ligands; endogenous CB ligands are metabolites of arachidonic acid, and insects produce little or no arachidonic acid or endocannabinoid ligands, such as anandamide.
Collapse
Affiliation(s)
- J McPartland
- GW Pharmaceuticals, Ltd., Porton Down Science Park, Salisbury, Wiltshire SP4 0JQ, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Blenau W, Erber J. Behavioural pharmacology of dopamine, serotonin and putative aminergic ligands in the mushroom bodies of the honeybee (Apis mellifera). Behav Brain Res 1998; 96:115-24. [PMID: 9821548 DOI: 10.1016/s0166-4328(97)00201-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The proboscis extension response (PER) which can be elicited in bees by stimulating one antenna with water vapour, was used to quantify the effects of dopamine, serotonin (5-HT) and putative receptor ligands in the mushroom body of the bee. The drugs were microinjected into the alpha-lobe of the mushroom body in one brain hemisphere. Injection of dopamine reduces the water vapour-elicited PER significantly. The effects of dopamine are limited to the treated side. Injection of 5-HT has similar effects to dopamine. The effects of 5-HT are apparent on the treated and partly also on the contralateral side. Significant effects for dopamine on the treated side were found when the concentration in the injected drop was 10(-7) M. For 5-HT significant effects on the treated side were apparent for concentrations of 10(-8) M. Putative dopamine and 5-HT receptor ligands were injected alone and coinjected with the amines. Two ligands with dopamine-antagonistic effects were found: buspirone > spiperone, while lisuride, sulpiride, chlorpromazine, SCH 23390, butaclamol and haloperidol had no dopamine-antagonistic effects. All tested putative 5-HT receptor ligands had significant 5-HT-antagonistic effects: butaclamol > methysergide > lisuride > cyproheptadine > SCH 23390. Good correlations between the behavioural data and in vitro radioligand binding studies were found for 5-HT receptor ligands, while there exist only partial correlations for dopamine receptor ligands.
Collapse
Affiliation(s)
- W Blenau
- Institut für Okologie und Biologie, Technische Universität Berlin, Germany.
| | | |
Collapse
|
15
|
Hammer M, Menzel R. Multiple Sites of Associative Odor Learning as Revealed by Local Brain Microinjections of Octopamine in Honeybees. Learn Mem 1998. [DOI: 10.1101/lm.5.1.146] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In a classical conditioning procedure, honeybees associate an odor with sucrose resulting in the capacity of the odor to evoke an appetitive response, the extension of the proboscis (PER). Here, we study the effects of pairing an odor with injections of octopamine (OA) as a substitute for sucrose into three putative brain sites of odor/sucrose convergence. OA injected into the mushroom body (MB) calyces or the antennal lobe but not the lateral protocerebral lobe produces a lasting, pairing-specific enhancement of PER. During pairings, OA injected into the MB calyces results in an additional pairing-specific effect, because it does not lead to an acquisition but a consolidation after conditioning. These results suggest that the neuromodulator OA has the capacity of inducing associative learning in an insect brain. Moreover, they suggest the antennal lobes and the calyces as at least partially independent sites of associating odors that may contribute differently to learning and memory consolidation.
Collapse
|