1
|
Khalil AJ, Mansvelder HD, Witter L. Mesodiencephalic junction GABAergic inputs are processed separately from motor cortical inputs in the basilar pons. iScience 2022; 25:104641. [PMID: 35800775 PMCID: PMC9254490 DOI: 10.1016/j.isci.2022.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
The basilar pontine nuclei (bPN) are known to receive excitatory input from the entire neocortex and constitute the main source of mossy fibers to the cerebellum. Various potential inhibitory afferents have been described, but their origin, synaptic plasticity, and network function have remained elusive. Here we identify the mesodiencephalic junction (MDJ) as a prominent source of monosynaptic GABAergic inputs to the bPN. We found no evidence that these inputs converge with motor cortex (M1) inputs at the single neuron or at the local network level. Tracing the inputs to GABAergic MDJ neurons revealed inputs to these neurons from neocortical areas. Additionally, we observed little short-term synaptic facilitation or depression in afferents from the MDJ, enabling MDJ inputs to carry sign-inversed neocortical inputs. Thus, our results show a prominent source of GABAergic inhibition to the bPN that could enrich input to the cerebellar granule cell layer.
Collapse
Affiliation(s)
- Ayoub J. Khalil
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
| | - Laurens Witter
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, 1081HV Amsterdam, the Netherlands
- Department for Developmental Origins of Disease, Wilhelmina Children’s Hospital and Brain Center, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
2
|
Guo JZ, Sauerbrei BA, Cohen JD, Mischiati M, Graves AR, Pisanello F, Branson KM, Hantman AW. Disrupting cortico-cerebellar communication impairs dexterity. eLife 2021; 10:e65906. [PMID: 34324417 PMCID: PMC8321550 DOI: 10.7554/elife.65906] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
To control reaching, the nervous system must generate large changes in muscle activation to drive the limb toward the target, and must also make smaller adjustments for precise and accurate behavior. Motor cortex controls the arm through projections to diverse targets across the central nervous system, but it has been challenging to identify the roles of cortical projections to specific targets. Here, we selectively disrupt cortico-cerebellar communication in the mouse by optogenetically stimulating the pontine nuclei in a cued reaching task. This perturbation did not typically block movement initiation, but degraded the precision, accuracy, duration, or success rate of the movement. Correspondingly, cerebellar and cortical activity during movement were largely preserved, but differences in hand velocity between control and stimulation conditions predicted from neural activity were correlated with observed velocity differences. These results suggest that while the total output of motor cortex drives reaching, the cortico-cerebellar loop makes small adjustments that contribute to the successful execution of this dexterous movement.
Collapse
|
3
|
Srivastava A, Liachenko S, Sarkar S, Paule M, Sadovova N, Hanig JP. Global Neurotoxicity: Quantitative Analysis of Rat Brain Toxicity Following Exposure to Trimethyltin. Int J Toxicol 2021; 40:367-379. [PMID: 33878910 DOI: 10.1177/10915818211009193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The organotin, trimethyltin (TMT), is a highly toxic compound. In this study, silver-stained rat brain sections were qualitatively and quantitatively evaluated for degeneration after systemic treatment with TMT. Degenerated neurons were counted using image analysis methods available in the HALO image analysis software. Specific brain areas including the cortex, inferior and superior colliculus, and thalamus were quantitatively analyzed. Our results indicate extensive and widespread damage to the rat brain after systemic administration of TMT. Qualitative results suggest severe TMT-induced toxicity 3 and 7 days after the administration of TMT. Trimethyltin toxicity was greatest in the hippocampus, olfactory area, cerebellum, pons, mammillary nucleus, inferior and superior colliculus, hypoglossal nucleus, thalamus, and cerebellar Purkinje cells. Quantification showed that the optic layer of the superior colliculus exhibited significantly more degeneration compared to layers above and below. The inferior colliculus showed greater degeneration in the dorsal area relative to the central area. Similarly, in cortical layers, there was greater neurodegeneration in deeper layers compared to superficial layers. Quantification of damage in various thalamic nuclei showed that the greatest degeneration occurred in midline and intralaminar nuclei. These results suggest selective neuronal network vulnerability to TMT-related toxicity in the rat brain.
Collapse
Affiliation(s)
- Anshul Srivastava
- 4137U.S. Food and Drug Administration, Center for Drug Evaluation and Research (CDER/OPQ), Silver Spring, MD, USA
| | - Serguei Liachenko
- 4137U.S. Food and Drug Administration, National Center for Toxicological Research (NCTR/DNT), Jefferson, AR, USA
| | - Sumit Sarkar
- 4137U.S. Food and Drug Administration, National Center for Toxicological Research (NCTR/DNT), Jefferson, AR, USA
| | - Merle Paule
- 4137U.S. Food and Drug Administration, National Center for Toxicological Research (NCTR/DNT), Jefferson, AR, USA
| | - Natalya Sadovova
- 4137U.S. Food and Drug Administration, National Center for Toxicological Research (NCTR/DNT), Jefferson, AR, USA
| | - Joseph P Hanig
- 4137U.S. Food and Drug Administration, Center for Drug Evaluation and Research (CDER/OPQ), Silver Spring, MD, USA
| |
Collapse
|
4
|
Limitations of PET and lesion studies in defining the role of the human cerebellum in motor learning. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
|
6
|
|
7
|
Eyeblink conditioning, motor control, and the analysis of limbic-cerebellar interactions. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081929] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
|
9
|
Grasping cerebellar function depends on our understanding the principles of sensorimotor integration: The frame of reference hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Dysmetria of thought: Correlations and conundrums in the relationship between the cerebellum, learning, and cognitive processing. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081851] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
|
12
|
|
13
|
Q: Is the cerebellum an adaptive combiner of motor and mental/motor activities? A: Yes, maybe, certainly not, who can say? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00082017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
|
15
|
What behavioral benefit does stiffness control have? An elaboration of Smith's proposal. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00081917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
|
17
|
Solbu TT, Bjørkmo M, Berghuis P, Harkany T, Chaudhry FA. SAT1, A Glutamine Transporter, is Preferentially Expressed in GABAergic Neurons. Front Neuroanat 2010; 4:1. [PMID: 20161990 PMCID: PMC2820376 DOI: 10.3389/neuro.05.001.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/30/2009] [Indexed: 11/13/2022] Open
Abstract
Subsets of GABAergic neurons are able to maintain high frequency discharge patterns, which requires efficient replenishment of the releasable pool of GABA. Although glutamine is considered a preferred precursor of GABA, the identity of transporters involved in glutamine uptake by GABAergic neurons remains elusive. Molecular analyses revealed that SAT1 (Slc38a1) features system A characteristics with a preferential affinity for glutamine, and that SAT1 mRNA expression is associated with GABAergic neurons. By generating specific antibodies against SAT1 we show that this glutamine carrier is particularly enriched in GABAergic neurons. Cellular SAT1 distribution resembles that of GAD67, an essential GABA synthesis enzyme, suggesting that SAT1 can be involved in translocating glutamine into GABAergic neurons to facilitate inhibitory neurotransmitter generation.
Collapse
Affiliation(s)
- Tom Tallak Solbu
- The Biotechnology Centre of Oslo, University of Oslo Oslo, Norway
| | | | | | | | | |
Collapse
|
18
|
Merchán M, Aguilar LA, Lopez-Poveda EA, Malmierca MS. The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 2006; 136:907-25. [PMID: 16344160 DOI: 10.1016/j.neuroscience.2004.12.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 12/22/2004] [Accepted: 12/30/2004] [Indexed: 11/22/2022]
Abstract
Both GABA and glycine (Gly) containing neurons send inhibitory projections to the inferior colliculus (IC), whereas inhibitory neurons within the IC are primarily GABAergic. To date, however, a quantitative description of the topographic distribution of GABAergic neurons in the rat's IC and their GABAergic or glycinergic inputs is lacking. Accordingly, here we present detailed maps of GABAergic and glycinergic neurons and terminals in the rat's IC. Semithin serial sections of the IC were obtained and stained for GABA and Gly. Images of the tissue were digitized and used for a quantitative densitometric analysis of GABA immunostaining. The optical density, perimeter, and number of GABA- and Gly immunoreactive boutons apposed to the somata were measured. Data analysis included comparisons across IC subdivisions and across frequency regions within the central nucleus of the IC. The results show that: 1) 25% of the IC neurons are GABAergic; 2) there are more GABAergic neurons in the central nucleus of the IC than previously estimated; 3) GABAergic neurons are larger than non-GABAergic; 4) GABAergic neurons receive less GABA and glycine puncta than non-GABAergic; 5) differences across frequency regions are minor, except that the non-GABAergic neurons from high frequency regions are larger than their counterparts in low frequency regions; 6) differences within the laminae are greater along the dorsomedial-ventrolateral axis than along the rostrocaudal axis; 7) GABA and non-GABAergic neurons receive different numbers of puncta in different IC subdivisions; and 8) GABAergic puncta are both apposed to the somata and in the neuropil, glycinergic puncta are mostly confined to the neuropil.
Collapse
Affiliation(s)
- M Merchán
- Laboratory for the Neurobiology of Hearing, Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
19
|
Ono S, Das VE, Mustari MJ. Role of the dorsolateral pontine nucleus in short-term adaptation of the horizontal vestibuloocular reflex. J Neurophysiol 2003; 89:2879-85. [PMID: 12740419 DOI: 10.1152/jn.00602.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dorsolateral pontine nucleus (DLPN) is a major component of the cortico-ponto-cerebellar pathway that carries signals essential for smooth pursuit. This pathway also carries visual signals that could play a role in visually guided motor learning in the vestibular ocular reflex (VOR). However, there have been no previous studies that tested this possibility directly. The aim of this study was to determine the potential role of the DLPN in short-term VOR gain adaptation produced by viewing a scene through lenses placed in front of both eyes. In control experiments, adaptation of VOR gain was achieved by sinusoidal rotation (0.2 Hz, 30 degrees /s) for 2 h while the monkey viewed a stationary visual surround through either magnifying (x2) or minifying (x0.5) lenses. This led to increases (23-32%) or decreases (22-48%) of VOR gain as measured in complete darkness (VORd). We used injections of muscimol, a potent GABA(A) agonist (0.5 microl; 2%), to reversibly inactivate the DLPN, unilaterally, in three monkeys. After DLPN inactivation, initial acceleration of ipsilateral smooth-pursuit was reduced by 35-68%, and steady-state gain was reduced by 32-61%. Despite these significant deficits (P < 0.01) in ipsilesional smooth pursuit, the VOR during lens viewing was similar to that measured in preinjection control experiments. Similarly, after 2 h of adaptation, VORd gain was not significantly different (P > 0.61) from control adaptation values for either ipsi- or contralesional directions of head rotation. This was the case even though a stable ipsilesional smooth pursuit deficit persisted throughout the full adaptation period. Our results suggest that visual error signals for short-term adaptation of the VOR are derived from sources other than the DLPN perhaps including other basilar pontine nuclei and the accessory optic system.
Collapse
Affiliation(s)
- Seiji Ono
- Division of Visual Science, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30022, USA
| | | | | |
Collapse
|
20
|
Braak H, Rüb U, Del Tredici K. Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 2003; 29:60-76. [PMID: 12581341 DOI: 10.1046/j.1365-2990.2003.00432.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this semiquantitative study based on 26 post-mortem cases, we describe the involvement of precerebellar nuclei in multiple system atrophy (MSA), a progressive degenerative disorder of the human central nervous system characterized by abnormal, argyrophilic and alpha-synuclein immunopositive intracellular inclusions within selectively vulnerable oligodendrocytes and nerve cells. The Campbell-Switzer silver-pyridine technique with alpha-synuclein immunoreactions using 100-microm thick sections is recommended over more conventional methods, thereby permitting visualization of the pertinent lesions in greater detail and facilitating post-mortem diagnosis of MSA specimens. Affected oligodendrocytes occur in specific fibre tracts and grey matters, with most pathology being observed in projections from the precerebellar nuclei to the cerebellum (ponto-cerebellar, olivo-cerebellar, reticulo-cerebellar tracts) and in descending/ascending fibre tracts of the motor system (cortico-pontine, cortico-bulbar, cortico-spinal, spino-reticular, spino-olivary, spino-cerebellar tracts). Three types of abnormal intraneuronal aggregations occur: (i) a loosely woven network within the cell nucleus; (ii) a latticework accumulating in peripheral portions of the cell body; and (iii) irregularly outlined patches of compact, intensely argyrophilic material usually located within deposits of lipofuscin granules. Counter-staining for the presence of extraneuronal lipofuscin can aid neuropathologists in the recognition of lost existent neurones in MSA. Neurones with inclusion bodies occur in the inferior olivary nuclear complex, lateral reticular nucleus, external cuneate nucleus, conterminal nucleus, interfascicular nucleus, nucleus of Roller, dorsal paramedian reticular nucleus, subventricular nucleus, arcuate nucleus, pontobulbar body and pontine grey. The lateral reticular nucleus and accessory nuclei of the inferior olive sustain the most damage and reveal prominent neuronal loss, followed by the pontobulbar body and arcuate nucleus. The uniformly bilateral damage and, in some cases, even obliteration of the nuclei studied, supply additional evidence for the pathoanatomical substrata of the cerebellar dysfunction that reportedly emerges in the clinical course of MSA.
Collapse
Affiliation(s)
- H Braak
- Institute for Clinical Neuroanatomy, JW Goethe University, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
21
|
De Schutter E, Bjaalie JG. Coding in the granular layer of the cerebellum. PROGRESS IN BRAIN RESEARCH 2001; 130:279-96. [PMID: 11480281 DOI: 10.1016/s0079-6123(01)30019-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- E De Schutter
- Born-Bunge Foundation, University of Antwerp, Universiteitsplein 1, B2610 Antwerp, Belgium.
| | | |
Collapse
|
22
|
Schwarz C, Thier P. Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci 1999; 22:443-51. [PMID: 10481191 DOI: 10.1016/s0166-2236(99)01446-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
If numbers matter, the projection that connects the cerebral cortex to the cerebellum is probably one of the most-important pathways through the CNS. Its extensive development as one ascends the phylogenetic scale parallels that of the cerebral hemispheres and the cerebellum, and it accompanies improvements in motor skills, suggesting that this system might have a decisive role in the generation of skilled movement. This article focuses on the pontine nuclei (PN), which are intercalated in the cerebro-cerebellar pathway, a large nuclear complex in the ventral brainstem of mammals, whose raison d'être has as yet not been examined. By considering recent morphological and electrophysiological findings, this article argues that the PN are an interface that is needed to accommodate the grossly different computational principles governing the cerebral cortex and the cerebellum.
Collapse
Affiliation(s)
- C Schwarz
- Sektion für Visuelle Sensomotorik, Neurologische Universitätsklinik Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|
23
|
Rabacchi SA, Kruk B, Hamilton J, Carney C, Hoffman JR, Meyer SL, Springer JE, Baird DH. BDNF and NT4/5 promote survival and neurite outgrowth of pontocerebellar mossy fiber neurons. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199908)40:2<254::aid-neu11>3.0.co;2-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Collapsin-1/semaphorin-III/D is regulated developmentally in Purkinje cells and collapses pontocerebellar mossy fiber neuronal growth cones. J Neurosci 1999. [PMID: 10341245 DOI: 10.1523/jneurosci.19-11-04437.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most axons in the CNS innervate specific subregions or layers of their target regions and form contacts with specific types of target neurons, but the molecular basis of this process is not well understood. To determine whether collapsin-1/semaphorin-III/D, a molecule known to repel specific axons, might guide afferent axons within their cerebellar targets, we characterized its expression by in situ hybridization and observed its effects on mossy and climbing fiber extension and growth cone size in vitro. In newborn mice sema-D is expressed by cerebellar Purkinje cells in parasagittal bands located medially and in some cells of the cerebellar nuclei. Later, sema-D expression in Purkinje cells broadens such that banded expression is no longer prominent, and expression is detected in progressively more lateral regions. By postnatal day 16, expression is observed throughout the cerebellar mediolateral axis. Collapsin-1 protein, the chick ortholog of sema-D, did not inhibit the extension of neurites from explants of inferior olivary nuclei, the source of climbing fibers that innervate Purkinje cells. In contrast, when it was applied to axons extending from basilar pontine explants, a source of mossy fiber afferents of granule cells, collapsin-1 caused most pontine growth cones to collapse, as evidenced by a reduction in growth cone size of up to 59%. Moreover, 63% of pontine growth cones arrested their extension or retracted. Its effects on mossy fiber extension and its distribution suggest that sema-D prevents mossy fibers from innervating inappropriate cerebellar target regions and cell types.
Collapse
|
25
|
Abstract
Pick's disease is a progressive degenerative disorder of the human brain which involves not only numerous areas of the cerebral cortex but also a characteristic set of subcortical nuclei. The disorder is associated with the formation of abnormal and hyperphosphorylated tau protein, which occurs in only a few susceptible neuronal types and leads to major cytoskeletal alterations. Preferentially affected by the destructive process are small nerve cells of both cortical areas and subcortical nuclei. Immunoreactions for abnormally phosphorylated tau protein permit identification of the alterations in their entirety. In an initial step in their development, patches of a nonargyrophilic material appear, irregularly filling both the somata and neurites of afflicted cells. The abnormal material is then partially converted into condensed spindle-shaped or spherical structures, which gradually become significantly argyrophilic. Globose argyrophilic Pick bodies eventually appear within the somata, and small Pick neurites of variable sizes and shapes develop in varicose expansions of the dendritic processes. Silver staining reveals only a fraction of the abnormal material and is adequate only for diagnostic purposes, while immunostaining of the abnormal tau protein discloses the complete neuropathological picture. The present study points to a conspicuous affliction of specific precerebellar nuclei in Pick's disease. Immunoreactive punctae, probably corresponding to terminal synaptic boutons of afferent fibers, appear at sites in the inferior olive receiving intense input from the cerebral cortex. The brunt of the changes, however, are borne by the pontine gray, the arcuate nucleus, the pontobulbar body, and the paramedian reticular nucleus. Altered areas show immunoreactive punctae and an abundance of small immunoreactive nerve cells partially containing Pick bodies and Pick neurites. Again, a feature common to all the affected nuclei is that they receive major input from the cerebral cortex, while other precerebellar nuclei with preponderant input from the spinal cord and/or other noncortical sources remain unscathed or exhibit only sparse involvement. The lesional pattern which develops in specific precerebellar nuclei is interpreted to be a partial reflection of the cortical involvement of Pick's disease.
Collapse
Affiliation(s)
- H Braak
- Department of Anatomy, Johann Wolfgang Goethe University, Theodor Stern Kai 7, Frankfurt/Main, D-60590, Germany
| | | |
Collapse
|
26
|
Faingold CL, N'Gouemo P, Riaz A. Ethanol and neurotransmitter interactions--from molecular to integrative effects. Prog Neurobiol 1998; 55:509-35. [PMID: 9670216 DOI: 10.1016/s0301-0082(98)00027-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is extensive evidence that ethanol interacts with a variety of neurotransmitters. Considerable research indicates that the major actions of ethanol involve enhancement of the effects of gamma-aminobutyric acid (GABA) at GABAA receptors and blockade of the NMDA subtype of excitatory amino acid (EAA) receptor. Ethanol increases GABAA receptor-mediated inhibition, but this does not occur in all brain regions, all cell types in the same region, nor at all GABAA receptor sites on the same neuron, nor across species in the same brain region. The molecular basis for the selectivity of the action of ethanol on GaBAA receptors has been proposed to involve a combination of benzodiazepine subtype, beta 2 subunit, and a splice variant of the gamma 2 subunit, but substantial controversy on this issue currently remains. Chronic ethanol administration results in tolerance, dependence, and an ethanol withdrawal (ETX) syndrome, which are mediated, in part, by desensitization and/or down-regulation of GABAA receptors. This decrease in ethanol action may involve changes in subunit expression in selected brain areas, but these data are complex and somewhat contradictory at present. The sensitivity of NMDA receptors to ethanol block is proposed to involve the NMDAR2B subunit in certain brain regions, but this subunit does not appear to be the sole determinant of this interaction. Tolerance to ethanol results in enhanced EAA neurotransmission and NMDA receptor upregulation, which appears to involve selective increases in NMDAR2B subunit levels and other molecular changes in specific brain loci. During ETX a variety of symptoms are seen, including susceptibility to seizures. In rodents these seizures are readily triggered by sound (audiogenic seizures). The neuronal network required for these seizures is contained primarily in certain brain stem structures. Specific nuclei appear to play a hierarchical role in generating each stereotypical behavioral phases of the convulsion. Thus, the inferior colliculus acts to initiate these seizures, and a decrease in effectiveness of GABA-mediated inhibition in these neurons is a major initiation mechanism. The deep layers of superior colliculus are implicated in generation of the wild running behavior. The pontine reticular formation, substantia nigra and periaqueductal gray are implicated in generation of the tonic-clonic seizure behavior. The mechanisms involved in the recruitment of neurons within each network nucleus into the seizure circuit have been proposed to require activation of a critical mass of neurons. Achievement of critical mass may involve excess EAA-mediated synaptic neurotransmission due, in part, to upregulation as well as other phenomena, including volume (non-synaptic diffusion) neurotransmission. Effects of ETX on receptors observed in vitro may undergo amplification in vivo to allow the excess EAA action to be magnified sufficiently to produce synchronization of neuronal firing, allowing participation of the nucleus in seizure generation. GABA-mediated inhibition, which normally acts to limit excitation, is diminished in effectiveness during ETX, and further intensifies this excitation.
Collapse
Affiliation(s)
- C L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794-1222, USA
| | | | | |
Collapse
|
27
|
Oshima T, Sakamoto M, Tatsuta H, Arita H. GABAergic inhibition of hiccup-like reflex induced by electrical stimulation in medulla of cats. Neurosci Res 1998; 30:287-93. [PMID: 9678632 DOI: 10.1016/s0168-0102(98)00011-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We hypothesize that the hiccup reflex is actively inhibited through GABA(B) receptor within central connections of the hiccup reflex arc. Because the hiccup-like reflex can be elicited by electrical stimulation to a limited area within the medullary reticular formation, the hiccup-evoking site (HES), electrical stimulation (50-100 microA, three train pulses at 20 Hz) was delivered to HES by means of a metal electrode containing 1.0 mM baclofen, in anesthetized spontaneously breathing cats. The evoked response was characterized by a brief powerful increase in diaphragmatic activity and a temporal suppression of the posterior cricoarytenoid muscle, laryngeal dilator, which corresponded to the fixed motor pattern of hiccup reflex. The hiccup-like response was rapidly suppressed after microinjection of baclofen (0.1-0.5 nmol) into HES, indicating that HES has GABA(B) receptors. In the other experiments, to histologically examine the inputs to the hiccup reflex arc, unconjugated cholera toxin subunit B (UCTB) was injected into HES. Following injections of UCTB, retrogradely labelled cells were found distributed in various areas of the lower brainstem. Among these areas, the nucleus raphe magnus (RM) is reported to have GABA-containing cells. It is thus hypothesized that RM is most likely to be the source of the GABAergic inhibitory inputs to the hiccup reflex arc.
Collapse
Affiliation(s)
- T Oshima
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
28
|
Möck M, Schwarz C, Thier P. Electrophysiological properties of rat pontine nuclei neurons In vitro II. Postsynaptic potentials. J Neurophysiol 1997; 78:3338-50. [PMID: 9405548 DOI: 10.1152/jn.1997.78.6.3338] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We investigated the postsynaptic responses of neurons of the rat pontine nuclei (PN) by performing intracellular recordings in parasagittal slices of the pontine brain stem. Postsynaptic potentials (PSPs) were evoked by brief (0.1 ms) negative current pulses (10-250 microA) applied to either the cerebral peduncle or the pontine tegmentum. First, excitatory postsynaptic potentials (EPSPs) could be evoked readily from peduncular stimulation sites. These EPSPs exhibited short latencies, a nonlinear increment in response to increased stimulation currents, and an unconventional dependency on the somatic membrane potential. Pharmacological blockade of the synaptic transmission using 6,7-dinitroquinoxaline-2, 3-dione and ,-2-amino-5-phosphonovaleric acid, selective antagonists of the alpha-amino-3-hydroxy-5-methyl-4-isoxazilepropionate- (AMPA) and the N-methyl--aspartate (NMDA)-type glutamate receptors, showed that these EPSPs were mediated exclusively by excitatory amino acids via both AMPA and NMDA receptors. Moreover, the pharmacological experiments indicated the existence of voltage-sensitive but NMDA receptor-independent amplification of EPSPs. Second, stimulations at peduncular and tegmental sites also elicited inhibitory postsynaptic potentials (IPSPs) in a substantial proportion of pontine neurons. The short latencies of all IPSPs argued against the participation of inhibitory interneurons. Their sensitivity to bicuculline and reversal potentials around -70 mV suggested that they were mediated by gamma-aminobutyric acid-A (GABAA) receptors. In addition to single PSPs, sequences consisting of two to four distinct EPSPs could be recorded after stimulation of the cerebral peduncle. Most remarkably, the onset latencies of the following EPSPs were multiples of the first one indicating the involvement of intercalated synapses. Finally, we used the classic paired-pulse paradigm to study whether the temporal structure of inputs influences the synaptic transmission onto pontine neurons. Pairs of electrical stimuli applied to the cerebral peduncle resulted in a marked enhancement of the amplitude of the second EPSP for interstimulus intervals of 10-100 ms. Delays >200 ms left the EPSP amplitude unaltered. These data provide evidence for a complex synaptic integration and an intrinsic connectivity within the PN too elaborate to support the previous notion that the PN are simply a relay station.
Collapse
Affiliation(s)
- M Möck
- Sektion für Visuelle Sensomotorik, Neurologische Universitätsklinik Tübingen, 72076 Tubingen, Germany
| | | | | |
Collapse
|
29
|
Bjaalie JG, Brodal P. Cat pontocerebellar network: numerical capacity and axonal collateral branching of neurones in the pontine nuclei projecting to individual parafloccular folia. Neurosci Res 1997; 27:199-210. [PMID: 9129178 DOI: 10.1016/s0168-0102(96)01149-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have studied the convergence and divergence in the pontocerebellar pathway. Two or three different fluorescent tracers were injected in separate folia of the parafloccular complex. Retrogradely labelled cells were quantitatively recorded. The estimated total number of labelled neurones in the pontine nuclei contralateral to the injection sites was 18000 (median; range 5000-46000; 14 cell populations, six animals). Using stereological principles, the total number of neurones on one side in the pontine nuclei was estimated to be 490000 (mean; n = 6). Thus, approximately 4% of the total number of neurones in the pontine nuclei would project to a single parafloccular folium. Assuming that the highest estimates of labelled cells are the most representative, the proportion would be 9%. Considering that the volume injected makes up a tiny fraction of the total cerebellar cortical volume, these figures reflect an extreme convergence. After injections in adjacent folia we observed 19-27% double labelling. The double labelling frequency dropped steeply with increasing distance between injections. The strong convergence and limited local axonal branching suggest the existence of extensive branching to widely separated cerebellar regions.
Collapse
Affiliation(s)
- J G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | | |
Collapse
|
30
|
Abstract
Dendritic features of identified projection neurons in two precerebellar nuclei, the pontine nuclei (PN) and the nucleus reticularis tegmenti pontis (NRTP) were established by using a combination of retrograde tracing (injection of fluorogold or rhodamine labelled latex micro-spheres into the cerebellum) with subsequent intracellular filling (lucifer yellow) in fixed slices of pontine brainstem. A multivariate analysis revealed that parameters selected to characterize the dendritic tree such as size of dendritic field, number of branching points, and length of terminal dendrites did not deviate significantly between different regions of the PN and the NRTP. On the other hand, projection neurons in ventral regions of the PN were characterized by an irregular coverage of their distal dendrites by appendages while those in the dorsal PN and the NRTP were virtually devoid of them. The NRTP, dorsal, and medial PN tended to display larger somata and more primary dendrites than ventral regions of the PN. These differences, however, do not allow the differentiation of projection neurons within the PN from those in the NRTP. They rather reflect a dorso-ventral gradient ignoring the border between the nuclei. Accordingly, a cluster analysis did not differentiate distinct types of projection neurons within the total sample. In both nuclei, multiple linear regression analysis revealed that the size of dendritic fields was strongly correlated with the length of terminal dendrites while it did not depend on other parameters of the dendritic field. Thus, larger dendritic fields seem not to be accompanied by a higher complexity but rather may be used to extend the reach of a projection neuron within the arrangement of afferent terminals. We suggest that these similarities within dendritic properties in PN and NRTP projection neurons reflect similar processing of afferent information in both precerebellar nuclei.
Collapse
Affiliation(s)
- C Schwarz
- Sektion für Visuelle Sensomotorik, Neurologische Universitätsklinik Tübingen, Germany.
| | | |
Collapse
|
31
|
We know a lot about the cerebellum, but do we know what motor learning is? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Sensorimotor learning in structures “upstream” from the cerebellum. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Cerebellar arm ataxia: Theories still have a lot to explain. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
|
35
|
Resilient cerebellar theory complies with stiff opposition. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00082005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
The cerebellum and cerebral cortex: Contrasting and converging contributions to spatial navigation and memory. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Cerebellum does more than recalibration of movements after perturbations. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
A cerebellar long-term depression update. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
What has to be learned in motor learning? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x0008153x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Further evidence for the involvement of nitric oxide in trans-ACPD-induced suppression of AMPA responses in cultured chick Purkinje neurons. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
|
42
|
More models of the cerebellum. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x0008198x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Cerebellar rhythms: Exploring another metaphor. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x0008184x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
The notions of joint stiffness and synaptic plasticity in motor memory. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
How and what does the cerebellum learn? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Plasticity of cerebro-cerebellar interactions in patients with cerebellar dysfunction. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
How to link the specificity of cerebellar anatomy to motor learning? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Long-term changes of synaptic transmission: A topic of long-term interest. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Nitric oxide is involved in cerebellar long-term depression. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
No more news from the cerebellum. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|