1
|
Farahani FV, Ismaila LE, Sadowsky CL, Sair HI, Chen LM, Belegu V, Pekar JJ, Lindquist MA, Choe AS. Brain Network Alterations in Chronic Spinal Cord Injury: Multilayer Community Detection Approach. Neurotrauma Rep 2024; 5:1048-1059. [PMID: 39744611 PMCID: PMC11685503 DOI: 10.1089/neur.2024.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025] Open
Abstract
Neurological recovery in individuals with spinal cord injury (SCI) is multifaceted, involving mechanisms such as remyelination and perilesional spinal neuroplasticity, with cortical reorganization being one contributing factor. Cortical reorganization, in particular, can be evaluated through network (graph) analysis of interregional functional connectivity. This study aimed to investigate cortical reorganization patterns in persons with chronic SCI using a multilayer community detection approach on resting-state functional MRI data. Thirty-eight participants with chronic cervical or thoracic SCI and 32 matched healthy controls were examined. Significant alterations in brain community structures were observed in the SCI cohort, particularly within the sensorimotor network (SMN). Importantly, this revealed a pattern of segregation within the SMN, aligning with borders of representations of the upper and lower body and orofacial regions. The SCI cohort showed reduced recruitment and integration coefficients across multiple brain networks, indicating impaired internetwork communication that may underlie sensory and motor deficits in persons with SCI. These findings highlight the impact of SCI on brain connectivity and suggest potential compensatory mechanisms.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lukman E. Ismaila
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging at Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Cristina L. Sadowsky
- International Center for Spinal Cord Injury at Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Haris I. Sair
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Visar Belegu
- International Center for Spinal Cord Injury at Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - James J. Pekar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging at Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Martin A. Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ann S. Choe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging at Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Araujo TPF, Cristante AF, Marcon RM, Santos GBD, Nicola MHA, Araujo AOD, Sanchez FB, Barros Filho TEPD. Improvement of motor function in mice after implantation of mononuclear stem cells from human umbilical cord and placenta blood after 3 and 6 weeks of experimental spinal cord injury. Clinics (Sao Paulo) 2024; 79:100509. [PMID: 39393277 PMCID: PMC11736333 DOI: 10.1016/j.clinsp.2024.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/04/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
STUDY DESIGN Experimental study utilizing with a standardized model (MASCIS Impactor) of Spinal Cord Injury (SCI) in Balb C mouse model with implantation of mononuclear stem cells derived from the human umbilical cord and placenta blood in the early chronic phase of SCI. OBJECTIVES The aim of this study was to evaluate the nerve regeneration and motor functional recovery in Balb C mice with surgically induced paraplegia in response to the use of mononuclear stem cells, in early chronic phase (> 2 weeks and < 6 months), because there is yet potential of neuronal and functional recovery as the neuronal scar is not still completely established. METHODS Forty-eight mice were randomly assigned to 6 groups of 8 animals. Group 1 received the stem cells 3 weeks after the trauma, and Group 2 received them six weeks later. In Group 3, saline solution was injected at the site of the lesion 3 weeks after the trauma, and in Group 4, 6 weeks later. Group 5 underwent only spinal cord injury and Group 6 underwent laminectomy only. The scales used for motor assessment were BMS and MFS for 12 weeks. RESULTS The intervention groups showed statistically significant motor improvement. In the histopathological analysis, the intervention groups had a lower degree of injury (p < 0.05). Regarding axonal budding, the intervention groups showed increasing in axonal budding in the caudal portion (p < 0.05). CONCLUSIONS The use of stem cells in mice in the chronic phase after 3 and 6 weeks of SCI brings functional and histopathological benefits to them.
Collapse
Affiliation(s)
| | - Alexandre Fogaça Cristante
- Department of Orthopedic Surgery, Instituto de Ortopedia e Traumatologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raphael Martus Marcon
- Department of Orthopedic Surgery, Instituto de Ortopedia e Traumatologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gustavo Bispo Dos Santos
- Department of Orthopedic Surgery, Instituto de Ortopedia e Traumatologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Alex Oliveira de Araujo
- Department of Orthopedic Surgery, Rede SARAH de Hospitais de Reabilitação, SMHS - Área Especial, Brasília, DF, Brazil
| | - Fernando Barbosa Sanchez
- Department of Orthopedic Surgery, Instituto de Ortopedia e Traumatologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Estera LA, Walsh SP, Headen JA, Williamson RE, Kalinski AL. Neuroinflammation: Breaking barriers and bridging gaps. Neurosci Res 2023; 197:9-17. [PMID: 34748905 DOI: 10.1016/j.neures.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Neurons are the cells of the nervous system and are responsible for every thought, movement and perception. Immune cells are the cells of the immune system, constantly protecting from foreign pathogens. Understanding the interaction between the two systems is especially important in disease states such as autoimmune or neurodegenerative disease. Unfortunately, this interaction is typically detrimental to the host. However, recent efforts have focused on how neurons and immune cells interact, either directly or indirectly, following traumatic injury to the nervous system. The outcome of this interaction can be beneficial - leading to successful neural repair, or detrimental - leading to functional deficits, depending on where the injury occurs. This review will discuss our understanding of neuron-immune cell interactions after traumatic injury to both the peripheral and central nervous system.
Collapse
Affiliation(s)
- Lora A Estera
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Sam P Walsh
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Jordan A Headen
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | - Ashley L Kalinski
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| |
Collapse
|
4
|
Metcalfe M, David BT, Langley BC, Hill CE. Elevation of NAD + by nicotinamide riboside spares spinal cord tissue from injury and promotes locomotor recovery. Exp Neurol 2023; 368:114479. [PMID: 37454712 DOI: 10.1016/j.expneurol.2023.114479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Spinal cord injury (SCI)-induced tissue damage spreads to neighboring spared cells in the hours, days, and weeks following injury, leading to exacerbation of tissue damage and functional deficits. Among the biochemical changes is the rapid reduction of cellular nicotinamide adenine dinucleotide (NAD+), an essential coenzyme for energy metabolism and an essential cofactor for non-redox NAD+-dependent enzymes with critical functions in sensing and repairing damaged tissue. NAD+ depletion propagates tissue damage. Augmenting NAD+ by exogenous application of NAD+, its synthesizing enzymes, or its cellular precursors mitigates tissue damage. Nicotinamide riboside (NR) is considered to be one of the most promising NAD+ precursors for clinical application due to its ability to safely and effectively boost cellular NAD+ synthesis in rats and humans. Moreover, various preclinical studies have demonstrated that NR can provide tissue protection. Despite these promising findings, little is known about the potential benefits of NR in the context of SCI. In the current study, we tested whether NR administration could effectively increase NAD+ levels in the injured spinal cord and whether this augmentation of NAD+ would promote spinal cord tissue protection and ultimately lead to improvements in locomotor function. Our findings indicate that administering NR (500 mg/kg) intraperitoneally from four days before to two weeks after a mid-thoracic contusion-SCI injury, effectively doubles NAD+ levels in the spinal cord of Long-Evans rats. Moreover, NR administration plays a protective role in preserving spinal cord tissue post-injury, particularly in neurons and axons, as evident from the observed gray and white matter sparing. Additionally, it enhances motor function, as evaluated through the BBB subscore and missteps on the horizontal ladderwalk. Collectively, these findings demonstrate that administering NR, a precursor of NAD+, increases NAD+ within the injured spinal cord and effectively mitigates the tissue damage and functional decline that occurs following SCI.
Collapse
Affiliation(s)
- Mariajose Metcalfe
- Burke Neurological Institute, White Plains, NY, United States; Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States.
| | - Brian T David
- Burke Neurological Institute, White Plains, NY, United States; Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States.
| | - Brett C Langley
- Burke Neurological Institute, White Plains, NY, United States; Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States.
| | - Caitlin E Hill
- Burke Neurological Institute, White Plains, NY, United States; Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States.
| |
Collapse
|
5
|
D’hondt N, Marcial KM, Mittal N, Costanzi M, Hoydonckx Y, Kumar P, Englesakis MF, Burns A, Bhatia A. A Scoping Review of Epidural Spinal Cord Stimulation for Improving Motor and Voiding Function Following Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2023; 29:12-30. [PMID: 37235192 PMCID: PMC10208259 DOI: 10.46292/sci22-00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Objectives To identify and synthesize the existing evidence on the effectiveness and safety of epidural spinal cord stimulation (SCS) for improving motor and voiding function and reducing spasticity following spinal cord injury (SCI). Methods This scoping review was performed according to the framework of Arksey and O'Malley. Comprehensive serial searches in multiple databases (MEDLINE, Embase, Cochrane Central, Cochrane Database of Systematic Reviews, LILACS, PubMed, Web of Science, and Scopus) were performed to identify relevant publications that focused on epidural SCS for improving motor function, including spasticity, and voiding deficits in individuals with SCI. Results Data from 13 case series including 88 individuals with complete or incomplete SCI (American Spinal Injury Association Impairment Scale [AIS] grade A to D) were included. In 12 studies of individuals with SCI, the majority (83 out of 88) demonstrated a variable degree of improvement in volitional motor function with epidural SCS. Two studies, incorporating 27 participants, demonstrated a significant reduction in spasticity with SCS. Two small studies consisting of five and two participants, respectively, demonstrated improved supraspinal control of volitional micturition with SCS. Conclusion Epidural SCS can enhance central pattern generator activity and lower motor neuron excitability in individuals with SCI. The observed effects of epidural SCS following SCI suggest that the preservation of supraspinal transmission is sufficient for the recovery of volitional motor and voiding function, even in patients with complete SCI. Further research is warranted to evaluate and optimize the parameters for epidural SCS and their impact on individuals with differing degrees of severity of SCI.
Collapse
Affiliation(s)
- Nina D’hondt
- Department of Pain Medicine, Multidisciplinary Pain Center, VITAZ, Sint-Niklaas, Belgium
| | - Karmi Margaret Marcial
- Department of Anesthesiology, Philippine General Hospital, University of Philippines, Philippines
| | - Nimish Mittal
- Department of Physical Medicine and Rehabilitation, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Matteo Costanzi
- Department of Anesthesiology and Intensive Care Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Yasmine Hoydonckx
- Department of Anesthesiology and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Pranab Kumar
- Department of Anesthesiology and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Marina F. Englesakis
- MLIS Library & Information Services, University Health Network, Toronto, Ontario, Canada
| | - Anthony Burns
- Department of Physical Medicine and Rehabilitation, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Anuj Bhatia
- Department of Anesthesiology and Pain Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Differences in sensorimotor and functional recovery between the dominant and non-dominant upper extremity following cervical spinal cord injury. Spinal Cord 2022; 60:422-427. [PMID: 35273373 DOI: 10.1038/s41393-022-00782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Post hoc analysis of prospective multi-national, multi-centre cohort study. OBJECTIVE Determine whether cerebral dominance influences upper extremity recovery following cervical spinal cord injury (SCI). SETTING A multi-national subset of the longitudinal GRASSP dataset (n = 127). METHODS Secondary analysis of prospective, longitudinal multicenter study of individuals with cervical SCI (n = 73). Study participants were followed for up to 12 months after a cervical SCI, and the following outcome measures were serially assessed - the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP) and the International Standards for the Neurological Classification of SCI (ISNCSCI), including upper extremity motor and sensory scores. Observed recovery and relative (percent) recovery were then determined for both the GRASSP and ISNCSCI, based on change from initial to last available assessment. RESULTS With the exception of prehension performance (quantitative grasping) following complete cervical SCI, there were no significant differences (p < 0.05) for observed and relative (percent) recovery, between the dominant and non-dominant upper extremities, as measured using GRASSP subtests, ISNCSCI motor scores and ISNCSCI sensory scores. CONCLUSION Despite well documented differences between the cerebral hemispheres, cerebral dominance appears to play a limited role in upper extremity recovery following acute cervical SCI.
Collapse
|
7
|
Romanelli P, Bieler L, Heimel P, Škokić S, Jakubecova D, Kreutzer C, Zaunmair P, Smolčić T, Benedetti B, Rohde E, Gimona M, Hercher D, Dobrivojević Radmilović M, Couillard-Despres S. Enhancing Functional Recovery Through Intralesional Application of Extracellular Vesicles in a Rat Model of Traumatic Spinal Cord Injury. Front Cell Neurosci 2022; 15:795008. [PMID: 35046776 PMCID: PMC8762366 DOI: 10.3389/fncel.2021.795008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
Local inflammation plays a pivotal role in the process of secondary damage after spinal cord injury. We recently reported that acute intravenous application of extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stromal cells dampens the induction of inflammatory processes following traumatic spinal cord injury. However, systemic application of EVs is associated with delayed delivery to the site of injury and the necessity for high doses to reach therapeutic levels locally. To resolve these two constraints, we injected EVs directly at the lesion site acutely after spinal cord injury. We report here that intralesional application of EVs resulted in a more robust improvement of motor recovery, assessed with the BBB score and sub-score, as compared to the intravenous delivery. Moreover, the intralesional application was more potent in reducing inflammation and scarring after spinal cord injury than intravenous administration. Hence, the development of EV-based therapy for spinal cord injury should aim at an early application of vesicles close to the lesion.
Collapse
Affiliation(s)
- Pasquale Romanelli
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Innovacell AG, Innsbruck, Austria
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dominika Jakubecova
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Pia Zaunmair
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Tomislav Smolčić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Bruno Benedetti
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), Salzburg, Austria
- Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
8
|
Assunção Silva RC, Pinto L, Salgado AJ. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med Res Rev 2021; 42:850-896. [PMID: 34783046 DOI: 10.1002/med.21865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.
Collapse
Affiliation(s)
- Rita C Assunção Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
de Sousa N, Santos D, Monteiro S, Silva N, Barreiro-Iglesias A, Salgado AJ. Role of Baclofen in Modulating Spasticity and Neuroprotection in Spinal Cord Injury. J Neurotrauma 2021; 39:249-258. [PMID: 33599153 DOI: 10.1089/neu.2020.7591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal cord injury (SCI) affects an estimated three million persons worldwide, with ∼180,000 new cases reported each year leading to severe motor and sensory functional impairments that affect personal and social behaviors. To date, no effective treatment has been made available to promote neurological recovery after SCI. Deficits in motor function is the most visible consequence of SCI; however, other secondary complications produce a significant impact on the welfare of patients with SCI. Spasticity is a neurological impairment that affects the control of muscle tone as a consequence of an insult, trauma, or injury to the central nervous system, such as SCI. The management of spasticity can be achieved through the combination of both nonpharmacological and pharmacological approaches. Baclofen is the most effective drug for spasticity treatment, and it can be administered both orally and intrathecally, depending on spasticity location and severity. Interestingly, recent data are revealing that baclofen can also play a role in neuroprotection after SCI. This new function of baclofen in the SCI scope is promising for the prospect of developing new pharmacological strategies to promote functional recovery in patients with SCI.
Collapse
Affiliation(s)
- Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Diogo Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | - Nuno Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| | | | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Kent M, Barber RM, Glass EN, Arnold SA, Bibi KF, Stewart GV, Ruby JL, Perlini M, Platt SR. Poliomyelomalacia in three dogs that underwent hemilaminectomy for intervertebral disk herniation. J Am Vet Med Assoc 2021; 257:397-405. [PMID: 32715880 DOI: 10.2460/javma.257.4.397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION 3 dogs were examined because of a sudden onset of signs of pain (1 dog) or paraparesis (2 dogs). CLINICAL FINDINGS Neurologic findings consisted of myelopathy affecting the lumbar intumescence (1 dog) and T3-L3 myelopathy (2 dogs). In all dogs, MRI revealed spinal cord compression caused by L3-4 disk herniation. All dogs underwent routine surgical decompression of the intervertebral disk herniation. During MRI and decompressive surgery, physiologic variables were monitored. Immediately after surgery, all dogs were paraplegic with pelvic limb neurologic dysfunction consistent with myelopathy affecting the L4 through caudal spinal cord segments. TREATMENT AND OUTCOME Within 24 hours after surgery, repeated MRI in all dogs revealed hyperintensity in the spinal cord gray matter of the lumbar intumescence on T2-weighted images. In the absence of neurologic improvement, dogs were euthanized at 3, 91, and 34 days after surgery. Postmortem microscopic examination of each dog's spinal cord at the lumbar intumescence revealed necrosis of the gray matter with relative white matter preservation suggestive of an ischemic injury. CLINICAL RELEVANCE Dramatic neurologic deterioration following decompressive surgery for intervertebral disk herniation in dogs may be associated with the development of poliomyelomalacia secondary to ischemia. In these 3 dogs, ischemia developed despite probable maintenance of normal spinal cord blood flow and perfusion during anesthesia. To exclude other causes, such as compression or hemorrhage, MRI was repeated and revealed hyperintensity of the spinal cord gray matter on T2-weighted images, which microscopically corresponded with ischemic neurons and neuronal loss.
Collapse
|
11
|
Khaing ZZ, Cates LN, Dewees DM, Hyde JE, Gaing A, Birjandian Z, Hofstetter CP. Effect of Durotomy versus Myelotomy on Tissue Sparing and Functional Outcome after Spinal Cord Injury. J Neurotrauma 2020; 38:746-755. [PMID: 33121382 DOI: 10.1089/neu.2020.7297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Various surgical strategies have been developed to alleviate elevated intraspinal pressure (ISP) following acute traumatic spinal cord injury (tSCI). Surgical decompression of either the dural (durotomy) or the dural and pial (myelotomy) lining of the spinal cord has been proposed. However, a direct comparison of these two strategies is lacking. Here, we compare the histological and functional effects of durotomy alone and durotomy plus myelotomy in a rodent model of acute thoracic tSCI. Our results indicate that tSCI causes local tissue edema and significantly elevates ISP (7.4 ± 0.3 mmHg) compared with physiological ISP (1.7 ± 0.4 mmHg; p < 0.001). Both durotomy alone and durotomy plus myelotomy effectively mitigate elevated local ISP (p < 0.001). Histological examination at 10 weeks after tSCI revealed that durotomy plus myelotomy promoted spinal tissue sparing by 13.7% compared with durotomy alone, and by 25.9% compared with tSCI-only (p < 0.0001). Both types of decompression surgeries elicited a significant beneficial impact on gray matter sparing (p < 0.01). Impressively, durotomy plus myelotomy surgery increased preservation of motor neurons by 174.3% compared with tSCI-only (p < 0.05). Durotomy plus myelotomy surgery also significantly promoted recovery of hindlimb locomotor function in an open-field test (p < 0.001). Interestingly, only durotomy alone resulted in favorable recovery of bladder and Ladder Walk performance. Combined, our data suggest that durotomy plus myelotomy following acute tSCI facilitates tissue sparing and recovery of locomotor function. In the future, biomarkers identifying spinal cord injuries that can benefit from either durotomy alone or durotomy plus myelotomy need to be developed.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Lindsay N Cates
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Dane M Dewees
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Jeffrey E Hyde
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Ashley Gaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Zeinab Birjandian
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Christoph P Hofstetter
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Lewis MJ, Jeffery ND, Olby NJ. Ambulation in Dogs With Absent Pain Perception After Acute Thoracolumbar Spinal Cord Injury. Front Vet Sci 2020; 7:560. [PMID: 33062648 PMCID: PMC7479830 DOI: 10.3389/fvets.2020.00560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Acute thoracolumbar spinal cord injury (SCI) is common in dogs frequently secondary to intervertebral disc herniation. Following severe injury, some dogs never regain sensory function to the pelvic limbs or tail and are designated chronically "deep pain negative." Despite this, a subset of these dogs develop spontaneous motor recovery over time including some that recover sufficient function in their pelvic limbs to walk independently without assistance or weight support. This type of ambulation is commonly known as "spinal walking" and can take up to a year or more to develop. This review provides a comparative overview of locomotion and explores the physiology of locomotor recovery after severe SCI in dogs. We discuss the mechanisms by which post-injury plasticity and coordination between circuitry contained within the spinal cord, peripheral sensory feedback, and residual or recovered supraspinal connections might combine to underpin spinal walking. The clinical characteristics of spinal walking are outlined including what is known about the role of patient or injury features such as lesion location, timeframe post-injury, body size, and spasticity. The relationship between the emergence of spinal walking and electrodiagnostic and magnetic resonance imaging findings are also discussed. Finally, we review possible ways to predict or facilitate recovery of walking in chronically deep pain negative dogs. Improved understanding of the mechanisms of gait generation and plasticity of the surviving tissue after injury might pave the way for further treatment options and enhanced outcomes in severely injured dogs.
Collapse
Affiliation(s)
- Melissa J Lewis
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, United States
| | - Nick D Jeffery
- Department of Small Animal Clinical Sciences, Texas a & M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States
| | - Natasha J Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| | | |
Collapse
|
13
|
Wu Z, Li L, Xie F, Xu G, Dang D, Yang Q. Enhancing KCNQ Channel Activity Improves Neurobehavioral Recovery after Spinal Cord Injury. J Pharmacol Exp Ther 2020; 373:72-80. [PMID: 31969383 PMCID: PMC7076523 DOI: 10.1124/jpet.119.264010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) usually leads to acute neuronal death and delayed secondary degeneration, resulting in sensory dysfunction, paralysis, and chronic pain. Excessive excitation is one of the critical factors leading to secondary neural damage initiated by various insults. KCNQ/Kv7 channels are highly expressed in spinal neurons and axons and play an important role in controlling their excitability. Enhancing KCNQ channel activity by using its specific opener retigabine could thus be a plausible treatment strategy to reduce the pathology after SCI. We produced contusive SCI at T10 in adult male rats, which then received 10 consecutive days' treatment with retigabine or vehicle starting 3 hours or 3 days after contusion. Two different concentrations and two different delivery methods were applied. Delivery of retigabine via Alzet osmotic pumps, but not intraperitoneal injections 3 hours after contusion, promoted recovery of locomotor function. Remarkably, retigabine delivery in both methods significantly attenuated the development of mechanical stimuli-induced hyperreflexia and spontaneous pain; however, no significant difference in the thermal threshold was observed. Although retigabine delivered 3 days after contusion significantly attenuated the development of mechanical hypersensitivity and spontaneous pain, the locomotor function is not improved by the delayed treatments. Finally, we found that early application of retigabine attenuates the inflammatory activity in the spinal cord and increases the survival of white matter after SCI. Our results suggest that decreasing neuronal excitability by targeting KCNQ/Kv7 channels at acute stage aids the recovery of locomotor function and attenuates the development of neuropathic pain after SCI. SIGNIFICANCE STATEMENT: Several pharmacological interventions have been proposed for spinal cord injury (SCI) treatment, but none have been shown to be both effective and safe in clinical trials. Necrotic neuronal death and chronic pain are often the cost of pathological neural excitation after SCI. We show that early, brief application of retigabine could aid locomotor and sensory neurobehavioral recovery after SCI, supporting the use of this drug in the clinic to promote motor and sensory function in patients with SCI.
Collapse
Affiliation(s)
- Zizhen Wu
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Lin Li
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Fuhua Xie
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Guoying Xu
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Danny Dang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| | - Qing Yang
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (Z.W.); Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health, Houston, Texas (L.L., F.X.); Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (F.X.); and Department of Neuroscience, Cell Biology and Anatomy at University of Texas Medical Branch, Galveston, Texas (G.X., D.D., Q.Y.)
| |
Collapse
|
14
|
Rajaee A, Geisen ME, Sellers AK, Stirling DP. Repeat intravital imaging of the murine spinal cord reveals degenerative and reparative responses of spinal axons in real-time following a contusive SCI. Exp Neurol 2020; 327:113258. [PMID: 32105708 DOI: 10.1016/j.expneurol.2020.113258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) induces a secondary degenerative response that causes the loss of spared axons and worsens neurological outcome. The complex molecular mechanisms that mediate secondary axonal degeneration remain poorly understood. To further our understanding of secondary axonal degeneration following SCI, we assessed the spatiotemporal dynamics of axonal spheroid and terminal bulb formation following a contusive SCI in real-time in vivo. Adult 6-8 week old Thy1YFP transgenic mice underwent a T12 laminectomy for acute imaging sessions or were implanted with a custom spinal cord imaging chamber for chronic imaging of the spinal cord. Two-photon excitation time-lapse microscopy was performed prior to a mild contusion SCI (30 kilodyne, IH Impactor) and at 1-4 h and 1-14 days post-SCI. We quantified the number of axonal spheroids, their size and distribution, the number of endbulbs, and axonal survival from 1 h to 14 days post-SCI. Our data reveal that the majority of axons underwent swelling and axonal spheroid formation acutely after SCI resulting in the loss of ~70% of axons by 1 day after injury. In agreement, the number of axonal spheroids rapidly increased at 1 h after SCI and remained significantly elevated up to 14 days after SCI. Furthermore, the distribution of axonal spheroids spread mediolaterally over time indicative of delayed secondary degenerative processes. In contrast, axonal endbulbs were relatively sparse and their numbers peaked at 1 day after injury. Intriguingly, axonal survival significantly increased at 7 and 14 days compared to 3 days after SCI revealing a potential endogenous axonal repair process that mirrors the known spontaneous functional recovery after SCI. In support, ~43% of tracked axonal spheroids resolved over the course of observation revealing their dynamic nature. Furthermore, axonal spheroids and endbulbs accumulated mitochondria and excessive tubulin polyglutamylation suggestive of disrupted axonal transport as a shared mechanism. Collectively, this study provides important insight into both degenerative and recoverable responses of axons following contusive SCI in real-time. Understanding how axons spontaneously recover after SCI will be an important avenue for future SCI research and may help guide future clinical trials.
Collapse
Affiliation(s)
- Arezoo Rajaee
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Mariah E Geisen
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Alexandra K Sellers
- Department of Bioengineering, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
15
|
Chiha W, Bartlett CA, Petratos S, Fitzgerald M, Harvey AR. Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury. Exp Neurol 2020; 326:113167. [PMID: 31904385 DOI: 10.1016/j.expneurol.2019.113167] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022]
Abstract
Secondary degeneration following an initial injury to the central nervous system (CNS) results in increased tissue loss and is associated with increasing functional impairment. Unilateral partial dorsal transection of the adult rat optic nerve (ON) has proved to be a useful experimental model in which to study factors that contribute to secondary degenerative events. Using this injury model, we here quantified the protective effects of intravitreally administered bi-cistronic adeno-associated viral (AAV2) vectors encoding either brain derived neurotrophic factor (BDNF) or a mutant, phospho-resistant, version of collapsin response mediator protein 2 (CRMP2T555A) on retinal ganglion cells (RGCs), their axons, and associated myelin. To test for potential synergistic interactions, some animals received combined injections of both vectors. Three months post-injury, all treatments maintained RGC numbers in central retina, but only AAV2-BDNF significantly protected ventrally located RGCs exclusively vulnerable to secondary degeneration. Behaviourally, treatments that involved AAV2-BDNF significantly restored the number of smooth-pursuit phases of optokinetic nystagmus. While all therapeutic regimens preserved axonal density and proportions of typical complexes, including heminodes and single nodes, BDNF treatments were generally more effective in maintaining the length of the node of Ranvier in myelin surrounding ventral ON axons after injury. Both AAV2-BDNF and AAV2-CRMP2T555A prevented injury-induced changes in G-ratio and overall myelin thickness, but only AAV2-BDNF administration protected against large-scale myelin decompaction in ventral ON. In summary, in a model of secondary CNS degeneration, both BDNF and CRMP2T555A vectors were neuroprotective, however different efficacies were observed for these overexpressed proteins in the retina and ON, suggesting disparate cellular and molecular targets driving responses for neural repair. The potential use of these vectors to treat other CNS injuries and pathologies is discussed.
Collapse
Affiliation(s)
- Wissam Chiha
- School of Biological Sciences, The University of Western Australia, WA 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, Belmont, WA 6102, Australia
| | - Carole A Bartlett
- School of Biological Sciences, The University of Western Australia, WA 6009, Australia
| | - Steven Petratos
- Department of Neuroscience, Monash University, VIC 3004, Australia
| | - Melinda Fitzgerald
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, Belmont, WA 6102, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, WA 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia.
| |
Collapse
|
16
|
Zhu FC, Jiang DM, Zhang MH, Zhao B, He C, Yang J. Adenovirus vector‑mediated in vivo gene transfer of nuclear factor erythroid‑2p45‑related factor 2 promotes functional recovery following spinal cord contusion. Mol Med Rep 2019; 20:4285-4292. [PMID: 31545436 DOI: 10.3892/mmr.2019.10687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 07/24/2019] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate whether nuclear factor erythroid 2p45‑related factor 2 (Nrf2) overexpression by gene transfer may protect neurons/glial cells and the association between neurons/glial cells and axons in spinal cord injury (SCI). In the present study, Nrf2 recombinant adenovirus (Ad) vectors were constructed. The protein levels of Nrf2 in the nucleus and of the Nrf2‑regulated gene products heme oxygenase‑1 (HO‑1) and NAD (P)H‑quinone oxidoreductase‑1 (NQO1), were detected using western blot analysis in PC12 cells following 48 h of transfection. Furthermore, the expression of Nrf2 was localized using an immunofluorescence experiment, and the expression of Nrf2, HO‑1 and NQO1 were detected using an immunohistochemical experiment in the grey matter of spinal cord in rats. Post‑injury motor behavior was assessed via the Basso, Beattie and Bresnahan (BBB) locomotor scale method. In PC12 cells, subsequent to Ad‑Nrf2 transfection, nuclear Nrf2, HO‑1 and NQO1 levels were significantly increased compared with the control (P<0.01). There was statistically significant changes in the PC12‑Ad‑Nrf2 group [Nrf2 (1.146±0.095), HO‑1 (1.816±0.095) and NQO1 (1.421±0.138)] compared with the PC12‑control group [Nrf2 (0.717±0.055), HO‑1 (1.264±0.081) and NQO1 (0.921±0.088)] and PC12‑Ad‑green fluorescent protein group [Nrf2 (0.714±0.111), HO‑1 (1.238±0.053) and NQO1 (0.987±0.045); P<0.01]. The BBB scores of the rats indicated that they had improved functional recovery following the local injection of Ad‑Nrf2. On the third day following the operation, BBB scores in the adenovirus groups (0.167±0.408) were significantly decreased compared with the SCI group (1±0.894; P<0.05). In the injured section of the spinal cord in the rats, the number of positive cells expressing Nrf2, HO‑1 and NQO1 were raised compared with the control and SCI groups, indicating that the adenovirus vector‑mediated gene transfer of Nrf2 promotes functional recovery following spinal cord contusion in rats.
Collapse
Affiliation(s)
- Feng-Chen Zhu
- Department of Orthopaedics, Yongchuan Affiliated Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Dian-Ming Jiang
- Department of Orthopaedics, The Third Affiliated Hospital, Chongqing Medical University, Chongqing 401120, P.R. China
| | - Ming-Hua Zhang
- Department of Orthopaedics, Yongchuan Affiliated Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Bo Zhao
- Department of Orthopaedics, Yongchuan Affiliated Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Chao He
- Department of Orthopaedics, Yongchuan Affiliated Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Jian Yang
- Department of Orthopaedics, Yongchuan Affiliated Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
17
|
Pukos N, Goodus MT, Sahinkaya FR, McTigue DM. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped? Glia 2019; 67:2178-2202. [PMID: 31444938 DOI: 10.1002/glia.23702] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) affects over 17,000 individuals in the United States per year, resulting in sudden motor, sensory and autonomic impairments below the level of injury. These deficits may be due at least in part to the loss of oligodendrocytes and demyelination of spared axons as it leads to slowed or blocked conduction through the lesion site. It has long been accepted that progenitor cells form new oligodendrocytes after SCI, resulting in the acute formation of new myelin on demyelinated axons. However, the chronicity of demyelination and the functional significance of remyelination remain contentious. Here we review work examining demyelination and remyelination after SCI as well as the current understanding of oligodendrocyte lineage cell responses to spinal trauma, including the surprisingly long-lasting response of NG2+ oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate into new myelinating oligodendrocytes for months after SCI. OPCs are highly sensitive to microenvironmental changes, and therefore respond to the ever-changing post-SCI milieu, including influx of blood, monocytes and neutrophils; activation of microglia and macrophages; changes in cytokines, chemokines and growth factors such as ciliary neurotrophic factor and fibroblast growth factor-2; glutamate excitotoxicity; and axon degeneration and sprouting. We discuss how these changes relate to spontaneous oligodendrogenesis and remyelination, the evidence for and against demyelination being an important clinical problem and if remyelination contributes to motor recovery.
Collapse
Affiliation(s)
- Nicole Pukos
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio.,Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio
| | - Matthew T Goodus
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| | - Fatma R Sahinkaya
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| |
Collapse
|
18
|
Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Plemel JR, Tetzlaff W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia 2019; 68:227-245. [PMID: 31433109 DOI: 10.1002/glia.23706] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are the most proliferative and dispersed population of progenitor cells in the adult central nervous system, which allows these cells to rapidly respond to damage. Oligodendrocytes and myelin are lost after traumatic spinal cord injury (SCI), compromising efficient conduction and, potentially, the long-term health of axons. In response, OPCs proliferate and then differentiate into new oligodendrocytes and Schwann cells to remyelinate axons. This culminates in highly efficient remyelination following experimental SCI in which nearly all intact demyelinated axons are remyelinated in rodent models. However, myelin regeneration comprises only one role of OPCs following SCI. OPCs contribute to scar formation after SCI and restrict the regeneration of injured axons. Moreover, OPCs alter their gene expression following demyelination, express cytokines and perpetuate the immune response. Here, we review the functional contribution of myelin regeneration and other recently uncovered roles of OPCs and their progeny to repair following SCI.
Collapse
Affiliation(s)
- Greg J Duncan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, Oregon
| | - Sohrab B Manesh
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Brett J Hilton
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Peggy Assinck
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jason R Plemel
- Department of Medicine, Division of Neurology, Neuroscience and Mental Health Institute, University of Alberta, Calgary, Alberta, Canada
| | - Wolfram Tetzlaff
- Graduate Program in Neuroscience, International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Departments of Zoology and Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
White MD, Nowicki KW, Sekula RF. Spatiotemporal Stimulation Re-establishes Voluntary Control of Previously Paralyzed Muscles During Locomotion After Spinal Cord Injury. Neurosurgery 2019; 85:E200-E202. [DOI: 10.1093/neuros/nyz168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 11/12/2022] Open
|
20
|
Standardized human bone marrow-derived stem cells infusion improves survival and recovery in a rat model of spinal cord injury. J Neurol Sci 2019; 402:16-29. [DOI: 10.1016/j.jns.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/02/2023]
|
21
|
Wang XJ, Shu GF, Xu XL, Peng CH, Lu CY, Cheng XY, Luo XC, Li J, Qi J, Kang XQ, Jin FY, Chen MJ, Ying XY, You J, Du YZ, Ji JS. Combinational protective therapy for spinal cord injury medicated by sialic acid-driven and polyethylene glycol based micelles. Biomaterials 2019; 217:119326. [PMID: 31288173 DOI: 10.1016/j.biomaterials.2019.119326] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) leads to immediate disruption of neuronal membranes and loss of neurons, followed by extensive secondary injury process. Treatment of SCI still remains a tremendous challenge clinically. Minocycline could target comprehensive secondary injury via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms. Polyethylene glycol (PEG), a known sealing agent, is able to seal the damaged cell membranes and reduce calcium influx, thereby exerting neuroprotective capacity. Here, an E-selectin-targeting sialic acid - polyethylene glycol - poly (lactic-co-glycolic acid) (SAPP) copolymer was designed for delivering hydrophobic minocycline to achieve combinational therapy of SCI. The obtained SAPP copolymer could self-assemble into micelles with critical micelle concentration being of 13.40 μg/mL, and effectively encapsulate hydrophobic minocycline. The prepared drug-loaded micelles (SAPPM) displayed sustained drug release over 72 h, which could stop microglia activation and exhibited excellent neuroprotective capacity in vitro. The SAPP micelles were efficiently accumulated in the lesion site of SCI rats via the specific binding between sialic acid and E-selectin. Due to the targeting distribution and combinational effect between PEG and minocycline, SAPPM could obviously reduce the area of lesion cavity, and realize more survival of axons and myelin sheaths from the injury, thus distinctly improving hindlimb functional recovery of SCI rats and conferring superior therapeutic effect in coparison with other groups. Our work presented an effective and safe strategy for SCI targeting therapy. Besides, neuroprotective capacity of PEG deserves further investigation on other central nervous system diseases.
Collapse
Affiliation(s)
- Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Gao-Feng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chen-Han Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Chen-Ying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Xing-Yao Cheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Xiang-Chao Luo
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Jie Li
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xu-Qi Kang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jian You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui, 323000, PR China.
| |
Collapse
|
22
|
Transplantation of miR‐219 overexpressed human endometrial stem cells encapsulated in fibrin hydrogel in spinal cord injury. J Cell Physiol 2019; 234:18887-18896. [DOI: 10.1002/jcp.28527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
|
23
|
Slusarczyk W, Olakowska E, Larysz-Brysz M, Woszczycka-Korczyńska I, de Carrillo DG, Węglarz WP, Lewin-Kowalik J, Marcol W. Use of ebselen as a neuroprotective agent in rat spinal cord subjected to traumatic injury. Neural Regen Res 2019; 14:1255-1261. [PMID: 30804257 PMCID: PMC6425832 DOI: 10.4103/1673-5374.251334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Spinal cord injury (SCI) causes disturbances of motor skills. Free radicals have been shown to be essential for the development of spinal cord trauma. Despite some progress, until now no effective pharmacological therapies against SCI have been verified. The purpose of our experiment was to investigate the neuroprotective effects of ebselen on experimental SCI. Twenty-two rats subjected to SCI were randomly subjected to SCI with no further treatment (n = 10) or intragastric administration of ebselen (10 mg/kg) immediately and 24 hours after SCI. Behavioral changes were assessed using the Basso, Beattie, and Bresnahan locomotor scale and footprint test during 12 weeks after SCI. Histopathological and immunohistochemical analyses of spinal cords and brains were performed at 12 weeks after SCI. Magnetic resonance imaging analysis of spinal cords was also performed at 12 weeks after SCI. Rats treated with ebselen presented only limited neurobehavioral progress as well as reduced spinal cord injuries compared with the control group, namely length of lesions (cysts/scars) visualized histopathologically in the spinal cord sections was less but cavity area was very similar. The same pattern was found in T2-weighted magnetic resonance images (cavities) and diffusion-weighted images (scars). The number of FluoroGold retrogradely labeled neurons in brain stem and motor cortex was several-fold higher in ebselen-treated rats than in the control group. The findings suggest that ebselen has only limited neuroprotective effects on injured spinal cord. All exprimental procedures were approved by the Local Animal Ethics Committee for Experiments on Animals in Katowice (Katowice, Poland) (approval No. 19/2009).
Collapse
Affiliation(s)
| | - Edyta Olakowska
- Department of Physiology, Medical University of Silesia, Katowice, Poland
| | | | | | | | | | | | - Wiesław Marcol
- Department of Physiology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
24
|
Rudman MD, Choi JS, Lee HE, Tan SK, Ayad NG, Lee JK. Bromodomain and extraterminal domain-containing protein inhibition attenuates acute inflammation after spinal cord injury. Exp Neurol 2018; 309:181-192. [DOI: 10.1016/j.expneurol.2018.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 01/18/2023]
|
25
|
Ramadan WS, Abdel-Hamid GA, Al-Karim S, Zakar NAMB, Elassouli MZ. Neuroectodermal stem cells: A remyelinating potential in acute compressed spinal cord injury in rat model. J Biosci 2018. [DOI: 10.1007/s12038-018-9812-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Giacci MK, Bartlett CA, Huynh M, Kilburn MR, Dunlop SA, Fitzgerald M. Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves. Sci Rep 2018; 8:3979. [PMID: 29507421 PMCID: PMC5838102 DOI: 10.1038/s41598-018-22361-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/22/2018] [Indexed: 12/21/2022] Open
Abstract
Following injury to the central nervous system, axons and myelin distinct from the initial injury site undergo changes associated with compromised function. Quantifying such changes is important to understanding the pathophysiology of neurotrauma; however, most studies to date used 2 dimensional (D) electron microscopy to analyse single sections, thereby failing to capture changes along individual axons. We used serial block face scanning electron microscopy (SBF SEM) to undertake 3D reconstruction of axons and myelin, analysing optic nerves from normal uninjured female rats and following partial optic nerve transection. Measures of axon and myelin dimensions were generated by examining 2D images at 5 µm intervals along the 100 µm segments. In both normal and injured animals, changes in axonal diameter, myelin thickness, fiber diameter, G-ratio and percentage myelin decompaction were apparent along the lengths of axons to varying degrees. The range of values for axon diameter along individual reconstructed axons in 3D was similar to the range from 2D datasets, encompassing reported variation in axonal diameter attributed to retinal ganglion cell diversity. 3D electron microscopy analyses have provided the means to demonstrate substantial variability in ultrastructure along the length of individual axons and to improve understanding of the pathophysiology of neurotrauma.
Collapse
Affiliation(s)
- Marcus K Giacci
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Minh Huynh
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, City Road, Sydney, 2006, New South Wales, Australia
| | - Matt R Kilburn
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, 6009, Western Australia, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, 8 Verdun St, Nedlands, 6009, Western Australia, Australia.
| |
Collapse
|
27
|
Womble B, Taub E, Hickson B, Purvis J, Mark V, Yarar-Fisher C, McLain A, Uswatte G. Upper extremity motor training of a subject with initially motor complete chronic high tetraplegia using constraint-induced biofeedback therapy. Spinal Cord Ser Cases 2018; 3:17093. [PMID: 29423298 DOI: 10.1038/s41394-017-0007-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/09/2022] Open
Abstract
Introduction The purpose of this case study was to determine if a subject with chronic high tetraplegia (C3 AIS A) could learn to use an initially paralyzed upper extremity on the basis of training procedures alone. Case presentation Initially, an AIS examination revealed no purposive movement below the neck other than minimal shoulder movement. Training was carried out weekly over 39 months. Training began based on electromyographic biofeedback; the electrical activity of a muscle (biceps or triceps) was displayed visually on a computer monitor and the subject was encouraged to progressively increase the magnitude of the response in small increments on a trial-by-trial basis (i.e., shaping). When small, overt movements began to appear; these were, in turn, shaped so that their excursion progressively increased. Training then progressed to enable lifting the arm with the aid of the counterweight of a Swedish Help Arm. Mean movement excursions in the best session were: internal rotation 52.5 cm; external rotation 26.9 cm; shoulder extension 22.1 cm; shoulder flexion 15.2 cm; pronation/supination 120°; extension of index finger (D2) 2.5 cm. Movements were initially saltatory, becoming smoother over time. With the Swedish Help Arm, the subject was able to lift her hand an average of 24.3 cm in the best session with 0.7 kg counterweight acting at the wrist (1.9 J of work). Discussion Results suggest in preliminary fashion the effectiveness of this approach for improving upper extremity function after motor complete high tetraplegia. Thus, future studies are warranted. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- Brent Womble
- 1Department of Psychology, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA
| | - Edward Taub
- 1Department of Psychology, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA
| | - Brennan Hickson
- 1Department of Psychology, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA
| | - Joshua Purvis
- 1Department of Psychology, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA
| | - Victor Mark
- 1Department of Psychology, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA.,2Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA.,3Department of Neurology, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA
| | - Ceren Yarar-Fisher
- 2Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA
| | - Amie McLain
- 2Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA
| | - Gitendra Uswatte
- 1Department of Psychology, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA.,2Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA.,4Department of Physical Therapy, University of Alabama at Birmingham, CPM 110 1713 6th Ave S, Birmingham, AL 35284 USA
| |
Collapse
|
28
|
Boutonnet M, Laemmel E, Vicaut E, Duranteau J, Soubeyrand M. Combinatorial therapy with two pro-coagulants and one osmotic agent reduces the extent of the lesion in the acute phase of spinal cord injury in the rat. Intensive Care Med Exp 2017; 5:51. [PMID: 29230608 PMCID: PMC5725399 DOI: 10.1186/s40635-017-0164-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022] Open
Abstract
Background Spinal cord injury (SCI) is a complex disease that leads to a motor, sensitive, and vegetative impairment. So far, single therapies are ineffective for treating SCI in humans and a multifactorial therapeutic approach may be required. The aim of this work was to assess the effect of a triple therapy (TT) associating two pro-coagulant therapies (tranexamic acid and fibrinogen) with an anti-edema therapy (hypertonic saline solution), on the extent of the lesion 24 h post-injury. Methods The design of this study is a randomized controlled study. The setting of this study is an experimental study. Male Wistar rats were assigned to receive saline solution for the control group or one of the treatment, or a combination of two treatments or the three treatments (triple therapy group (TT)). Animals were anesthetized and received a weight-drop SCI induced at the level of the 12th thoracic vertebra (Th12). They were treated by single therapies, double therapies, or TT started 5 min after the SCI. Results The extent of the lesion was assessed 24 h after injury by spectrophotometry (quantification of parenchymal hemorrhage and blood-spinal cord barrier disruption) and by histology (quantification of spared neuronal tissue). As compared with the control group, the TT significantly reduced parenchymal hemorrhage (p < 0.05) and improved the total amount of intact neural tissue, measured 24 h later (p = 0.003). Conclusions Combinatorial therapy associating two pro-coagulants (tranexamic acid and fibrinogen) with an anti-edema therapy (hypertonic saline solution) reduces the extent of the lesion in the acute phase of spinal cord injury in the rat.
Collapse
Affiliation(s)
- Mathieu Boutonnet
- Service de Réanimation, Hôpital d'Instruction des Armées Percy, Clamart, France. .,INSERM U942, Equipe universitaire 3509 Paris VII-Paris XI-Paris XIII, Microcirculation, Bioénergétique, Inflammation et Insuffisance circulatoire aiguë, Paris Diderot-Paris VII, Paris, France.
| | - Elisabeth Laemmel
- INSERM U942, Equipe universitaire 3509 Paris VII-Paris XI-Paris XIII, Microcirculation, Bioénergétique, Inflammation et Insuffisance circulatoire aiguë, Paris Diderot-Paris VII, Paris, France
| | - Eric Vicaut
- INSERM U942, Equipe universitaire 3509 Paris VII-Paris XI-Paris XIII, Microcirculation, Bioénergétique, Inflammation et Insuffisance circulatoire aiguë, Paris Diderot-Paris VII, Paris, France
| | - Jacques Duranteau
- INSERM U942, Equipe universitaire 3509 Paris VII-Paris XI-Paris XIII, Microcirculation, Bioénergétique, Inflammation et Insuffisance circulatoire aiguë, Paris Diderot-Paris VII, Paris, France.,Département d'Anesthésie Réanimation, Service de Réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Marc Soubeyrand
- INSERM U942, Equipe universitaire 3509 Paris VII-Paris XI-Paris XIII, Microcirculation, Bioénergétique, Inflammation et Insuffisance circulatoire aiguë, Paris Diderot-Paris VII, Paris, France.,Service de Chirurgie Orthopédique, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| |
Collapse
|
29
|
Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 2017; 9:1125-1137. [PMID: 27736748 PMCID: PMC5087825 DOI: 10.1242/dmm.025833] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. Summary: In this Review, we discuss the advantages and disadvantages of the rat for studies of experimental spinal cord injury and summarize the knowledge gained from such studies.
Collapse
Affiliation(s)
- Jacob Kjell
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
30
|
Kondiles BR, Horner PJ. Myelin plasticity, neural activity, and traumatic neural injury. Dev Neurobiol 2017; 78:108-122. [PMID: 28925069 DOI: 10.1002/dneu.22540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/01/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
The possibility that adult organisms exhibit myelin plasticity has recently become a topic of great interest. Many researchers are exploring the role of myelin growth and adaptation in daily functions such as memory and motor learning. Here we consider evidence for three different potential categories of myelin plasticity: the myelination of previously bare axons, remodeling of existing sheaths, and the removal of a sheath with replacement by a new internode. We also review evidence that points to the importance of neural activity as a mechanism by which oligodendrocyte precursor cells (OPCs) are cued to differentiate into myelinating oligodendrocytes, which may potentially be an important component of myelin plasticity. Finally, we discuss demyelination in the context of traumatic neural injury and present an argument for altering neural activity as a potential therapeutic target for remyelination following injury. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 108-122, 2018.
Collapse
Affiliation(s)
- Bethany R Kondiles
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, MSR10-112, Houston, Texas.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Philip J Horner
- Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, MSR10-112, Houston, Texas
| |
Collapse
|
31
|
Li Q, Houdayer T, Liu S, Belegu V. Induced Neural Activity Promotes an Oligodendroglia Regenerative Response in the Injured Spinal Cord and Improves Motor Function after Spinal Cord Injury. J Neurotrauma 2017; 34:3351-3361. [PMID: 28474539 DOI: 10.1089/neu.2016.4913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Myelination in the central nervous system (CNS) is a dynamic process that includes birth of oligodendrocyte progenitor cells (OPCs), their differentiation into oligodendrocytes, and ensheathment of axons. Regulation of myelination by neuronal activity has emerged as a new mechanism of CNS plasticity. Activity-dependent myelination has been shown to regulate sensory, motor, and cognitive functions. In this work, we aimed to employ this mechanism of CNS plasticity by utilizing induced neuronal activity to promote remyelination and functional recovery in a subchronic model of spinal cord injury (SCI). We used a mild contusive SCI at T10, which demyelinates surviving axons of the dorsal corticospinal tract (dCST), to investigate the effects of induced neuronal activity on oligodendrogenesis, remyelination, and motor function after SCI. Neuronal activity was induced through epidural electrodes that were implanted over the primary motor (M1) cortex. Induced neuronal activity increased the number of proliferating OPCs. Additionally, induced neuronal activity in the subchronic stages of SCI increased the number of oligodendrocytes, and enhanced myelin basic protein (MBP) expression and myelin sheath formation in dCST. The oligodendroglia regenerative response could have been mediated by axon-OPC synapses, the number of which increased after induced neuronal activity. Further, M1-induced neuronal activation promoted recovery of hindlimb motor function after SCI. Our work is a proof of principle demonstration that epidural electrical stimulation as a mode of inducing neuronal activity throughout white matter tracts of the CNS could be used to promote remyelination and functional recovery after CNS injuries and demyelination disorders.
Collapse
Affiliation(s)
- Qun Li
- 1 The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger , Baltimore, Maryland
| | - Thierry Houdayer
- 1 The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger , Baltimore, Maryland
| | - Su Liu
- 1 The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger , Baltimore, Maryland
| | - Visar Belegu
- 1 The International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger , Baltimore, Maryland.,2 Department of Neurology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
32
|
Daneshi Kohan E, Lashkari BS, Sparrey CJ. The effects of paranodal myelin damage on action potential depend on axonal structure. Med Biol Eng Comput 2017; 56:395-411. [PMID: 28770425 DOI: 10.1007/s11517-017-1691-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/17/2017] [Indexed: 12/31/2022]
Abstract
Biophysical computational models of axons provide an important tool for quantifying the effects of injury and disease on signal conduction characteristics. Several studies have used generic models to study the average behavior of healthy and injured axons; however, few studies have included the effects of normal structural variation on the simulated axon's response to injury. The effects of variations in physiological characteristics on axonal function were mapped by altering the structure of the nodal, paranodal, and juxtaparanodal regions across reported values in three different caliber axons (1, 2, and 5.7 μm). Myelin detachment and retraction were simulated to quantify the effects of each injury mechanism on signal conduction. Conduction velocity was most affected by axonal fiber diameter (89%), while membrane potential amplitude was most affected by nodal length (86%) in healthy axons. Postinjury axonal functionality was most affected by myelin detachment in the paranodal and juxtaparanodal regions when retraction and detachment were modeled simultaneously. The efficacy of simulated potassium channel blockers on restoring membrane potential and velocity varied with axonal caliber and injury type. The structural characteristics of axons affect their functional response to myelin retraction and detachment and their subsequent response to potassium channel blocker treatment.
Collapse
Affiliation(s)
- Ehsan Daneshi Kohan
- Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada.,International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 5th floor, 5200, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Behnia Shadab Lashkari
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 5th floor, 5200, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Carolyn Jennifer Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada. .,International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 5th floor, 5200, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
33
|
Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury. J Neurosci 2017; 37:8635-8654. [PMID: 28760862 DOI: 10.1523/jneurosci.2409-16.2017] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 06/22/2017] [Accepted: 07/22/2017] [Indexed: 12/17/2022] Open
Abstract
Spontaneous remyelination occurs after spinal cord injury (SCI), but the extent of myelin repair and identity of the cells responsible remain incompletely understood and contentious. We assessed the cellular origin of new myelin by fate mapping platelet-derived growth factor receptor α (PDGFRα), Olig2+, and P0+ cells following contusion SCI in mice. Oligodendrocyte precursor cells (OPCs; PDGFRα+) produced oligodendrocytes responsible for de novo ensheathment of ∼30% of myelinated spinal axons at injury epicenter 3 months after SCI, demonstrating that these resident cells are a major contributor to oligodendrocyte regeneration. OPCs also produced the majority of myelinating Schwann cells in the injured spinal cord; invasion of peripheral myelinating (P0+) Schwann cells made only a limited contribution. These findings reveal that PDGFRα+ cells perform diverse roles in CNS repair, as multipotential progenitors that generate both classes of myelinating cells. This endogenous repair might be exploited as a therapeutic target for CNS trauma and disease.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) leads to profound functional deficits, though substantial numbers of axons often survive. One possible explanation for these deficits is loss of myelin, creating conduction block at the site of injury. SCI leads to oligodendrocyte death and demyelination, and clinical trials have tested glial transplants to promote myelin repair. However, the degree and duration of myelin loss, and the extent and mechanisms of endogenous repair, have been contentious issues. Here, we use genetic fate mapping to demonstrate that spontaneous myelin repair by endogenous oligodendrocyte precursors is much more robust than previously recognized. These findings are relevant to many types of CNS pathology, raising the possibility that CNS precursors could be manipulated to repair myelin in lieu of glial transplantation.
Collapse
|
34
|
Abstract
The severe muscle weakness and atrophy measured after human spinal cord injury (SCI) may relate to chronic muscle denervation due to motoneuron death and/or altered muscle use. The aim of this study was to estimate motoneuron death after traumatic human SCI. The diameter and number of myelinated axons were measured in ventral roots post-mortem because ventral roots contain large diameter (> 7 μm) myelinated axons that typically arise from motoneurons and innervate skeletal muscle. In four cases (SCI levels C7, C8, T4, and L1) involving contusion (n = 3) or laceration (n = 1), there was a significant reduction in the number of large diameter myelinated axons at the lesion epicenter (mean ± standard error [SE]: 45 ± 11% Uninjured), one level above (51 ± 14%), and one (27 ± 12%), two (45 ± 40%), and three (54 ± 23%) levels below the epicenter. Reductions in motoneuron numbers varied by side and case. These deficits result from motoneuron death because the gray matter was destroyed at and near the lesion epicenter. Muscle denervation must ensue. In seven cases, ventral roots at or below the epicenter had large diameter myelinated axons with unusually thin myelin, a sign of incomplete remyelination. The mean ± SE g ratio (axon diameter/fiber diameter) was 0.60 ± 0.01 for axons of all diameters in five above-lesion ventral roots, but increased significantly for large diameter fibers (≥ 12 μm) in three roots at the lesion epicenter. Motoneuron death after human SCI will coarsen muscle force gradation and control, while extensive muscle denervation will stifle activity-based treatments.
Collapse
Affiliation(s)
- Robert M Grumbles
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Christine K Thomas
- 1 The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,3 Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
35
|
Yang L, Yan X, Xu Z, Tan W, Chen Z, Wu B. Delayed administration of recombinant human erythropoietin reduces apoptosis and inflammation and promotes myelin repair and functional recovery following spinal cord compressive injury in rats. Restor Neurol Neurosci 2016; 34:647-63. [PMID: 26444376 DOI: 10.3233/rnn-150498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Liuzhu Yang
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
- Department of Orthopedics, Hezhou city pepole’s hospital, Hezhou, Guangxi, China
| | - Xinping Yan
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Zunying Xu
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Wei Tan
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Zhong Chen
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Bo Wu
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Kushchayev SV, Giers MB, Hom Eng D, Martirosyan NL, Eschbacher JM, Mortazavi MM, Theodore N, Panitch A, Preul MC. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury. J Neurosurg Spine 2016; 25:114-24. [PMID: 26943251 DOI: 10.3171/2015.9.spine15628] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Spinal cord injury occurs in 2 phases. The initial trauma is followed by inflammation that leads to fibrous scar tissue, glial scarring, and cavity formation. Scarring causes further axon death around and above the injury. A reduction in secondary injury could lead to functional improvement. In this study, hyaluronic acid (HA) hydrogels were implanted into the gap formed in the hemisected spinal cord of Sprague-Dawley rats in an attempt to attenuate damage and regenerate tissue.
METHODS
A T-10 hemisection spinal cord injury was created in adult male Sprague-Dawley rats; the rats were assigned to a sham, control (phosphate-buffered saline), or HA hydrogel–treated group. One cohort of 23 animals was followed for 12 weeks and underwent weekly behavioral assessments. At 12 weeks, retrograde tracing was performed by injecting Fluoro-Gold in the left L-2 gray matter. At 14 weeks, the animals were killed. The volume of the lesion and the number of cells labeled from retrograde tracing were calculated. Animals in a separate cohort were killed at 8 or 16 weeks and perfused for immunohistochemical analysis and transmission electron microscopy. Samples were stained using H & E, neurofilament stain (neurons and axons), silver stain (disrupted axons), glial fibrillary acidic protein stain (astrocytes), and Iba1 stain (mononuclear cells).
RESULTS
The lesions were significantly smaller in size and there were more retrograde-labeled cells in the red nuclei of the HA hydrogel–treated rats than in those of the controls; however, the behavioral assessments revealed no differences between the groups. The immunohistochemical analyses revealed decreased fibrous scarring and increased retention of organized intact axonal tissue in the HA hydrogel–treated group. There was a decreased presence of inflammatory cells in the HA hydrogel–treated group. No axonal or neuronal regeneration was observed.
CONCLUSIONS
The results of these experiments show that HA hydrogel had a neuroprotective effect on the spinal cord by decreasing the magnitude of secondary injury after a lacerating spinal cord injury. Although regeneration and behavioral improvement were not observed, the reduction in disorganized scar tissue and the retention of neurons near and above the lesion are important for future regenerative efforts. In addition, this gel would be useful as the base substrate in the development of a more complex scaffold.
Collapse
Affiliation(s)
- Sergiy V. Kushchayev
- 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Morgan B. Giers
- 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Doris Hom Eng
- 2School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona; and
| | - Nikolay L. Martirosyan
- 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Jennifer M. Eschbacher
- 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Martin M. Mortazavi
- 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Nicholas Theodore
- 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | - Alyssa Panitch
- 3Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Mark C. Preul
- 1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| |
Collapse
|
37
|
Abstract
Research over the past decade has demonstrated that, under some circumstances, structural reorganization of the CNS, including the spinal cord, can occur after injury, raising hopes that spinal cord repair associated with functional recovery, although a daunting goal, may not be an unreachable one. This brief review dis cusses recent approaches to this problem: use of neurotrophins and the rerouting of axons within the transected spinal cord from white matter to gray matter through nerve grafts, and the transplantation of exogenous myelin-forming glial cells to spinal cord tracts in which myelin has been lost. Results available to date indicate that, in models mimicking some aspects of human spinal cord injury, these approaches may yield anatomical repair that is associated with partial restoration of physiological and behavioral func tion. Many important questions remain unanswered. Nevertheless, although the clinical goal of repairing spinal cords in humans is a very challenging one, results in animal models suggest that spinal cord repair is a realistic objective and provide a glimpse of what is likely to be a period of rapid progress. NEURO SCIENTIST 3:263-269, 1997
Collapse
Affiliation(s)
- Stephen G. Waxman
- Department of Neurology Yale University School of Medicine
New Haven, Connecticut PVAlEPVA Center for Neuroscience Veterans Administration
Medical Center West Haven, Connecticut
| | - Jeffery D. Kocsis
- Department of Neurology Yale University School of Medicine
New Haven, Connecticut PVAlEPVA Center for Neuroscience Veterans Administration
Medical Center West Haven, Connecticut
| |
Collapse
|
38
|
Abstract
Damage to the spinal cord has devastating consequences because injury induces neuronal death, and the severed neural pathway does not regenerate. One of the major challenges in this field is to rescue injured neurons and to stimulate the regrowth of severed axons. An equally important task is the re-establishment of precise connections by regenerating axons with their targets and remyelinating the regenerated axons so that they can propagate action potentials. In our view, the major hurdles that must be overcome to restore function after spinal cord injury can be viewed as a recapitulation of steps normally taken during development. Recent basic research advances provide cautious optimism that therapies will be available for acute and chronic spinal cord injury. The Neuroscientist 1:321-327, 1995
Collapse
Affiliation(s)
- Laising Yen
- Department of Neurology Yale University School of Medicine New Haven, Connecticut
| | - Robert G. Kalb
- Department of Neurology Yale University School of Medicine New Haven, Connecticut
| |
Collapse
|
39
|
Besalti O, Aktas Z, Can P, Akpinar E, Elcin AE, Elcin YM. The use of autologous neurogenically-induced bone marrow-derived mesenchymal stem cells for the treatment of paraplegic dogs without nociception due to spinal trauma. J Vet Med Sci 2016; 78:1465-1473. [PMID: 27301583 PMCID: PMC5059374 DOI: 10.1292/jvms.15-0571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate the effects of percutaneous transplanted autologous neurogenically-induced bone marrow-derived mesenchymal stem cells (NIBM-MSCs) in paraplegic dogs without deep pain perception (DPP) secondary to external spinal trauma. Thirteen client owned dogs that had failed in improvement neurologically at least 42 days after conservative management, decompression and decompression-stabilization were included in the study. Each dog received two doses of autologous 5.0 × 106 NIBM-MSCs suspension, which were positive to 2',3'-Cyclic-nucleotide-3'-phosphodiesterase (CNPase) and Microtubule-associated protein 2 (MAP-2), as well as to Glial fibrillary acidic protein (GFAP) and beta III tubulin. The cells were injected into the spinal cord through the hemilaminectomy or laminectomy defects percutaneously with 21 days interval for 2 times. The results were evaluated using Texas Spinal Cord Injury Scale (TSCIS), somatosensory evoked potentials (SEP) and motor evoked potentials (MEP) at the admission time, cell transplantation procedures and during 2, 5, 7 and 12th months after the second cell transplantation. Improvement after cell transplantation in gait, nociception, proprioception, SEP and MEP results was observed in just 2 cases, and only gait score improvement was seen in 6 cases, and no improvement was recorded in 5 cases. All progresses were observed until 2nd month after the second cell transplantation, however, there was no improvement after this period. In conclusion, percutaneous transplantation of autologous NIBM-MSCs is a promising candidate modality for cases with spinal cord injury after spinal trauma and poor prognosis.
Collapse
Affiliation(s)
- Omer Besalti
- Ankara University Faculty of Veterinary Medicine, Department of Surgery, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
40
|
Ahmad M, Zakaria A, Almutairi KM. Effectiveness of minocycline and FK506 alone and in combination on enhanced behavioral and biochemical recovery from spinal cord injury in rats. Pharmacol Biochem Behav 2016; 145:45-54. [PMID: 27106204 DOI: 10.1016/j.pbb.2016.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/15/2022]
Abstract
Injury to the spinal cord results in immediate physical damage (primary injury) followed by a prolonged posttraumatic inflammatory disorder (secondary injury). The present study aimed to investigate the neuroprotective effects of minocycline and FK506 (Tacrolimus) individually and in combination on recovery from experimental spinal cord injury (SCI). Young adult male rats were subjected to experimental SCI by weight compression method. Minocycline (50mg/kg) and FK506 (1mg/kg) were administered orally in combination and individually to the SCI group daily for three weeks. During these three weeks, the recovery was measured using behavioral motor parameters (including BBB, Tarlov and other scorings) every other day for 29days after SCI. Thereafter, the animals were sacrificed and the segment of the spinal cord centered at the injury site was removed for the histopathological studies as well as for biochemical analysis of monoamines such as 5-hydroxytryptamine (5-HT) and 5-hydroxy-indolacetic acid (5-HIAA) and some oxidative stress indices, such as thiobarbituric acid-reactive substances (TBARS), total glutathione (GSH) and myeloperoxidase (MPO). All behavioral results indicated that both drugs induced significant recovery from SCI with respect to time. The biochemical and histopathological results supported the behavioral findings, revealing significant recovery in the regeneration of the injured spinal tissues, the monoamine levels, and the oxidative stress indices. Overall, the effects of the tested drugs for SCI recovery were as follows: FK506+minocycline>minocycline>FK506 in all studied parameters. Thus, minocycline and FK506 may prove to be a potential therapy cocktail to treat acute SCI. However, further studies are warranted.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Medical Surgical Nursing, College of Nursing, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulrahim Zakaria
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Almutairi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Myers SA, Bankston AN, Burke DA, Ohri SS, Whittemore SR. Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials? Exp Neurol 2016; 283:560-72. [PMID: 27085393 DOI: 10.1016/j.expneurol.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 02/08/2023]
Abstract
This article reviews all historical literature in which rodent-derived myelinating cells have been engrafted into the contused adult rodent spinal cord. From 2500 initial PubMed citations identified, human cells grafts, bone mesenchymal stem cells, olfactory ensheathing cells, non-myelinating cell grafts, and rodent grafts into hemisection or transection models were excluded, resulting in the 67 studies encompassed in this review. Forty five of those involved central nervous system (CNS)-derived cells, including neural stem progenitor cells (NSPCs), neural restricted precursor cells (NRPs) or oligodendrocyte precursor cells (OPCs), and 22 studies involved Schwann cells (SC). Of the NSPC/NPC/OPC grafts, there was no consistency with respect to the types of cells grafted and/or the additional growth factors or cells co-grafted. Enhanced functional recovery was reported in 31/45 studies, but only 20 of those had appropriate controls making conclusive interpretation of the remaining studies impossible. Of those 20, 19 were properly powered and utilized appropriate statistical analyses. Ten of those 19 studies reported the presence of graft-derived myelin, 3 reported evidence of endogenous remyelination or myelin sparing, and 2 reported both. For the SC grafts, 16/21 reported functional improvement, with 11 having appropriate cellular controls and 9/11 using proper statistical analyses. Of those 9, increased myelin was reported in 6 studies. The lack of consistency and replication among these preclinical studies are discussed with respect to the progression of myelinating cell transplantation therapies into the clinic.
Collapse
Affiliation(s)
- Scott A Myers
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Andrew N Bankston
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Darlene A Burke
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Sujata Saraswat Ohri
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Scott R Whittemore
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
42
|
Crupi R, Impellizzeri D, Bruschetta G, Cordaro M, Paterniti I, Siracusa R, Cuzzocrea S, Esposito E. Co-Ultramicronized Palmitoylethanolamide/Luteolin Promotes Neuronal Regeneration after Spinal Cord Injury. Front Pharmacol 2016; 7:47. [PMID: 27014061 PMCID: PMC4782663 DOI: 10.3389/fphar.2016.00047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/19/2016] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultraPEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5-T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally) daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor, and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Daniela Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Giuseppe Bruschetta
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Marika Cordaro
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Rosalba Siracusa
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of MessinaMessina, Italy; Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, The University of ManchesterManchester, UK
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina Messina, Italy
| |
Collapse
|
43
|
Thies RS, Murry CE. The advancement of human pluripotent stem cell-derived therapies into the clinic. Development 2016; 142:3077-84. [PMID: 26395136 DOI: 10.1242/dev.126482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells (hPSCs) offer many potential applications for drug screening and 'disease in a dish' assay capabilities. However, a more ambitious goal is to develop cell therapeutics using hPSCs to generate and replace somatic cells that are lost as a result of disease or injury. This Spotlight article will describe the state of progress of some of the hPSC-derived therapeutics that offer the most promise for clinical use. Lessons from developmental biology have been instrumental in identifying signaling molecules that can guide these differentiation processes in vitro, and will be described in the context of these cell therapy programs.
Collapse
Affiliation(s)
- R Scott Thies
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA Department of Pathology, University of Washington, Seattle, WA 98195, USA Department of Bioengineering, University of Washington, Seattle, WA 98195, USA Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
44
|
EGb761 improves histological and functional recovery in rats with acute spinal cord contusion injury. Spinal Cord 2015; 54:259-65. [PMID: 26481704 DOI: 10.1038/sc.2015.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/21/2015] [Accepted: 07/29/2015] [Indexed: 12/13/2022]
Abstract
STUDY DESIGN This is an experimental study. OBJECTIVES The objective of this study was to evaluate the neuroprotective effects of Ginkgo biloba extract 761 (EGb761) on histological features of injured sites and on functional performance of rats subjected to standardized spinal cord injury (SCI). SETTING This study was conducted in Xian, Shaanxi, China. METHODS Thirty female Sprague-Dawley rats were randomly divided into three groups: sham-operated, saline-treated control and EGb761-treated. The Basso, Beattie, Bresnahan Locomotor Rating Score (BBB score) was calculated and footprint analysis was performed to evaluate the functional performance of the rats in each group. Hematoxylin and eosin (HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 staining were performed to evaluate the necrosis area and apoptotic cells at the injured site in each group. RESULTS At 14, but not 1, 3 and 7, days post injury (DPI), rats in the EGb761-treated group exhibited significantly better BBB scores compared with the saline-treated control group (P<0.05). The EGb761-treated group also showed increased stride length, decreased stride width and reduced toe dragging at 14 DPI (P<0.05). Analysis of HE staining revealed that the EGb761-treated group had reduced necrosis at the injury site compared with the saline-treated control group (P<0.05). Analysis of TUNEL and caspase-3 staining demonstrated that cell apoptosis was increased at 1-14 DPI, peaking at 24-h post injury in the gray matter, and 7 DPI in the white matter. At 7 DPI, the quantity of apoptotic cells was significantly decreased in the EGb761-treated group. CONCLUSION EGb761 administration during the acute phase after SCI significantly reduced secondary injury-induced tissue necrosis and cell apoptosis and improved functional performance in rats.
Collapse
|
45
|
Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell Tissue Res 2015; 364:17-28. [DOI: 10.1007/s00441-015-2298-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 11/26/2022]
|
46
|
Mondello SE, Sunshine MD, Fischedick AE, Moritz CT, Horner PJ. A Cervical Hemi-Contusion Spinal Cord Injury Model for the Investigation of Novel Therapeutics Targeting Proximal and Distal Forelimb Functional Recovery. J Neurotrauma 2015; 32:1994-2007. [PMID: 25929319 DOI: 10.1089/neu.2014.3792] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cervical spinal cord contusion is the most common human spinal cord injury, yet few rodent models replicate the pathophysiological and functional sequela of this injury. Here, we modified an electromechanical injury device and characterized the behavioral and histological changes occurring in response to a lateralized C4 contusion injury in rats. A key feature of the model includes a non-injurious touch phase where the spinal cord surface is dimpled with a consistent starting force. Animals were either left intact as a control, received a non-injury-producing touch on the surface of the cord ("sham"), or received a 0.6 mm or a 0.8 mm displacement injury. Rats were then tested on the forelimb asymmetry use test, CatWalk, and the Irvine, Beatties, and Bresnahan (IBB) cereal manipulation task to assess proximal and distal upper limb function for 12 weeks. Injuries of moderate (0.6 mm) and large (0.8 mm) displacement showed consistent differences in forelimb asymmetry, metrics of the CatWalk, and sub-scores of the IBB. Overall findings indicated long lasting proximal and distal upper limb deficits following 0.8 mm injury but transient proximal with prolonged distal limb deficits following 0.6 mm injury. Significant differences in loss of ipsilateral unmyelinated and myelinated white matter was detected between injury severities. Demyelination was primarily localized to the dorsolateral region of the hemicord and extended further rostral following 0.8 mm injury. These findings establish the C4 hemi-contusion injury as a consistent, graded model for testing novel treatments targeting forelimb functional recovery.
Collapse
Affiliation(s)
- Sarah E Mondello
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington.,2 The Center for Sensorimotor Neural Engineering , Seattle, Washington.,4 The Institute for Stem Cell and Regenerative Medicine , Seattle, Washington
| | - Michael D Sunshine
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington
| | - Amanda E Fischedick
- 3 Department of Neurological Surgery, University of Washington , Seattle, Washington.,4 The Institute for Stem Cell and Regenerative Medicine , Seattle, Washington
| | - Chet T Moritz
- 1 Department of Rehabilitation Medicine, University of Washington , Seattle, Washington.,2 The Center for Sensorimotor Neural Engineering , Seattle, Washington.,5 Department of Physiology and Biophysics, University of Washington , Seattle, Washington
| | - Philip J Horner
- 3 Department of Neurological Surgery, University of Washington , Seattle, Washington.,4 The Institute for Stem Cell and Regenerative Medicine , Seattle, Washington
| |
Collapse
|
47
|
Electrophysiological characterization of spontaneous recovery in deep dorsal horn interneurons after incomplete spinal cord injury. Exp Neurol 2015; 271:468-78. [DOI: 10.1016/j.expneurol.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/25/2015] [Accepted: 07/04/2015] [Indexed: 11/23/2022]
|
48
|
Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration. Proc Natl Acad Sci U S A 2015; 112:E3431-40. [PMID: 26080415 DOI: 10.1073/pnas.1501835112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell transplantation therapy has long been investigated as a therapeutic intervention for neurodegenerative disorders, including spinal cord injury, Parkinson's disease, and amyotrophic lateral sclerosis. Indeed, patients have high hopes for a cell-based therapy. However, there are numerous practical challenges for clinical translation. One major problem is that only very low numbers of donor cells survive and achieve functional integration into the host. Glial scar tissue in chronic neurodegenerative disorders strongly inhibits regeneration, and this inhibition must be overcome to accomplish successful cell transplantation. Intraneural cell transplantation is considered to be the best way to deliver cells to the host. We questioned this view with experiments in vivo on a rat glial scar model of the auditory system. Our results show that intraneural transplantation to the auditory nerve, preceded by chondroitinase ABC (ChABC)-treatment, is ineffective. There is no functional recovery, and almost all transplanted cells die within a few weeks. However, when donor cells are placed on the surface of a ChABC-treated gliotic auditory nerve, they autonomously migrate into it and recapitulate glia- and neuron-guided cell migration modes to repair the auditory pathway and recover auditory function. Surface transplantation may thus pave the way for improved functional integration of donor cells into host tissue, providing a less invasive approach to rescue clinically important neural tracts.
Collapse
|
49
|
Dubory A, Laemmel E, Badner A, Duranteau J, Vicaut E, Court C, Soubeyrand M. Contrast enhanced ultrasound imaging for assessment of spinal cord blood flow in experimental spinal cord injury. J Vis Exp 2015:e52536. [PMID: 25993259 DOI: 10.3791/52536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Reduced spinal cord blood flow (SCBF) (i.e., ischemia) plays a key role in traumatic spinal cord injury (SCI) pathophysiology and is accordingly an important target for neuroprotective therapies. Although several techniques have been described to assess SCBF, they all have significant limitations. To overcome the latter, we propose the use of real-time contrast enhanced ultrasound imaging (CEU). Here we describe the application of this technique in a rat contusion model of SCI. A jugular catheter is first implanted for the repeated injection of contrast agent, a sodium chloride solution of sulphur hexafluoride encapsulated microbubbles. The spine is then stabilized with a custom-made 3D-frame and the spinal cord dura mater is exposed by a laminectomy at ThIX-ThXII. The ultrasound probe is then positioned at the posterior aspect of the dura mater (coated with ultrasound gel). To assess baseline SCBF, a single intravenous injection (400 µl) of contrast agent is applied to record its passage through the intact spinal cord microvasculature. A weight-drop device is subsequently used to generate a reproducible experimental contusion model of SCI. Contrast agent is re-injected 15 min following the injury to assess post-SCI SCBF changes. CEU allows for real time and in-vivo assessment of SCBF changes following SCI. In the uninjured animal, ultrasound imaging showed uneven blood flow along the intact spinal cord. Furthermore, 15 min post-SCI, there was critical ischemia at the level of the epicenter while SCBF remained preserved in the more remote intact areas. In the regions adjacent to the epicenter (both rostral and caudal), SCBF was significantly reduced. This corresponds to the previously described "ischemic penumbra zone". This tool is of major interest for assessing the effects of therapies aimed at limiting ischemia and the resulting tissue necrosis subsequent to SCI.
Collapse
Affiliation(s)
- Arnaud Dubory
- Laboratoire d'étude de la microcirculation, Faculté de Médecine Paris Diderot Paris VII, U942; Department of orthopaedic surgery, Bicetre Universitary Hospital, Public Assistance of Paris Hospital
| | - Elisabeth Laemmel
- Laboratoire d'étude de la microcirculation, Faculté de Médecine Paris Diderot Paris VII, U942
| | - Anna Badner
- Institute of Medical Science, Faculty of Medicine, University of Toronto
| | - Jacques Duranteau
- Laboratoire d'étude de la microcirculation, Faculté de Médecine Paris Diderot Paris VII, U942; Department of Intensive care and Anesthesiology, Bicetre Universitary Hospital, Public Assistance of Paris Hospital
| | - Eric Vicaut
- Laboratoire d'étude de la microcirculation, Faculté de Médecine Paris Diderot Paris VII, U942
| | - Charles Court
- Department of orthopaedic surgery, Bicetre Universitary Hospital, Public Assistance of Paris Hospital
| | - Marc Soubeyrand
- Laboratoire d'étude de la microcirculation, Faculté de Médecine Paris Diderot Paris VII, U942; Department of orthopaedic surgery, Bicetre Universitary Hospital, Public Assistance of Paris Hospital;
| |
Collapse
|
50
|
Impact of treatment duration and lesion size on effectiveness of chondroitinase treatment post-SCI. Exp Neurol 2015; 267:64-77. [PMID: 25725355 DOI: 10.1016/j.expneurol.2015.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
The effects of 2weeks of intralesional chondroitinase abc (ch'abc) treatment on anatomical plasticity and behavioral recovery are examined in adult cats and compared to results achieved with 4weeks of treatment following tightly controlled lateral hemisection injuries. Analyses also were completed using 35 cats with a range of hemisection magnitudes to assess relationships between treatment duration, lesion size and functional recovery. Results indicate that both 2 and 4weeks of treatment significantly increased the number of rubrospinal tract (RuST) neurons with axons below the lesion, but neither affected the number of corticospinal tract neurons. Similarly, both treatment periods also accelerated recovery of select motor tasks, which carries considerable importance with respect to human health care and rehabilitation. Four weeks of treatment promoted recovery beyond that seen with 2weeks in its significant impact on accuracy of movement critical for placement of the ipsilateral hindlimb onto small support surfaces during the most challenging locomotor tasks. Analyses, which extended to a larger group of cats with a range of lesion magnitudes, indicate that 4weeks of ch'abc treatment promoted earlier recovery as well as significantly greater targeting accuracy even in cats with larger lesions. Together, these results support the potential for ch'abc to promote anatomical and behavioral recovery and suggest that intraspinal treatment with ch'abc continues to enhance motor recovery and performance beyond the subacute injury period and diminishes the impact of lesion size.
Collapse
|