1
|
Żakowski W. Neurochemistry of the Anterior Thalamic Nuclei. Mol Neurobiol 2016; 54:5248-5263. [DOI: 10.1007/s12035-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
|
2
|
Żakowski W, Robak A. Developmental changes of calretinin immunoreactivity in the anterior thalamic nuclei of the guinea pig. J Chem Neuroanat 2013; 47:28-34. [DOI: 10.1016/j.jchemneu.2012.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
|
3
|
Huxlin KR, Williams JM, Price T. A neurochemical signature of visual recovery after extrastriate cortical damage in the adult cat. J Comp Neurol 2008; 508:45-61. [PMID: 18300259 DOI: 10.1002/cne.21658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In adult cats, damage to the extrastriate visual cortex on the banks of the lateral suprasylvian (LS) sulcus causes severe deficits in motion perception that can recover as a result of intensive direction discrimination training. The fact that recovery is restricted to trained visual field locations suggests that the neural circuitry of early visual cortical areas, with their tighter retinotopy, may play an important role in attaining perceptual improvements after damage to higher level visual cortex. The present study tests this hypothesis by comparing the manner in which excitatory and inhibitory components of the supragranular circuitry in an early visual cortical area (area 18) are affected by LS lesions and postlesion training. First, the proportion of LS-projecting pyramidal cells as well as calbindin- and parvalbumin-positive interneurons expressing each of the four AMPA receptor subunits was estimated in layers II and III of area 18 in intact animals. The degree to which LS lesions and visual retraining altered these expression patterns was then assessed. Both LS-projecting pyramidal cells and inhibitory interneurons exhibited long-term, differential reductions in the expression of glutamate receptor (GluR)1, -2, -2/3, and -4 following LS lesions. Intensive visual training post lesion restored normal AMPAR subunit expression in all three cell-types examined. Furthermore, for LS-projecting and calbindin-positive neurons, this restoration occurred only in portions of the ipsi-lesional area 18 representing trained visual field locations. This supports our hypothesis that stimulation of early visual cortical areas-in this case, area 18-by training is an important factor in restoring visual perception after permanent damage to LS cortex.
Collapse
Affiliation(s)
- Krystel R Huxlin
- Department of Ophthalmology, University of Rochester, Rochester, New York 14642.
| | | | | |
Collapse
|
4
|
Unlu A, Hariharan N, Iskandar BJ. Spinal cord regeneration induced by a voltage-gated calcium channel agonist. Neurol Res 2002; 24:639-42. [PMID: 12392197 DOI: 10.1179/016164102101200672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Regeneration in the central nervous system (CNS) is prohibitive. This is likely due to an interplay of cellular (gene expression, growth factors) and environmental (inhibition by CNS myelin) factors. Calcium supports various intracellular functions, and multiple in vitro studies have shown a role of calcium in axonal growth. In this study, we examine the role of a calcium agonist, S(-)-Bay K 8644, in promoting or impeding CNS growth in vivo, in an effort to understand further the relationship between the voltage-gated L type calcium channel and regeneration. Using a well-established rat spinal cord model of regeneration, we have injected various doses of S(-)-Bay K 8644 (30-240 M) around the injured spinal cord. Our results demonstrate that S(-)-Bay K 8644 enhances regeneration in a dose-dependent fashion. In addition, at very specific concentrations, the same agonist has no effect on or even inhibits regeneration. We conclude that spinal regeneration is highly dependent on intracellular calcium concentration. Furthermore, depending on the dose used, the effect of calcium agonist supplementation on spinal regeneration can be supportive or inhibitory.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Axons/drug effects
- Axons/metabolism
- Axons/ultrastructure
- Brain Tissue Transplantation
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Denervation
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Fluorescent Dyes
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Male
- Nerve Regeneration/drug effects
- Nerve Regeneration/physiology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Rats
- Rats, Sprague-Dawley
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Retrograde Degeneration/drug therapy
- Retrograde Degeneration/metabolism
- Retrograde Degeneration/prevention & control
- Sciatic Nerve/transplantation
- Spinal Cord/cytology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord Injuries/drug therapy
- Spinal Cord Injuries/metabolism
- Spinal Cord Injuries/physiopathology
- Stilbamidines
- Treatment Outcome
Collapse
Affiliation(s)
- Agahan Unlu
- Department of Neurological Surgery, University of Wisconsin Medical School, Clinical Science Center, Madison, USA
| | | | | |
Collapse
|
5
|
Snider BJ, Tee LY, Canzoniero LMT, Babcock DJ, Choi DW. NMDA antagonists exacerbate neuronal death caused by proteasome inhibition in cultured cortical and striatal neurons. Eur J Neurosci 2002; 15:419-28. [PMID: 11876769 DOI: 10.1046/j.0953-816x.2001.01867.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The proteasome is involved in multiple cellular processes including control of the cell cycle, apoptosis and intracellular signalling; loss of proteasome function has been postulated to participate in the pathogenesis of triplet repeat diseases. We examined the vulnerability of central neurons to proteasome inhibition and tested the ability of anti-excitotoxic and anti-apoptotic treatments to attenuate proteasome inhibition-induced neuronal death. Exposure of murine neocortical cultures to proteasome inhibitors (0.1-10 microm clasto-lactacystin beta-lactone or MG-132) for 48 h resulted in widespread neuronal death associated with a reduction in intracellular free calcium; higher inhibitor concentrations killed astrocytes. Cultured striatal neurons were more vulnerable than cortical neurons. Within each population, the NADPH diaphorase-positive neuronal subpopulation was more vulnerable than the general neuronal population. Enhancing calcium entry with S(-)BayK8644 or kainate, or blocking apoptosis with cycloheximide, actinomycin D or Z-VAD.FMK attenuated neuronal death, whereas, reducing calcium entry with NMDA antagonists or R(+)BayK8644 potentiated neuronal death. These findings suggest that proteasome inhibition can induce selective neuronal apoptosis associated with intracellular calcium starvation, and point to manipulation of intracellular calcium as a specific therapeutic strategy. In particular, concern is raised that glutamate receptor antagonists might exacerbate, rather than attenuate, proteasome inhibition-induced neuronal death.
Collapse
Affiliation(s)
- B Joy Snider
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | |
Collapse
|
6
|
Bennet MR, Gibson WG, Lemon G. Neuronal cell death, nerve growth factor and neurotrophic models: 50 years on. Auton Neurosci 2002; 95:1-23. [PMID: 11871773 DOI: 10.1016/s1566-0702(01)00358-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Viktor Hamburger has just died at the age of 100. It is 50 years since he and Rita Levi-Montalcini laid the foundations for the study of naturally occurring cell death and of neurotrophic factors in the nervous system. In a period of less than 10 years, from 1949 to 1958, Hamburger and Levi-Montalcini made the following seminal discoveries: that neuron cell death occurs in dorsal root ganglia, sympathetic ganglia and the cervical column of motoneurons; that the predictions arising from this observation, namely that survival is dependent on the supply of a trophic factor, could be substantiated by studying the effects of a sarcoma on the proliferation of ganglionic processes both in vivo and in vitro; and that the proliferation of these processes could be used as an assay system to isolate the factor. This work provides a short review mostly of the early history of this subject in the context of the Hamburger/Levi-Montalcini paradigm. This acts as an introduction to a consideration of models that have been proposed to account for how the different sources of growth factors provide for the survival of neurons during development. It is suggested that what has been called the 'social-control' model provides the most parsimonious quantitative description of the contribution of trophic factors to neuronal survival, a concept for which we are in debt to Viktor Hamburger and Rita Levi-Montalcini.
Collapse
Affiliation(s)
- M R Bennet
- Department of Physiology, Institute for Biomedical Research, University of Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
7
|
Danielyan AA, Ayrapetyan SN. Changes of hydration of rats' tissues after in vivo exposure to 0.2 Tesla steady magnetic field. Bioelectromagnetics 2000; 20:123-8. [PMID: 10029139 DOI: 10.1002/(sici)1521-186x(1999)20:2<123::aid-bem7>3.0.co;2-a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hydration and [3H]ouabain uptake by different tissues of adult male rats were measured immediately after exposure to homogenous 0.2 T steady magnetic field. A time-dependent decrease of hydration and adaptation, followed by disadaptation, was detected in brain and liver tissues in most of the rats after 3.5-5 h of exposure. The number of functional active ouabain binding receptors, which correlates with cell volume, was also decreased in brain, liver, and spleen and increased in kidney tissue after half an hour of exposure. It is suggested that cell hydration is a second messenger through which the SMF exerts its influence.
Collapse
Affiliation(s)
- A A Danielyan
- Biophysics Center of Armenian National Academy of Sciences, Yerevan
| | | |
Collapse
|
8
|
|
9
|
Abstract
With the approval of alteplase (tPA) therapy for stroke, it is likely that combination therapy with tPA to restore blood flow, and agents like glutamate receptor antagonists to halt or reverse the cascade of neuronal damage, will dominate the future of stroke care. The authors describe events and potential targets of therapeutic intervention that contribute to the excitotoxic cascade underlying cerebral ischemic cell death. The focal and global animal models of stroke are the basis for the identification of these events and therapeutic targets. The signalling pathways contributing to ischemic neuronal death are discussed based on their cellular localization. Cell surface signalling events include the activities of both voltage-gated K+, Na+, and Ca2+ channels and ligand-gated glutamate, gamma-aminobutyric acid and adenosine receptors and channels. Intracellular signalling events include alterations in cytosolic and subcellular Ca2+ dynamics, Ca2+ -dependent kinases and immediate early genes whereas intercellular mechanisms include free radical formation and the activation of the immune system. An understanding of the relative importance and temporal sequence of these processes may result in an effective stroke therapy targeting several points in the cascade. The overall goal is to reduce disability and enhance quality of life for stroke survivors.
Collapse
Affiliation(s)
- D L Small
- Receptor and Ion Channels Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | | | |
Collapse
|
10
|
Berry DA, Barden JA, Balcar VJ, Keogh A, dos Remedios CG. Increase in expression of P2X1 receptors in the atria of patients suffering from dilated cardiomyopathy. Electrophoresis 1999; 20:2059-64. [PMID: 10451115 DOI: 10.1002/(sici)1522-2683(19990701)20:10<2059::aid-elps2059>3.0.co;2-t] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P2X1 receptors are ATP-sensitive ligand-gated cation-selective channels abundant in smooth muscle tissues such as bladder and vas deferens. They have also been detected in the central and peripheral nervous system and in heart tissue. We have earlier reported distinct changes in the expression of the PX1 subtype of P2X receptors in hearts of patients suffering from dilated cardiomyopathy (DCM). The study was, however, based on Western blots from only five DCM samples and three control hearts. Moreover, the antibody was directed against a peptide derived from the sequence of rat P2X1. In the present project we have examined larger groups of both DCM and control hearts (n = 14 and 11, respectively). Furthermore, the antibody used in this paper differs significantly from the one used in our previous report. The present antibody was raised against an 18-residue peptide sequence (Lys 68-84 Val) derived from the human P2X1 sequence. Most of the label in the Western blots was concentrated over a triplet of bands migrating with an apparent Mr of about 45,000. Quantitative densitometry indicated that this band was more strongly expressed (by approximately 80%) in DCM hearts compared with the controls.
Collapse
Affiliation(s)
- D A Berry
- Institute for Biomedical Research, Muscle Research Unit, Caringbah, NSW, Australia
| | | | | | | | | |
Collapse
|
11
|
Abstract
Mounting evidence shows that neuronal death is an important and essential component of brain tissue homeostasis, with major forms of cell death occurring: necrosis and apoptosis. No general consensus exists as to whether these two forms of neuronal death represent separate cellular processes or just two different forms of a common 'death pathway'. One difference between them is the role played by intracellular Ca2+: central and obligatory, in necrosis and possible, but not always necessary in triggering apoptosis. Furthermore, the same assessment of the involvement of Ca2+ signalling could also distinguish between two possible apoptotic states in the nervous system: one, the 'developmental apoptosis', involving immature and developing neurons, in which Ca2+ plays mainly an apoprotector role, and another one, associated mainly with pathological instances and involving fully matured and established neurons, in which Ca2+ plays an apo-inducing role.
Collapse
Affiliation(s)
- E C Toescu
- Dept. Physiology, Birmingham University, Edgbaston, UK.
| |
Collapse
|
12
|
Berry D, Yao M, Barden JA, Balcar VJ, Hansen MA, Bennett MR, Keogh A, dos Remedios CG. Alterations in the expression of P2X1 receptors in failing and nondiseased human atria. Electrophoresis 1998; 19:856-9. [PMID: 9629927 DOI: 10.1002/elps.1150190542] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This is the first report of the analysis of the ATP-specific P2X1 receptor subunit in human hearts. We have examined homogenate samples of human left atria for the presence of P2X1 receptors using Western blots. Anti-P2X1 immunoreactivity was detected in populations of nondiseased atria as well as in atria from explanted hearts from patients with terminally failing heart conditions such as dilated cardiomyopathy. At least three groups of P2X1 immunoreactive proteins were detected in the Western blots with approximate molecular mass values of 50, 70, and 160 kDa. We report changes in expression of their 50 and 70 kDa components. These changes may be related to the type of deficit in these hearts since the changes have been observed in hearts with decreased ejection fractions characteristic of dilated cardiomyopathy.
Collapse
Affiliation(s)
- D Berry
- Institute for Biomedical Research, Department of Anatomy and Histology, The University of Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The flow of new information on gene expression related to apoptosis has been relentless in the last several years. This has also been the case with respect to gene expression after cerebral ischemia. Many of genes associated with an apoptotic mode of cell death have now been studied in the context of experimental cerebral ischemia from the immediate early genes through modulating genes such as bcl-2 to genes in the final execution phase such as interleukin-1β converting enzyme (ICE)-related proteases. It was impossible to adequately cite all primary reports on these subjects. However, many excellent reviews have appeared in the last year, which together, cover all these areas of interest. In this review, we have elected to cite only reports published since January 1996 and use an extensive collection of reviews (indicated in italics) to guide the reader to the earlier literature. Our intent is to provide the reader with a timely and useful analysis of the current state of the art. It is hoped that this approach does not cause offense with our colleagues whose contributions before 1996 laid the foundation for much of this work.
Collapse
Affiliation(s)
- J P MacManus
- Apoptosis Research Group, Institute for Biological Sciences, Ottawa, Ontario, Canada
| | | |
Collapse
|