1
|
Huo Z, Zhang R, Chen Z, Xu J, Xu T, Feng T. The neural substrates responsible for punishment sensitivity association with procrastination: Left putamen connectivity with left middle temporal gyrus. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110982. [PMID: 38387807 DOI: 10.1016/j.pnpbp.2024.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Procrastination has adverse consequences across cultural contexts. Behavioral research found a positive correlation between punishment sensitivity and procrastination. However, little is known about the neural substrates underlying the association between them. We employed voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to address this issue with two independent samples. In Sample 1, behavioral results found that punishment sensitivity was positively related to procrastination. The VBM analysis showed that punishment sensitivity was negatively correlated with gray matter volume in left putamen. Subsequently, the RSFC results revealed that left putamen - left middle temporal gyrus (MTG) connectivity was positively associated with punishment sensitivity. More crucially, mediation analysis indicated that left putamen - left MTG connectivity mediated the relationship between punishment sensitivity and procrastination. The aforementioned results were validated in Sample 2. Altogether, left putamen - left MTG connectivity might be the neural signature of the association between punishment sensitivity and procrastination.
Collapse
Affiliation(s)
- Zhenzhen Huo
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhiyi Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China; Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Army Medical University, China
| | - Junye Xu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| |
Collapse
|
2
|
Assari S, Boyce S. Resting-State Functional Connectivity between Putamen and Salience Network and Childhood Body Mass Index. Neurol Int 2021; 13:85-101. [PMID: 33806587 PMCID: PMC8006001 DOI: 10.3390/neurolint13010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Although the putamen has a significant role in reward-seeking and motivated behaviors, including eating and food-seeking, minorities' diminished returns (MDRs) suggest that individual-level risk and protective factors have weaker effects for Non-Hispanic Black than Non-Hispanic White individuals. However, limited research is available on the relevance of MDRs in terms of the role of putamen functional connectivity on body mass index (BMI). PURPOSE Building on the MDRs framework and conceptualizing race and socioeconomic status (SES) indicators as social constructs, we explored racial and SES differences in the associations between putamen functional connectivity to the salience network and children's BMI. METHODS For this cross-sectional study, we used functional magnetic resonance imaging (fMRI) data of 6473 9-10-year-old Non-Hispanic Black and Non-Hispanic White children from the Adolescent Brain Cognitive Development (ABCD) study. The primary independent variable was putamen functional connectivity to the salience network, measured by fMRI. The primary outcome was the children's BMI. Age, sex, neighborhood income, and family structure were the covariates. Race, family structure, parental education, and household income were potential moderators. For data analysis, we used mixed-effect models in the overall sample and by race. RESULTS Higher right putamen functional connectivity to the salience network was associated with higher BMI in Non-Hispanic White children. The same association was missing for Non-Hispanic Black children. While there was no overall association in the pooled sample, a significant interaction was found, suggesting that the association between right putamen functional connectivity to the salience network and children's BMI was modified by race. Compared to Non-Hispanic White children, Non-Hispanic Black children showed a weaker association between right putamen functional connectivity to the salience network and BMI. While parental education and household income did not moderate our association of interest, marital status altered the associations between putamen functional connectivity to the salience network and children's BMI. These patterns were observed for right but not left putamen. Other/Mixed Race children also showed a pattern similar to Non-Hispanic Black children. CONCLUSIONS The association between right putamen functional connectivity to the salience network and children's BMI may depend on race and marital status but not parental education and household income. While right putamen functional connectivity to the salience network is associated with Non-Hispanic White children's BMI, Non-Hispanic Black children' BMI remains high regardless of their putamen functional connectivity to the salience network. This finding is in line with MDRs, which attributes diminished effects of individual-risk and protective factors for Non-Hispanic Black children to racism, stratification, and segregation.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Shanika Boyce
- Department of Pediatrics, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| |
Collapse
|
3
|
Cortés H, Paz F, Erlij D, Aceves J, Florán B. GABAB receptors modulate depolarization-stimulated [3H]glutamate release in slices of the pars reticulata of the rat substantia nigra. Eur J Pharmacol 2010; 649:161-7. [DOI: 10.1016/j.ejphar.2010.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/28/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
|
4
|
Silva I, Cortes H, Escartín E, Rangel C, Florán L, Erlij D, Aceves J, Florán B. L-DOPA inhibits depolarization-induced [3H]GABA release in the dopamine-denervated globus pallidus of the rat: the effect is dopamine independent and mediated by D2-like receptors. J Neural Transm (Vienna) 2006; 113:1847-53. [PMID: 16736236 DOI: 10.1007/s00702-006-0493-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
The effect of L-DOPA on [(3)H]GABA release in slices of globus pallidus from 6-OHDA-lesioned rats was studied. Release was evoked by high (15 mM) K(+). The lesion reduced dopamine content and dopamine synthesized from L-DOPA. The inhibition of DOPA decarboxylase blocked dopamine synthesis. Endogenous dopamine released by high K(+) inhibited [(3)H]GABA release in normal but not in lesioned slices. L-DOPA inhibited (IC(50) = 0.44 microM) evoked [(3)H]GABA release. The inhibition was via D2-like receptors but not mediated by dopamine. The turning behavior induced by L-DOPA methyl ester (25 mg/kg, i.p.) was not abolished by the DOPA decarboxylase inhibitor 3-hydroxybenzylhydrazine but in this condition it was abolished by sulpiride. Results suggest that L-DOPA acting as D2-like agonist inhibits GABA release in the rat globus pallidus and induces turning behavior in rats with unilateral lesions of the dopamine innervation. L-DOPA could control Parkinson's disease symptoms acting not only as dopamine precursor but also by itself.
Collapse
Affiliation(s)
- I Silva
- Departamento de Fisiología, Biofísica y Neurociencias del CINVESTAV, México, México
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Floran B, Gonzalez B, Florán L, Erlij D, Aceves J. Interactions between adenosine A(2a) and dopamine D2 receptors in the control of [(3)H]GABA release in the globus pallidus of the rat. Eur J Pharmacol 2006; 520:43-50. [PMID: 16137674 DOI: 10.1016/j.ejphar.2005.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
The interactions between adenosine A(2A) receptors and dopamine D2 receptors on the modulation of depolarization-evoked [(3)H]-gamma-amino-butyric-acid release (GABA) were examined in slices of the globus pallidus of the rat. The stimulation of release caused by activation of A(2A) receptors was blocked when dopaminergic influences were eliminated with three independent methods: a) antagonism of D2 receptors with sulpiride; b) alkylation of these receptors with N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline (EEDQ); c) depletion of dopamine with reserpine. In turn, activation of A(2A) receptors modified the response to stimulation of D2 receptors: the EC(50) for quinpirole increased nearly one thousand times when A(2A) receptors were stimulated. Antagonism of A(2A) receptors in the absence of added agonists inhibited [(3)H] GABA release indicating receptor occupancy by endogenous adenosine. The dopamine dependence and the large effects of activating A(2A) receptors on the potency of dopaminergic agonists clarify some of the therapeutic properties of A(2A) antagonists in parkinsonian animals and patients.
Collapse
Affiliation(s)
- Benjamin Floran
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
6
|
Floran B, Floran L, Erlij D, Aceves J. Dopamine D4 receptors inhibit depolarization-induced [3H]GABA release in the rat subthalamic nucleus. Eur J Pharmacol 2004; 498:97-102. [PMID: 15363981 DOI: 10.1016/j.ejphar.2004.07.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/03/2004] [Accepted: 07/13/2004] [Indexed: 11/19/2022]
Abstract
We explored the role of dopamine D4 receptors on [3H]GABA release in the subthalamic nucleus. [3H]GABA release was evoked by high K+ in slices of the nucleus. The selective dopamine D4 receptor agonist PD168,077 (N-[[4-(2-cyanophenyl)-1-piperazynil]methyl]-3-methyl-benzamide) inhibited GABA release with greater potency (EC50=3.2 nM) than quinpirole (EC50=200 nM). SKF 21297 (6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide), a dopamine D1-like receptor agonist, had no effect. L-745,870 (3-[[4-(4-chlorophenyl)piperazin-1-yl]methyl]-1-1H-pyrollo[2,3-b] pyridine), a selective dopamine D4 receptor antagonist, reverted the quinpirole inhibition with greater potency (IC50=8.7 nM) than that of the dopamine D2/D3 receptor antagonist sulpiride and raclopride (IC50=4804 and 788 nM, respectively). Both methylphenidate and methamphetamine, dopamine reuptake blockers, inhibited by 30% high K(+)-evoked GABA release; the inhibition was blocked by L-745,870. These results show that dopamine D4 receptors modulate GABA release in the subthalamic nucleus. The results would explain how agents that increase interstitial dopamine like methylphenidate and amphethamine might control locomotor hyperactivity seen in disorders of dopamine D4 receptors.
Collapse
Affiliation(s)
- Benjamín Floran
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, México, Mexico
| | | | | | | |
Collapse
|
7
|
Florán B, Barajas C, Florán L, Erlij D, Aceves J. Adenosine A1 receptors control dopamine D1-dependent [(3)H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat. Neuroscience 2003; 115:743-51. [PMID: 12435413 DOI: 10.1016/s0306-4522(02)00479-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abnormalities in dopaminergic control of basal ganglia function play a key role in Parkinson's disease. Adenosine appears to modulate the dopaminergic control in striatum, where an inhibitory interaction between adenosine and dopamine receptors has been demonstrated. However the interaction has not been established in substantia nigra pars reticulata (SNr) where density of both receptors is high. Here we have explored the interaction between A1/D1 receptors in SNr. In SNr slices, SKF 38393, a selective D1 receptor agonist, produced a stimulation of depolarization-induced Ca(2+)-dependent [(3)H]GABA release that was inhibited by adenosine. The adenosine inhibition was abolished by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist. DPCPX per se enhanced GABA release, indicating inhibition of the release by endogenous adenosine. When D1 receptors were blocked with SCH 23390 or the slices were depleted of dopamine, the effect of DPCPX was suppressed, showing that activation of dopamine receptors was necessary for the adenosine inhibition. In normal slices, 2-chloro-n(6)-cyclopentyladenosine (CCPA), a selective A1 agonist, inhibited GABA release, but the inhibition was prevented by the blockade of D1 receptors with SCH 23390. Superperfusion with 8-bromo-cAMP produced a stimulation of GABA release that was not blocked by CCPA: this finding indicates that the blockade of D1 effects caused by activation of A1 receptors is specific. To see if these actions on GABA release were correlated with changes in motor behavior we studied the effect of unilateral intranigral injections of modifiers of adenosine A1 and dopamine D1 receptors in rats challenged with systemic methamphetamine. Both the A1 agonist CCPA and the D1 antagonist SCH 23390 produced ipsilateral turning whereas the A1 antagonist DPCPX caused contralateral turning. These motor effects are consistent with the findings on GABA release. The results indicate the presence of an inhibitory A1/D1 receptor interaction in SNr. The inhibition exerted by A1 adenosine receptors on GABAergic striatonigral transmission would be due exclusively to blockade of the facilitation resulting from activation of D1 dopamine receptors. The data permit to better understand the action of adenosine antagonists in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- B Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000, México DF, Mexico.
| | | | | | | | | |
Collapse
|
8
|
Arias-Montaño JA, Floran B, Garcia M, Aceves J, Young JM. Histamine H(3) receptor-mediated inhibition of depolarization-induced, dopamine D(1) receptor-dependent release of [(3)H]-gamma-aminobutryic acid from rat striatal slices. Br J Pharmacol 2001; 133:165-71. [PMID: 11325806 PMCID: PMC1572768 DOI: 10.1038/sj.bjp.0704053] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Revised: 02/20/2001] [Accepted: 02/22/2001] [Indexed: 11/09/2022] Open
Abstract
1. A study was made of the regulation of [(3)H]-gamma-aminobutyric acid ([(3)H]-GABA) release from slices of rat striatum by endogenous dopamine and exogenous histamine and a histamine H(3)-agonist. Depolarization-induced release of [(3)H]-GABA was Ca(2+)-dependent and was increased in the presence of the dopamine D(2) receptor family antagonist, sulpiride (10 microM). The sulpiride-potentiated release of [(3)H]-GABA was strongly inhibited by the dopamine D(1) receptor family antagonist, SCH 23390 (1 microM). Neither antagonist altered basal release. 2. The 15 mM K(+)-induced release of [(3)H]-GABA in the presence of sulpiride was inhibited by 100 microM histamine (mean inhibition 78+/-3%) and by the histamine H(3) receptor-selective agonist, immepip, 1 microM (mean inhibition 81+/-5%). The IC(50) values for histamine and immepip were 1.3+/-0.2 microM and 16+/-2 nM, respectively. The inhibitory effects of histamine and immepip were reversed by the H(3) receptor antagonist, thioperamide, 1 microM. 3. The inhibition of 15 mM K(+)-induced [(3)H]-GABA release by immepip was reversed by the H(3) receptor antagonist, clobenpropit, K(d) 0.11+/-0.04 nM. Clobenpropit alone had no effect on basal or stimulated release of [(3)H]-GABA. 4. Elevated K(+) caused little release of [(3)H]-GABA from striatal slices from reserpinized rats, unless the D(1) partial agonist, R(+)-SKF 38393, 1 microM, was also present. The stimulated release in the presence of SKF 38393 was reduced by 1 microM immepip to the level obtained in the absence of SKF 38393. 5. These observations demonstrate that histamine H(3) receptor activation strongly inhibits the dopamine D(1) receptor-dependent release of [(3)H]-GABA from rat striatum; primarily through an interaction at the terminals of GABA neurones.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Calcium/pharmacology
- Dopamine/metabolism
- Dopamine D2 Receptor Antagonists
- Histamine/pharmacology
- Histamine Agonists/pharmacology
- Histamine Antagonists/pharmacology
- Imidazoles/antagonists & inhibitors
- Imidazoles/pharmacology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Neostriatum/drug effects
- Neostriatum/metabolism
- Piperidines/antagonists & inhibitors
- Piperidines/pharmacology
- Potassium/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, Histamine H3/metabolism
- Reserpine/pharmacology
- Sulpiride/antagonists & inhibitors
- Sulpiride/pharmacology
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- J-A Arias-Montaño
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y de Estudios Avanzados, Apartado Postal 14-740, Mexico, D.F., Mexico
| | - B Floran
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y de Estudios Avanzados, Apartado Postal 14-740, Mexico, D.F., Mexico
| | - M Garcia
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y de Estudios Avanzados, Apartado Postal 14-740, Mexico, D.F., Mexico
| | - J Aceves
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y de Estudios Avanzados, Apartado Postal 14-740, Mexico, D.F., Mexico
| | - J M Young
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QJ
| |
Collapse
|
9
|
Galvan A, Floran B, Erlij D, Aceves J. Intrapallidal dopamine restores motor deficits induced by 6-hydroxydopamine in the rat. J Neural Transm (Vienna) 2001; 108:153-66. [PMID: 11314770 DOI: 10.1007/s007020170085] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To explore whether dopamine deficits in the globus pallidus have a role in generating the motor symptoms of Parkinson's disease, we examined the effects of selective intrapallidal administration of dopamine or its antagonists in rats unilaterally lesioned with 6-hydroxydopamine into the medial forebrain bundle. Either the turning behavior induced by apomorphine or the deficit in the performance of a skilled forelimb-reaching task was used as assay for drug action. Microinjection of either the D2 receptor antagonist, sulpiride, or the D1 receptor antagonist, SCH-23390, into the dopamine-denervated pallidum significantly reduced apomorphine induced turning. In animals trained to perform a skilled forelimb-reaching task, 6-OHDA lesions caused a marked motor deficit in the contralateral forelimb. Intrapallidal dopamine applied either intermittently or continuously, restored up to 50% of the motor performance. Continuous application promoted a motor recovery that outlasted dopamine administration. These results show that lack of dopamine in the GP plays an important role in generating the motor symptoms caused by lesion of dopaminergic pathways. Moreover, motor recovery was produced by selectively injecting dopamine into the globus pallidus.
Collapse
Affiliation(s)
- A Galvan
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México
| | | | | | | |
Collapse
|
10
|
Floran B, Floran L, Sierra A, Aceves J. D2 receptor-mediated inhibition of GABA release by endogenous dopamine in the rat globus pallidus. Neurosci Lett 1997; 237:1-4. [PMID: 9406865 DOI: 10.1016/s0304-3940(97)00784-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Attempting to better understand the role of the dopaminergic innervation in the rat globus pallidus, we examined here whether or not endogenous dopamine modulates the release of [3H]GABA in superfused pallidal slices. The superfusion medium contained elevated (15 mM) potassium. The release of endogenous dopamine was induced by the dopamine releaser drug, methamphetamine. Methamphetamine (100 microM) inhibited by 46% the release of [3H]GABA. Methamphetamine inhibition was completely blocked by reserpinization of the rats. It was also completely blocked by the D2 dopamine receptor antagonist sulpiride (10 microM). Sulpiride alone caused a 105% increase in GABA release. The increase was not observed in slices from reserpinized rats. Quinpirole (10 microM), a D2 dopamine receptor agonist, inhibited (43%) [3H]GABA release. The results suggest that endogenous dopamine exerts an inhibitory effect on GABA release in the rat globus pallidus. The effect is mediated by D2 receptors presumably located on striatopallidal axon terminals.
Collapse
Affiliation(s)
- B Floran
- Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | |
Collapse
|
11
|
Garcia M, Floran B, Arias-Montaño JA, Young JM, Aceves J. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata. Neuroscience 1997; 80:241-9. [PMID: 9252235 DOI: 10.1016/s0306-4522(97)00100-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The release of [3H]GABA from slices of rat substantia nigra pars reticulata induced by increasing extracellular K+ from 6 to 15 mM in the presence of 10 microM sulpiride was inhibited by 73 +/- 3% by 1 microM SCH 23390, consistent with a large component of release dependent upon D1 receptor activation. The histamine H3 receptor-selective agonist immepip (1 microM) and the non-selective agonist histamine (100 microM) inhibited [3H]GABA release by 78 +/- 2 and 80 +/- 2%, respectively. The inhibition by both agonists was reversed by the H3 receptor antagonist thioperamide (1 microM). However, in the presence of 1 microM SCH 23390 depolarization-induced release of [3H]GABA was not significantly decreased by 1 microM immepip. In rats depleted of dopamine by pretreatment with reserpine, immepip no longer inhibited control release of [3H]GABA, but in the presence of 1 microM SKF 38393, which produced a 7 +/- 1-fold stimulation of release, immepip reduced the release to a level not statistically different from that in the presence of immepip alone. Immepip (1 microM) also inhibited the depolarization-induced release of [3H]dopamine from substantia nigra pars reticulata slices, by 38 +/- 3%. The evidence is consistent with the proposition that activation of histamine H3 receptors leads to the selective inhibition of the component of depolarization-induced [3H]GABA release in substantia nigra pars reticulata slices which is dependent upon D1 receptor activation. This appears to be largely an action at the terminals of the striatonigral GABA projection neurons, which may be enhanced by a partial inhibition of dendritic [3H]dopamine release.
Collapse
Affiliation(s)
- M Garcia
- Departamento de Fisiologia, Biofisica y Neurociencias, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F
| | | | | | | | | |
Collapse
|
12
|
Aceves J, Floran B, Sierra A, Mariscal S. D-1 receptor mediated modulation of the release of gamma-aminobutyric acid by endogenous dopamine in the basal ganglia of the rat. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19:727-39. [PMID: 8539416 DOI: 10.1016/0278-5846(95)00127-h] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. Presynaptic D1 receptors are present on GABAergic terminals of neostriatal projections. 2. By activating these receptors, exogenous dopamine enhances the release of GABA. 3. Here the authors have explored whether endogenous dopamine was also able to activate the receptors, thus enhancing GABA release. 4. The effect of methamphetamine, a dopamine releaser, on the release of tritiated GABA was studied in slices of substantia nigra pars reticulata, entopeduncular nucleus and caudate-putamen, targets of the striatal projections. 5. Methamphetamine enhanced the release of the label. However the enhancement required an intact dopaminergic innervation, since it was lost in slices isolated from rats with 6-hydroxydopamine-induced lesions of the dopaminergic nigrostriatal system. 6. The activation of the receptors by endogenous dopamine was also judged by the effect of the selective D1 antagonist SCH 23390 in potassium depolarized slices. By preventing activation of the receptors by dopamine released as result of depolarization, the antagonist reduced GABA release. In 6-OHDA lesioned slices, no reduction was observed, even though the slices were also depolarized. 7. The results indicate that endogenous dopamine enhances GABA release from striatal terminals in the pars reticulata of the substantia nigra, entopeduncular nucleus and caudate-putamen. This would facilitate GABAergic neurotransmission. 8. The study suggests that the function of DA in the basal ganglia is widespread, modulating not only the firing of the striatal efferent neurons but also the transmission of the fired impulses across synapses in the target nuclei of these neurons.
Collapse
Affiliation(s)
- J Aceves
- Departamento de Fisiologia, Biofísica y Neurociencias. Centro de Investigación y de Estudios Avanzados del Instituto Politćnico Nacional, México, D.F., México
| | | | | | | |
Collapse
|
13
|
Aceves J, Floran B, Martinez-Fong D, Sierra A, Hernandez S, Mariscal S. L-dopa stimulates the release of [3H]gamma-aminobutyric acid in the basal ganglia of 6-hydroxydopamine lesioned rats. Neurosci Lett 1991; 121:223-6. [PMID: 1902287 DOI: 10.1016/0304-3940(91)90690-u] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
L-DOPA stimulated the K(+)-induced [3H]GABA (gamma-aminobutyric acid) release from slices of substantia nigra pars reticulata, entopeduncular nucleus, globus pallidus and caudate-putamen isolated from the ipsilateral side of 6-hydroxydopamine-lesioned rats, but the release from ipsilateral subthalamic slices was not affected. In substantia nigra, L-DOPA stimulation (EC50 = 1 microM) of [3H]GABA release was dose-dependently blocked (IC50 = 0.1 microM for the stimulation caused by 10 microM L-DOPA) by the D1 antagonist SCH 23390, but was not affected by (-)-sulpiride, a D2 antagonist. SCH 23390 also blocked the stimulation in the other nuclei. The DOPA decarboxylase inhibitor NSD-1015 (500 microM) did not prevent the stimulation induced by L-DOPA in all of the studied nuclei. The results suggest that L-DOPA is able to activate D1 receptors located on the terminals of striatal projections via the dopamine formed by a decarboxylation mediated by an NSD-1015-resistant enzyme. Activation of the presynaptic D1 receptors results in stimulation of GABA release.
Collapse
Affiliation(s)
- J Aceves
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico D.F
| | | | | | | | | | | |
Collapse
|
14
|
Floran B, Aceves J, Sierra A, Martinez-Fong D. Activation of D1 dopamine receptors stimulates the release of GABA in the basal ganglia of the rat. Neurosci Lett 1990; 116:136-40. [PMID: 2147981 DOI: 10.1016/0304-3940(90)90399-t] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here we have explored whether dopamine is able to modulate the release of gamma-aminobutyric acid (GABA) from striatal terminals to substantia nigra pars reticulata, entopeduncular nucleus, globus pallidus and caudate-putamen. The type of dopamine receptors involved was assessed by the blocking effect of either SCH 23390 (D1 antagonist) or (-)-sulpiride (D2 antagonist) of the dopamine effect. Dopamine stimulated (EC50 3.2 microM) the depolarization-induced release of [3H]GABA from slices isolated from all of the above mentioned nuclei. SCH 23390 dose-dependently blocked the dopamine stimulation, but (-)-sulpiride did not show any blocking effect. The results suggest that dopamine via D1 receptors modulates the release of GABA from striatal GABAergic terminals.
Collapse
Affiliation(s)
- B Floran
- Department of Physiology, Biophysics and Neurosciences, Instituto Politecnico Nacional, Mexico, D.F
| | | | | | | |
Collapse
|
15
|
Kalivas PW, Bourdelais A, Abhold R, Abbott L. Somatodendritic release of endogenous dopamine: in vivo dialysis in the A10 dopamine region. Neurosci Lett 1989; 100:215-20. [PMID: 2761771 DOI: 10.1016/0304-3940(89)90687-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using in vivo dialysis in the A10 region of the anesthetized rat, somatodendritic release of endogenous dopamine was demonstrated. Although endogenous dopamine release from the A10 region was enhanced by amphetamine pretreatment in a dose-related manner, the amount of dopamine released was markedly less than the axonal release of dopamine measured simultaneously in the nucleus accumbens.
Collapse
Affiliation(s)
- P W Kalivas
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164-6520
| | | | | | | |
Collapse
|
16
|
Nissbrandt H, Sundström E, Jonsson G, Hjorth S, Carlsson A. Synthesis and release of dopamine in rat brain: comparison between substantia nigra pars compacts, pars reticulata, and striatum. J Neurochem 1989; 52:1170-82. [PMID: 2564423 DOI: 10.1111/j.1471-4159.1989.tb01863.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dopamine (DA) is synthesized and released not only from the terminals of the nigrostriatal dopaminergic neuronal pathway, but also from the dendrites in the substantia nigra. We have investigated the regulation of the DA turnover, the DA synthesis rate, and the DA release in the substantia nigra pars compacts (SNpc) and pars reticulata (SNpr) in vivo. As a measure of DA turnover, we have assessed the concentrations of 3,4-dihydroxyphenylacetic acid and homovanillic acid. As a measure of the DA synthesis rate, we have determined the 3,4-dihydroxyphenylalanine accumulation after inhibition of aromatic L-amino acid decarboxylase by 3-hydroxybenzylhydrazine. As a measure of DA release, we have investigated the disappearance rate of DA after inhibition of its synthesis by alpha-methyl-p-tyrosine and the 3-methoxytyramine accumulation following monoamine oxidase inhibition by pargyline. Both the DA turnover and the DA synthesis rate increased following treatment with the DA receptor antagonist haloperidol and decreased following treatment with the DA receptor agonist apomorphine in the SNpc and in the SNpr, but the effects of the drugs were less pronounced than in the striatum. gamma-Butyrolactone treatment, which suppresses the firing of the dopaminergic neurons, increased the DA synthesis rate in the striatum (165%), but had no such effect in the SNpc or SNpr. Haloperidol, apomorphine, and gamma-butyrolactone increased, decreased, and abolished, respectively, the DA release in the striatum, but the drugs had no or only slight effects on the alpha-methyl-p-tyrosine-induced DA disappearance and on the pargyline-induced 3-methoxytyramine accumulation in the SNpc or SNpr. Taken together, these results indicate that the DA synthesis rate, but not the DA release, are influenced by DA receptor activity and neuronal firing in the SNpc and SNpr. This is in contrast to the situation in the striatum, where both the DA synthesis rate and the DA release are under such control.
Collapse
Affiliation(s)
- H Nissbrandt
- Department of Pharmacology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
17
|
Floran B, Silva I, Nava C, Aceves J. Presynaptic modulation of the release of GABA by GABAA receptors in pars compacta and by GABAB receptors in pars reticulata of the rat substantia nigra. Eur J Pharmacol 1988; 150:277-86. [PMID: 2843383 DOI: 10.1016/0014-2999(88)90008-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of GABA agonists and antagonists on K+-stimulated [3H]GABA release was studied to assess how presynaptic GABA receptors modulate GABA release. The release was affected in a quite different manner in the pars compacta and in the pars reticulata. Muscimol markedly inhibited the release from the pars compacta but had no effect on the release from the pars reticulata. Baclofen inhibited the release from the pars reticulata without affecting the release from the pars compacta. Bicuculline itself facilitated the release from the pars compacta but inhibited the release from the pars reticulata. Picrotoxin facilitated the release from the pars compacta and had no effect in the pars reticulata. The results suggest that the release of GABA from GABAergic terminals in the substantia nigra of the rat brain is modulated by GABAA autoreceptors in the pars compacta and by GABAB receptors in the pars reticulata.
Collapse
Affiliation(s)
- B Floran
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigacíon del IPN, México, D.F
| | | | | | | |
Collapse
|
18
|
Castañeda E, Becker JB, Robinson TE. The long-term effects of repeated amphetamine treatment in vivo on amphetamine, KCl and electrical stimulation evoked striatal dopamine release in vitro. Life Sci 1988; 42:2447-56. [PMID: 3374264 DOI: 10.1016/0024-3205(88)90343-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exposure to amphetamine (AMPH) in vivo produces an enduring enhancement ('sensitization') in AMPH-stimulated striatal DA release in vitro. Experiments were conducted to determine whether striatal DA release evoked by neuronal depolarization is altered by AMPH pretreatment in a similar manner. It was found that AMPH pretreatment produced a long-lasting (at least one week) enhancement in striatal DA release evoked by AMPH, KCl or electrical field stimulation. In contrast, the basal rate of DA efflux was not altered by pretreatment condition. A mechanism by which a single change in the intracellular distribution of DA could enhance both AMPH- and depolarization-induced DA release is proposed.
Collapse
Affiliation(s)
- E Castañeda
- Department of Psychology, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
19
|
Lin CJ, Cheng JT. Picric acid-evoked release of [14C]acetylcholine from the isolated synaptosome of rat cerebral cortex. Neurosci Lett 1986; 68:288-92. [PMID: 2875422 DOI: 10.1016/0304-3940(86)90504-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Picric acid stimulated, in a dose-dependent manner, the release of [14C]acetylcholine (ACh) from isolated synaptosomes of rat cerebral cortex pre-loaded with labelled choline. Radioactive ACh was separated for counting from choline in the synaptosomal supernatants by a liquid cation-exchange method. Neither the nicotinic antagonist (hexamethonium) nor the muscarinic antagonists (atropine and scopolamine) affected the effectiveness of picric acid, suggesting that the action of picric acid does not occur through a cholinoceptor-mediated mechanism. Moreover, oxotremorine, but not pilocarpine, inhibited ACh release in a concentration-dependent manner in either basal- or picric acid-evoked conditions, indicating the presence of muscarinic M2-receptors for auto-regulation of ACh release. The effect of picric acid was compared with high-K+ depolarization which also initiated a non-receptor-mediated release of ACh. Deletion of calcium ion from the medium negated the effects of both drugs. The ACh-releasing effect of picric acid was totally abolished, whereas high-K+ depolarization was reduced to some extent, when tetrodotoxin was added to the medium. These results indicate that picric acid acts as a releaser of ACh in the cerebrocortex of rat.
Collapse
|
20
|
Flint RS, Murphy JM, McBride WJ. Release of endogenous dopamine, 3,4-dihydroxyphenylacetic acid, and amino acid transmitters from rat striatal slices. Neurochem Res 1985; 10:515-27. [PMID: 2860579 DOI: 10.1007/bf00964655] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The release of endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) was measured in superfused striatal slices of the rat and the results compared with data obtained for the release of endogenous (a) DA and DOPAC in the cerebral cortex, nucleus accumbens and thalamus; (b) 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), GABA, and glutamate in the striatum; and (c) GABA, glutamate and 5-HT in the cerebral cortex. In superfused slices of all four CNS regions, there appeared to be a Ca2+-dependent, K+-stimulated release of endogenous DA. In addition, in slices of the striatum and nucleus accumbens there also appeared to be a Ca2+ -dependent, 60 mM K+ stimulated release of endogenous DOPAC. In the striatum, 16 mM Mg2+ was as effective as 2.5 mM Ca2+ in promoting the 60 mM K+-stimulated release of DOPAC. In addition, 16 mM Mg2+ appeared to function as a weak Ca2+ agonist since it also promoted the release of DA to approximately 40% of the level attained with Ca2+ in the presence of 60 mM K+. On the other hand, in the striatum, 16 mM Mg2+ inhibited the Ca2+-dependent, 60 mM K+-stimulated release of GABA and glutamate. Similar Mg2+-inhibition was observed in the cerebral cortex not only for GABA and glutamate but also for DA and 5-HT. With the use of alpha-methyl rho-tyrosine (tyrosine hydroxylase inhibitor), cocaine (uptake inhibitor) and pargyline (monoamine oxidase inhibitor), it was determined that most of the released DA and DOPAC was synthesized in the slices during the superfusion; DOPAC was not formed from DA which had been released and taken up; and DA and DOPAC were released from DA nerve terminals. In addition, the data indicate a difference in the release process between the amino acids and the monoamines from striatal slices since Mg2+ inhibited the Ca2+-dependent, K+-stimulated release of GABA and glutamate and appeared to promote the release of DA and 5-HT.
Collapse
|
21
|
Dopamine and acetylcholinesterase released in the substantia nigra: Cooperative or coincindental? Neurochem Int 1985; 7:905-12. [DOI: 10.1016/0197-0186(85)90138-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Arbuthnott GW, Brown JR, Kapoor V, Whale D. Presynaptic Actions and Dopamine in the Neostriatum. ADVANCES IN BEHAVIORAL BIOLOGY 1984. [DOI: 10.1007/978-1-4684-1212-3_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Sarkar DK, Gottschall PE, Meites J, Horn A, Dow RC, Fink G, Cuello AC. Uptake and release of [3H]dopamine by the median eminence: evidence for presynaptic dopaminergic receptors and for dopaminergic feedback inhibition. Neuroscience 1983; 10:821-30. [PMID: 6646431 DOI: 10.1016/0306-4522(83)90219-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The accumulation and release of [3H]dopamine by the median eminence in vitro was studied after treatments with different pharmacological agents, to determine whether such a procedure would be useful for measuring neuronal activity in the tuberoinfundibular dopaminergic system. The accumulation of [3H]dopamine was temperature, time, and sodium dependent, and reduced by unlabelled dopamine and by a potent dopamine uptake blocker, nomifensine. The outflow of tritium was studied after blocking the oxidative deamination of dopamine by nialamide. The outflow of tritium was elicited consistently by biphasic square wave electrical pulses and by high molarity potassium ions. The response to electrical stimulation was dependent largely on calcium and partially on sodium. The response to high molarity potassium ions was reduced in the absence of calcium ions. The response to electrical stimulation was increased by nomifensine and by a dopaminergic antagonist, haloperidol, and was reduced by dopamine and by a dopaminergic agonist, piribedil. The inhibitory action of dopamine was antagonized by haloperidol. These results indicate the existence of uptake and release mechanisms in the tuberoinfundibular dopamine neurons, and suggest that dopamine may inhibit its own release via dopaminergic receptors. This in vitro method may be useful for measuring dopamine uptake and release by tuberoinfundibular dopaminergic neurons.
Collapse
|