1
|
Khoramjouy M, Ahmadi F, Faizi M, Shahhosseini S. Optimization binding studies of opioid receptors, saturation and competition, using [ 3H]-DAMGO. Pharmacol Rep 2021; 73:1390-1395. [PMID: 33871815 DOI: 10.1007/s43440-021-00265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Opioid analgesics are prescribed for the moderate to severe pain in the clinic. New analogs of µ-opioid receptors are introduced because they may have less adverse effects and better efficacy. However, these new analogs have to be screened for their receptor affinity before entering clinical trial phases. A common method to do such screening is using radioligand-binding-assay, which is a fast and precise screening technique if the assays are done at an optimum condition. One of the main challenges in this type of screening is to separate free/unbound radioligands from bound radioligands. In this study, we applied a centrifugation method instead of a filtration method to separate free radioligands from bound radioligands, and also optimized the conditions for radioligand receptor binding studies of µ-opioid receptors, saturation, and the competition. METHODS We used the midbrain and brainstem of naltrexone-treated rats as a source of µ-opioid receptors, and [3H]-DAMGO as the radioligand. Naloxone was also used to determine non-specific binding. A given amount of membrane protein was incubated with an increasing amount of radioligand at 37 °C to saturate the receptors at equilibrium and the amount of radioligand saturated in the receptors were used in competition studies. RESULTS 160 µg membrane protein saturated with 20 nM [3H]-DAMGO at 37 °C for 35 min with Kd (15.06 nM, 95% CI 8.117-22.00) and Bmax (0.4750 pmol/mg, 95% CI 0.3839-0.5660). CONCLUSION Applying the centrifugation method instead of the filtration to separate free from bound radioligand produced repeatable and reliable results. The optimum conditions for radioligand binding were used in competition studies which resulted in the expected outcomes.
Collapse
Affiliation(s)
- Mona Khoramjouy
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadi
- PET Radiopharmaceutical Sciences Section of the Molecular Imaging Branch of NIMH at NIH, Washington D.C, USA
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy and Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Vali-e-Asr Ave., Niayesh Junction, P.O.Box 14155-6153, Tehran, Iran.
| |
Collapse
|
2
|
Vats ID, Chaudhary S, Sharma A, Nath M, Pasha S. Rationally designed chimeric peptide of met-enkephalin and FMRFa-[D-Ala2, p-Cl-Phe4]YFa induce multiple opioid receptors mediated antinociception and up-regulate their expression. Eur J Pharmacol 2010; 638:54-60. [DOI: 10.1016/j.ejphar.2010.02.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 02/02/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
|
3
|
Vats ID, Chaudhary S, Karar J, Nath M, Pasha Q, Pasha S. Endogenous peptide: Met-enkephalin-Arg-Phe, differently regulate expression of opioid receptors on chronic treatment. Neuropeptides 2009; 43:355-62. [PMID: 19716174 DOI: 10.1016/j.npep.2009.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 06/24/2009] [Accepted: 07/26/2009] [Indexed: 11/24/2022]
Abstract
Endogenous peptide, Met-enkephalin-Arg-Phe (Tyr-Gly-Gly-Phe-Met-Arg-Phe; MERF) induces effects like antinociception, inhibit contraction of guinea pig ileum, mouse vas deferens and anti-tussive action. However, results regarding its functional efficiency and selectivity are controversial. Therefore, present study was undertaken to investigate whether MERF on systemic (intra-peritoneal, i.p.) route of administration induce any antinociception or not; to scrutinize the effect of 6 days chronic i.p. treatment of MERF on expression of mu (MOR1), delta (DOR1) and kappa (KOR1) opioid receptors; and finally, the antinociceptive effect of two synthetic peptides, MERFamide and (D-Ala(2))-MERFamide was compared with MERF on intracerebroventricular administration in order to understand the role of FMRF moiety in analgesic effect of MERF. Pharmacological results revealed that only 68.4 and 91.2 micromol/kg dose induce significant antinociception among various doses. Further, on 6 days chronic treatment, MERF induced significant antinociception in comparison to saline. Differential expression of MOR1 and KOR1 showed continuous up-regulation throughout the treatment whereas DOR1 showed down-regulation in initial 3 days followed by subsequently up-regulation during the latter observable period. Moreover, variation in opioid receptors expression had not affected the MERF antinociception. In conclusion, present study discursively demonstrates that MERF during chronic treatment interacts with all three opioid receptors (mu, delta and kappa) in rats and differently regulates their expression. Further, the interaction was such that the induction was mainly observed at molecular/expression level and not at pharmacological level to affect antinociception.
Collapse
Affiliation(s)
- Ishwar Dutt Vats
- Peptide Synthesis Laboratory, Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | | | |
Collapse
|
4
|
Vats ID, Snehlata, Nath M, Pasha MAQ, Pasha S. Effect of chronic intra-peritoneally administered chimeric peptide of met-enkephalin and FMRFa-[D-Ala2]YFa-on antinociception and opioid receptor regulation. Eur J Pain 2009; 14:295.e1-9. [PMID: 19560378 DOI: 10.1016/j.ejpain.2009.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/16/2009] [Accepted: 05/23/2009] [Indexed: 11/29/2022]
Abstract
The physiological role of NPFF/FMRFa family of peptides is complex and exact mechanism of action of these peptides is not yet completely understood. In same line of scrutiny, previously we reported an enzymatically stable chimeric analog of YGGFMKKKFMRFamide (YFa) i.e., [D-Ala(2)]YAGFMKKKFMRFamide ([D-Ala(2)]YFa) which have a role in antinociception and modulatory effect on opioid analgesia. In continuation, presently we investigated using tail-flick test whether [D-Ala(2)]YFa on systemic administration induced any antinociception in rats and if so then which specific opioid receptor(s) mu, delta or kappa mediated it. Further, the antinociceptive effect of [D-Ala(2)]YFa on 6 days chronic intra-peritoneal (i.p.) treatment in rats was examined and finally, effect of this chronic treatment on the differential expression of opioid receptors was assessed. [D-Ala(2)]YFa on i.p. administration induced dose dependent antinociception which was mainly mediated by delta (DOR) and partially by mu (MOR) and kappa (KOR) opioid receptors. Moreover, its antinociceptive effect remained comparable throughout the chronic treatment even during insufficient availability of DOR1. Importantly, during this treatment the mRNA expression of all three opioid receptors (MOR1, KOR1 and DOR1) was increased as assessed by real-time RTPCR though subsequent western blot analysis revealed a selective increase in the protein level of DOR1, only. Thus, pharmacological behavior of [d-Ala(2)]YFa suggests that competency of an opioid agonist to bind with multiple opioid receptors may enhance its potency to induce tolerance free analgesia.
Collapse
Affiliation(s)
- Ishwar Dutt Vats
- Peptide Synthesis Laboratory, Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | |
Collapse
|
5
|
Ioja E, Tourwé D, Kertész I, Tóth G, Borsodi A, Benyhe S. Novel diastereomeric opioid tetrapeptides exhibit differing pharmacological activity profiles. Brain Res Bull 2007; 74:119-29. [PMID: 17683797 DOI: 10.1016/j.brainresbull.2007.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/12/2007] [Accepted: 05/16/2007] [Indexed: 11/28/2022]
Abstract
A novel opioid peptide antagonist analogue, [3H]Dmt-Tic-(2S,3R)betaMePhe-Phe, derived from the potent, delta-receptor selective TIPP tetrapeptide (Tyr-Tic-Phe-Phe) series was synthesized and radiolabeled by catalytic tritiation of its iodinated precursor peptide. The purified radioprobe exhibited a specific activity of 2.15 TBq/mmol (58 Ci/mmol). The novelty of this compound is that it contains structurally modified tyrosine residue (2',6'-dimethyltyrosine, Dmt1) replacing tyrosine (Tyr1) at the N-terminus, and beta-methyl substituted phenylalanine (betaMePhe3) at the third position. As the configuration of betaMePhe3 side-chain might be different due to diastereomerism, and accordingly can alter the biological activity, both unlabeled threo (2S,3R and 2R,3S) diastereomeric analogues were also prepared and included in this study. The affinity and selectivity (delta-opioid versus mu-opioid receptor) were evaluated by radioreceptor binding assays. Agonist or antagonist potencies were determined in [35S]GTPgammaS binding experiments using Chinese Hamster Ovary (CHO) cells selectively expressing delta- or mu-opioid receptors. The equilibrium binding of the radiolabeled peptide derivative [3H]Dmt-Tic-(2S,3R)betaMePhe-Phe to rat brain membranes was saturable and the Scatchard analysis indicated a single binding site with a Kd of 0.3 nM and a Bmax of 127 fmol/mg protein. A study of [3H]Dmt-Tic-(2S,3R)betaMePhe-Phe binding displacement by various receptor-type specific opioid ligands showed the rank order of competitor's potency delta > mu > kappa, suggesting selective labeling of opioid delta-sites. In the functional tests, the (2S,3R) and (2R,3S) peptides exhibited partial agonist behaviour by weakly stimulating regulatory G-proteins in CHO cell membranes transfected with different receptors. Both isomers were quite weak partial agonists at the delta-receptor and reasonable partial agonists at the mu-receptor, with a prevalence of (2S,3R) over (2R,3S) for the mu-receptor. Consistent with these observations both stereomers competitively inhibited the stimulation of [35S]GTPgammaS binding induced by the prototype delta-agonist peptide (pClPhe4)-DPDPE in delta(m) CHO cell membranes, and still the (2S,3R) compound exerted more potent delta-antagonist effect. [3H]Dmt-Tic-(2S,3R)betaMePhe-Phe represents a high affinity new radioligand and also constitute further example of the influence of beta-methyl substitution on the potency and selectivity of TIPP analogues, thus becoming a valuable biochemical and pharmacological tool in opioid research.
Collapse
Affiliation(s)
- Eniko Ioja
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Temesvari krt. 62, H-6726 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
6
|
Ioja E, Tóth G, Benyhe S, Tourwe D, Péter A, Tömböly C, Borsodi A. Opioid receptor binding characteristics and structure-activity studies of novel tetrapeptides in the TIPP (Tyr-Tic-Phe-Phe) series. Neurosignals 2006; 14:317-28. [PMID: 16772734 DOI: 10.1159/000093046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 03/06/2006] [Indexed: 11/19/2022] Open
Abstract
The development of the prototype synthetic delta-opioid receptor antagonist peptides TIPP [(H-Tyr-Tic-Phe- Phe-OH); Tic: tetrahydroisoquinoline-3-carboxylic acid] and TIPPpsi (H-Tyr-psiTic-Phe-Phe-OH) by Schiller and coworkers was followed by extensive structure-activity relationship studies, leading to the emergence of numerous analogs that are of pharmacological interest. Eight novel diastereomeric compounds in this peptide family were designed, prepared, and tested biologically to gain structure-activity relationship information. The new multisubstituted tetrapeptide analogs contain both a 2',6'-dimethyltyrosine residue at the N-terminus and beta-methyl-cyclohexylalanine at the third position as replacements for the original first tyrosine and the third phenylalanine, respectively. These derivatives wear either free acidic (-COOH) or amidated (-CONH2) C-terminal. The potency and delta- versus mu-opioid receptor selectivity were evaluated by in vitro radioreceptor-binding assays, while the intrinsic G-protein-activating efficacy of these analogs was tested in [35S]GTPgammaS-binding assays using rat brain membranes or Chinese hamster ovary cells stably expressing mu- or delta-opioid receptors. The analogs showed delta-antagonist selectivity with differences regarding their isomeric forms, and these analogs containing a C-terminal carboxamide group displayed a mixed mu-agonist/delta-antagonist profile, thus they are expected to be safer analgesics with a low propensity to produce tolerance and physical dependence. These results constitute further examples of the influence of beta-methyl substitution and C-terminal amidation on potency, selectivity, and signal transduction properties of TIPP-related peptides as well as they represent valuable pharmacological tools for opioid research.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- CHO Cells
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Cells, Cultured
- Cricetinae
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- In Vitro Techniques
- Molecular Conformation
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Oligopeptides/pharmacology
- Radioligand Assay
- Rats
- Rats, Wistar
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, mu/drug effects
- Structure-Activity Relationship
- Tetrahydroisoquinolines/chemistry
- Tetrahydroisoquinolines/metabolism
- Tetrahydroisoquinolines/pharmacology
Collapse
Affiliation(s)
- Eniko Ioja
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
7
|
Slamberová R, Rimanóczy A, Schindler CJ, Vathy I. Cortical and striatal μ-opioid receptors are altered by gonadal hormone treatment but not by prenatal morphine exposure in adult male and female rats. Brain Res Bull 2003; 62:47-53. [PMID: 14596891 DOI: 10.1016/j.brainresbull.2003.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cerebral cortex (CX), cingulate CX (cgCX), and striatum (STR) play an important role in locomotion, cognition, emotion, and reward-motivated behaviors, and are altered by prenatal morphine exposure. We have demonstrated that delta-opioid receptors in the CX and STR of adult male and female rats are altered by prenatal morphine exposure and gonadal hormonal treatment. Because morphine binds with greater affinity to mu- than delta-opioid receptors, the present study examined the effect of prenatal morphine exposure on mu-opioid receptor density in the CX, cgCX, and STR of adult male and female rats using receptor autoradiography. In Experiment 1, three groups of adult male rats were analyzed: intact, gonadally intact; GNX, gonadectomized; and TP, GNX and testosterone propionate (TP)-treated. In Experiment 2, four groups of adult females were analyzed: OVX, ovariectomized; EB, OVX and estradiol benzoate (EB)-treated; P, OVX and progesterone (P)-treated; and EB+P, OVX and EB- and P-treated. In male rats, GNX and TP males had lower mu-opioid receptor densities in all three brain regions than gonadally intact males regardless of prenatal drug exposure. In female rats, OVX, EB+P-treated females had lower mu-opioid receptor density in the STR than OVX only females regardless of prenatal drug exposure. There were no drug or gonadal hormone effects in the CX or in the cgCX of female rats. Thus, the present study demonstrates that gonadal hormones, and not prenatal morphine exposure, alter the density of mu-opioid receptors in the CX, cgCX, and STR of adult male and female rats.
Collapse
Affiliation(s)
- Romana Slamberová
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ull. 111, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
8
|
Narita M, Suzuki M, Mizoguchi H, Narita M, Yajima Y, Sakurada S, Tseng LF, Suzuki T. Up-regulation of mu-opioid receptor-mediated G-protein activation in protein kinase Cgamma knockout mice following repeated naloxone treatment. Neurosci Lett 2003; 338:103-6. [PMID: 12566163 DOI: 10.1016/s0304-3940(02)01354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to investigate whether repeated treatment with the mu-opioid receptor antagonist naloxone could affect G-protein activation induced by a selective mu-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO) in mice lacking the protein kinase Cgamma isoform monitoring guanosine-5'-o-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding. Repeated s.c. administration of naloxone for 7 days resulted in a significant enhancement of the increased [(35)S]GTPgammaS binding by DAMGO to membranes of the spinal cord obtained from mice lacking the protein kinase Cgamma isoform. Furthermore, immunoreactivities of membrane-located protein kinase Cgamma and phosphorylated-protein kinase C in the spinal cord of ICR mice were not altered by repeated naloxone treatment. The present data provide direct evidence that protein kinase Cgamma is not involved in the development of the up-regulation of mu-opioid receptor functions to activate G-proteins in the mouse spinal cord by repeated naloxone treatment.
Collapse
Affiliation(s)
- Minoru Narita
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Narita M, Mizoguchi H, Nagase H, Suzuki T, Tseng LF. Up-regulation of spinal mu-opioid receptor function to activate G-protein by chronic naloxone treatment. Brain Res 2001; 913:170-3. [PMID: 11549382 DOI: 10.1016/s0006-8993(01)02785-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of repeated s.c. administrations of an mu-opioid receptor antagonist naloxone on the G-protein activation induced by mu-opioid receptor agonists [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO), endomorphin-1 and endomorphin-2 in the mouse spinal cord was studied, monitoring guanosine-5'-o-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding. All mu-opioid receptor agonists concentration-dependently increased the [35S]GTPgammaS binding. The increases of [35S]GTPgammaS binding induced by agonists were significantly enhanced in mice pretreated with naloxone. Under the present condition, chronic treatment with naloxone significantly increased the density of [3H]DAMGO binding sites with an increase in K(d) values in spinal cord membranes, indicating an increase in mu-opioid receptors on the membrane surface. These findings suggest that chronic treatment with an mu-opioid receptor antagonist naloxone leads to the supersensitivity to activate G-protein by mu-opioid receptor agonists with an increase in mu-opioid receptors in membranes of the mouse spinal cord.
Collapse
Affiliation(s)
- M Narita
- Department of Toxicology, School of Pharmacy, Hoshi University, Shinagawa, 142-8501, Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
SanMartín S, Gutiérrez M, Menéndez L, Hidalgo A, Baamonde A. Effects of diethylstilbestrol on mouse hippocampal evoked potentials in vitro. Cell Mol Neurobiol 1999; 19:691-703. [PMID: 10456231 PMCID: PMC11545698 DOI: 10.1023/a:1006996805017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Several steroids and related compounds can bind to central opiate receptors in whole-brain mouse homogenates. Among these drugs, the synthetic estrogen, diethylstilbestrol (DES), exhibits one of the highest affinities in binding experiments labeling opiate receptors with the nonselective opiate antagonist, [3H]diprenorphine. 2. In the search for a functional correlate to this biochemical finding, we have studied the effects of DES on the mouse hippocampal slice in vitro preparation. 3. Previously, binding studies were performed in hippocampal homogenates, labeling opiate receptors with [3H]diprenorphine or with the mu-selective opiate agonist, [3H]DAGO. DES inhibited [3H]diprenorphine and [3H]DAGO binding, the IC50 values obtained being (1.03 +/- 0.16) x 10(-5) and (1 +/- 0.8) x 10(-5) M, respectively. 4. In mice hippocampal slices, we measured the extracellular evoked potentials obtained in the CA1 pyramidal cell layer of the hippocampi and the field excitatory postsynaptic potentials (EPSP) obtained in the stratum radiatum. The presence of DES (10(-5) M) induced an increase in the amplitude of the population spikes measured in the pyramidal layer without modifying the field EPSP. This effect is similar to that obtained in the presence of DAGO in this preparation. The effect produced by DES was not modified by the presence of the opiate competitive antagonist, naloxone (10(-5) M), or by the opiate alkylating agent, beta-chlornaltrexamine (10(-5) M). Conversely, in the presence of the transcription inhibitor, actinomycin D (5 micrograms/ml), the effect produced by DES was inhibited. 5. Our results with DES support the general idea that estrogens increase central excitability. Although diethylstilbestrol can bind to opiate receptors in the hippocampus, the effect induced by this estrogen on hippocampal excitability seems unrelated to a direct action on opiate receptors, and an intracellular effect is suggested.
Collapse
Affiliation(s)
- S SanMartín
- Departamento de Medicina, Facultad de Medicina, Oviedo, Spain.
| | | | | | | | | |
Collapse
|
11
|
Bhargava HN, Villar VM, Cortijo J, Morcillo EJ. Binding of [3H][D-Ala2, MePhe4, Gly-ol5] enkephalin, [3H][D-Pen2, D-Pen5]enkephalin, and [3H]U-69,593 to airway and pulmonary tissues of normal and sensitized rats. Peptides 1997; 18:1603-8. [PMID: 9437722 DOI: 10.1016/s0196-9781(97)00247-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of endogenous opioid peptides in the regulation of bronchomotor tone, as well as in the pathophysiology of asthma is uncertain. We have studied the binding of highly selective [3H]labeled ligands of mu-([D-Ala2, MePhe4, Gly-ol5]enkephalin; DAMGO), delta ([D-Pen2, D-Pen5]enkephalin; DPDPE), and kappa-(U-69,593) opioid receptors to membranes of trachea, main bronchus, lung parenchyma and pulmonary artery obtained from normal (unsensitized) and actively IgE-sensitized rats acutely challenged with the specific antigen. [3H]DAMGO, [3H]DPDPE and [3H]U-69,593 bound to membranes of normal and sensitized tissues at a saturable, single high-affinity site. The rank order of receptor densities in normal tissues was delta- > or = kappa- > or = mu-, with lung parenchyma exhibiting the greatest binding capacity for delta- and mu- receptors compared to the other regions examined. The Kd values showed small differences between ligands and regions tested. The mu- and delta-opioid receptor densities were decreased in sensitized main bronchus and lung parenchyma, respectively, compared to normal tissues. By contrast, kappa-opioid receptor density was augmented in sensitized lung parenchyma but an increase in Kd values was also observed. These differential changes in the density and affinity of opioid receptor types may be related to alterations in endogenous opioid peptides during the process of sensitization.
Collapse
Affiliation(s)
- H N Bhargava
- Department of Pharmaceutics and Pharmacodynamics, College of Pharmacy, University of Illinois at Chicago 60612-7231, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
This paper is the sixteenth installment of our annual review of research concerning the opiate system. It is restricted to papers published during 1993 that concern the behavioral effects of the endogenous opiate peptides, and does not include papers dealing only with their analgesic properties. The specific topics this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148
| | | | | |
Collapse
|