1
|
Nakamura H, Ohta K. Understanding subcortical projections to the lateral posterior thalamic nucleus and its subregions using retrograde neural tracing. Front Neuroanat 2024; 18:1430636. [PMID: 39170852 PMCID: PMC11335648 DOI: 10.3389/fnana.2024.1430636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The rat lateral posterior thalamic nucleus (LP) is composed of the rostromedial (LPrm), lateral (LPl), and caudomedial parts, with LPrm and LPl being areas involved in information processing within the visual cortex. Nevertheless, the specific differences in the subcortical projections to the LPrm and LPl remain elusive. In this study, we aimed to reveal the subcortical regions that project axon fibers to the LPl and LPrm using a retrograde neural tracer, Fluorogold (FG). After FG injection into the LPrm or LPl, the area was visualized immunohistochemically. Retrogradely labeled neurons from the LPrm were distributed in the retina and the region from the diencephalon to the medulla oblongata. Diencephalic labeling was found in the reticular thalamic nucleus (Rt), zona incerta (ZI), ventral lateral geniculate nucleus (LGv), intergeniculate leaflet (IGL), and hypothalamus. In the midbrain, prominent labeling was found in the periaqueductal gray (PAG) and deep layers of the superior colliculus. Additionally, retrograde labeling was observed in the cerebellar and trigeminal nuclei. When injected into the LPl, several cell bodies were labeled in the visual-related regions, including the retina, LGv, IGL, and olivary pretectal nucleus (OPT), as well as in the Rt and anterior pretectal nucleus (APT). Less labeling was found in the cerebellum and medulla oblongata. When the number of retrogradely labeled neurons from the LPrm or LPl was compared as a percentage of total subcortical labeling, a larger percentage of subcortical inputs to the LPl included projections from the APT, OPT, and Rt, whereas a large proportion of subcortical inputs to the LPrm originated from the ZI, reticular formation, and PAG. These results suggest that LPrm not only has visual but also multiple sensory-and motor-related functions, whereas the LPl takes part in a more visual-specific role. This study enhances our understanding of subcortical neural circuits in the thalamus and may contribute to our exploration of the mechanisms and disorders related to sensory perception and sensory-motor integration.
Collapse
Affiliation(s)
- Hisashi Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
2
|
Genaro K, Prado WA. The role of the anterior pretectal nucleus in pain modulation: A comprehensive review. Eur J Neurosci 2021; 54:4358-4380. [PMID: 33909941 DOI: 10.1111/ejn.15255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
Descending pain modulation involves multiple encephalic sites and pathways that range from the cerebral cortex to the spinal cord. Behavioral studies conducted in the 1980s revealed that electrical stimulation of the pretectal area causes antinociception dissociation from aversive responses. Anatomical and physiological studies identified the anterior pretectal nucleus and its descending projections to several midbrain, pontine, and medullary structures. The anterior pretectal nucleus is morphologically divided into a dorsal part that contains a dense neuron population (pars compacta) and a ventral part that contains a dense fiber band network (pars reticulata). Connections of the two anterior pretectal nucleus parts are broad and include prominent projections to and from major encephalic systems associated with somatosensory processes. Since the first observation that acute or chronic noxious stimuli activate the anterior pretectal nucleus, it has been established that numerous mediators participate in this response through distinct pathways. Recent studies have confirmed that at least two pain inhibitory pathways are activated from the anterior pretectal nucleus. This review focuses on rodent anatomical, behavioral, molecular, and neurochemical data that have helped to identify mediators of the anterior pretectal nucleus and pathways related to its role in pain modulation.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA
| | - Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Convergence of Primary Sensory Cortex and Cerebellar Nuclei Pathways in the Whisker System. Neuroscience 2018; 368:229-239. [DOI: 10.1016/j.neuroscience.2017.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/07/2017] [Accepted: 07/16/2017] [Indexed: 01/23/2023]
|
4
|
Olson I, Suryanarayana SM, Robertson B, Grillner S. Griseum centrale, a homologue of the periaqueductal gray in the lamprey. IBRO Rep 2017; 2:24-30. [PMID: 30135930 PMCID: PMC6084820 DOI: 10.1016/j.ibror.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 11/27/2022] Open
Abstract
Fear, a response to threatening stimuli and important for survival, is a behavior found throughout the animal kingdom. One critical structure involved in the expression of fear-related behavior is the periaqueductal gray (PAG) in mammals, and in the zebrafish, the griseum centrale. Here, we show in the lamprey, belonging to the oldest now living group of vertebrates, that a bilateral periventricular nucleus in the ventral mesencephalon has a similar location to that of the PAG and griseum centrale. It targets the pretectum and the substantia nigra pars compacta (SNc), expresses the dopamine D1 and D2 receptors and receives input from the pallium (cortex in mammals), hypothalamus, the raphe area and SNc. These are all hallmarks of the mammalian PAG. In addition, like in the zebrafish, there is an input from the interpeduncular nucleus. Our results thus suggest that a structure homologous to the PAG/griseum centrale was present very early in vertebrate evolution. A homologue of the mammalian PAG is present in the lamprey. As in the zebrafish, this structure is named griseum centrale. The neuronal circuitry for fear-related behavior is evolutionarily conserved.
Collapse
Affiliation(s)
- Ian Olson
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77 Stockholm, Sweden
| | - Shreyas M Suryanarayana
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77 Stockholm, Sweden
| | - Brita Robertson
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77 Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Genaro K, Prado WA. Neural Correlates of the Antinociceptive Effects of Stimulating the Anterior Pretectal Nucleus in Rats. THE JOURNAL OF PAIN 2016; 17:1156-1163. [DOI: 10.1016/j.jpain.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
6
|
Capantini L, von Twickel A, Robertson B, Grillner S. The pretectal connectome in lamprey. J Comp Neurol 2016; 525:753-772. [DOI: 10.1002/cne.24102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Brita Robertson
- Department of Neuroscience; Karolinska Institutet; Stockholm Sweden
| | - Sten Grillner
- Department of Neuroscience; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
7
|
Rossaneis AC, Prado WA. The ventral portion of the anterior pretectal nucleus controls descending mechanisms that initiate neuropathic pain in rats. Clin Exp Pharmacol Physiol 2015; 42:704-10. [PMID: 25809943 DOI: 10.1111/1440-1681.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/27/2015] [Accepted: 03/19/2015] [Indexed: 11/30/2022]
Abstract
Stimulating the dorsal anterior pretectal nucleus (dAPtN) in rats is more effective than stimulating the ventral APtN (vAPtN) at reducing tail-flick latency, whereas stimulation of the vAPtN is more effective at reducing postoperative pain behaviour. This study examines whether a cell lesion caused by injecting N-methyl-D-aspartate into the dAPtN or vAPtN changes the withdrawal threshold of a rat hind paw during different phases of the tactile hypersensitivity induced by a chronic constriction injury (CCI) of the contralateral sciatic nerve. The number of Fos immunoreactive cells in the APtN was also evaluated. The rats whose vAPtN was lesioned 2 days before CCI had more intense tactile hypersensitivity 2 days after CCI than that of the control group, but the groups were not different 7 days after the CCI. The rats whose vAPtN was lesioned 5 days after CCI had withdrawal thresholds that did not differ significantly 7 days after the CCI. The tactile hypersensitivity of the rats whose dAPtN was lesioned 2 days before or 5 days after CCI was not different from that of the control on the second and seventh days after the CCI. The number of Fos immunoreactive cells in the vAPtN and dAPtN increased 2 days after CCI, but did not differ from that in the control 7 days after CCI. We conclude that vAPtN and dAPtN cells are activated by nerve injury; the vAPtN exerts inhibitory control of the initial phase of neuropathic pain whereas the dAPtN does not appear to exert an inhibitory effect in neuropathic processing.
Collapse
Affiliation(s)
- Ana C Rossaneis
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Kita T, Osten P, Kita H. Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol 2014; 522:4043-56. [PMID: 25048050 DOI: 10.1002/cne.23655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 11/10/2022]
Abstract
The subthalamic nucleus (STN) and the zona incerta (ZI) are two major structures of the subthalamus. The STN has strong connections between the basal ganglia and related nuclei. The ZI has strong connections between brainstem reticular nuclei, sensory nuclei, and nonspecific thalamic nuclei. Both the STN and ZI receive heavy projections from a subgroup of layer V neurons in the cerebral cortex. The major goal of this study was to investigate the following two questions about the cortico-subthalamic projections using the lentivirus anterograde tracing method in the rat: 1) whether cortical projections to the STN and ZI have independent functional organizations or a global organization encompassing the entire subthalamus as a whole; and 2) how the cortical functional zones are represented in the subthalamus. This study revealed that the subthalamus receives heavy projections from the motor and sensory cortices, that the cortico-subthalamic projections have a large-scale functional organization that encompasses both the STN and two subdivisions of the ZI, and that the group of cortical axons that originate from a particular area of the cortex sequentially innervate and form separate terminal fields in the STN and ZI. The terminal zones formed by different cortical functional areas have highly overlapped and fuzzy borders, as do the somatotopic representations of the sensorimotor cortex in the subthalamus. The present study suggests that the layer V neurons in the wide areas of the sensorimotor cortex simultaneously control STN and ZI neurons. Together with other known afferent and efferent connections, possible new functionality of the STN and ZI is discussed.
Collapse
Affiliation(s)
- Takako Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | | | | |
Collapse
|
9
|
Mazzei-Silva EC, de Oliveira RC, dos Anjos Garcia T, Falconi-Sobrinho LL, Almada RC, Coimbra NC. Intrinsic connections within the pedunculopontine tegmental nucleus are critical to the elaboration of post-ictal antinociception. Synapse 2014; 68:369-77. [PMID: 24782316 DOI: 10.1002/syn.21749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/16/2014] [Accepted: 04/23/2014] [Indexed: 12/21/2022]
Abstract
This study investigated the intrinsic connections of a key-structure of the endogenous pain inhibitory system, the pedunculopontine tegmental nucleus (PPTN), in post-ictal antinociceptive process through synaptic inactivation of the PPTN with cobalt chloride. Male Wistar rats (n = 6 or 7 per group), weighing 250-280 g, had the tail-flick baseline recorded and were submitted to a stereotaxic surgery for the introduction of a guide-cannula aiming at the PPTN. After 5 days of postoperative recovery, cobalt chloride (1 mM/0.2 µL) or physiological saline (0.2 µL) were microinjected into the PPTN and after 5 min, the tail-withdrawal latency was measured again at 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and 120 min after seizures evoked by intraperitoneal injection of pentylenetetrazole (64 mg/kg). The synaptic inactivation of PPTN decreased the post-ictal antinociceptive phenomenon, suggesting the involvement of PPTN intrinsic connections in the modulation of pain, during tonic-clonic seizures. These results showed that the PPTN may be crucially involved in the neural network that organizes the post-ictal analgesia.
Collapse
Affiliation(s)
- Elaine Cristina Mazzei-Silva
- Departament of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Silva ML, Silva JR, Prado WA. Analgesia induced by 2- or 100-Hz electroacupuncture in the rat tail-flick test depends on the anterior pretectal nucleus. Life Sci 2013; 93:742-54. [DOI: 10.1016/j.lfs.2013.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/14/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022]
|
11
|
Brito RG, Santos PL, Prado DS, Santana MT, Araújo AAS, Bonjardim LR, Santos MRV, de Lucca Júnior W, Oliveira AP, Quintans-Júnior LJ. Citronellol reduces orofacial nociceptive behaviour in mice - evidence of involvement of retrosplenial cortex and periaqueductal grey areas. Basic Clin Pharmacol Toxicol 2012; 112:215-21. [PMID: 23035741 DOI: 10.1111/bcpt.12018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/16/2012] [Indexed: 12/15/2022]
Abstract
Citronellol (CT) is a monoterpenoid alcohol present in the essential oil of many medicinal plants, such as Cymbopogon citratus. We evaluated the antinociceptive effects of CT on orofacial nociception in mice and investigated the central pathway involved in the effect. Male Swiss mice were pretreated with CT (25, 50 and 100 mg/kg, i.p.), morphine (5 mg/kg, i.p.) or vehicle (saline + tween 80 0.2%). Thirty minutes after the treatment, we injected formalin (20 μl, 2%), capsaicin (20 μl, 2.5 μg) or glutamate (40 μl, 25 μM) into the right limb. For the action in the CNS, ninety minutes after the treatment, the animals were perfused, the brains collected, crioprotected, cut in a criostate and submitted in an immunofluorescence protocol for Fos protein. CT produced significant (p < 0.01) antinociceptive effect, in all doses, in the formalin, capsaicin and glutamate tests. The immunofluorescence showed that the CT activated significantly (p < 0.05) the olfactory bulb, the piriform cortex, the retrosplenial cortex and the periaqueductal grey of the CNS. Together, our results provide first-time evidence that this monoterpene attenuates orofacial pain at least, in part, through an activation of CNS areas, mainly retrosplenial cortex and periaqueductal grey.
Collapse
Affiliation(s)
- Renan G Brito
- Department of Physiology, Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reis GM, Rossaneis AC, Silveira JWS, Prado WA. μ1- and 5-HT1-dependent mechanisms in the anterior pretectal nucleus mediate the antinociceptive effects of retrosplenial cortex stimulation in rats. Life Sci 2012; 90:950-5. [PMID: 22575824 DOI: 10.1016/j.lfs.2012.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/03/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
AIM This study examines if injection of cobalt chloride (CoCl(2)) or antagonists of muscarinic cholinergic (atropine), μ(1)-opioid (naloxonazine) or 5-HT(1) serotonergic (methiothepin) receptors into the dorsal or ventral portions of the anterior pretectal nucleus (APtN) alters the antinociceptive effects of stimulating the retrosplenial cortex (RSC) in rats. MAIN METHOD Changes in the nociceptive threshold were evaluated using the tail flick or incision pain tests in rats that were electrically stimulated at the RSC after the injection of saline, CoCl(2) (1 mM, 0.10 μL) or antagonists into the dorsal or ventral APtN. KEY FINDINGS The injection of CoCl(2), naloxonazine (5 μg/0.10 μL) or methiothepin (3 μg/0.10 μL) into the dorsal APtN reduced the stimulation-produced antinociception from the RSC in the rat tail flick test. Reduction of incision pain was observed following stimulation of the RSC after the injection of the same substances into the ventral APtN. The injection of atropine (10 ng/0.10 μL) or ketanserine (5 μg/0.10 μL) into the dorsal or ventral APtN was ineffective against the antinociception resulting from RSC stimulation. SIGNIFICANCE μ(1)-opioid- and 5-HT(1)-expressing neurons and cell processes in dorsal and ventral APtN are both implicated in the mediation of stimulation-produced antinociception from the RSC in the rat tail flick and incision pain tests, respectively.
Collapse
Affiliation(s)
- Gláucia M Reis
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
13
|
Antinociceptive effect of stimulating the zona incerta with glutamate in rats. Pharmacol Biochem Behav 2012; 101:360-8. [PMID: 22327011 DOI: 10.1016/j.pbb.2012.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 01/03/2023]
Abstract
The zona incerta (ZI) is a subthalamic nucleus connected to several structures, some of them known to be involved with antinociception. The ZI itself may be involved with both antinociception and nociception. The antinociceptive effects of stimulating the ZI with glutamate using the rat tail-flick test and a rat model of incision pain were examined. The effects of intraperitoneal antagonists of acetylcholine, noradrenaline, serotonin, dopamine, or opioids on glutamate-induced antinociception from the ZI in the tail-flick test were also evaluated. The injection of glutamate (7 μg/0.25 μl) into the ZI increased tail-flick latency and inhibited post-incision pain, but did not change the animal performance in a Rota-rod test. The injection of glutamate into sites near the ZI was non effective. The glutamate-induced antinociception from the ZI did not occur in animals with bilateral lesion of the dorsolateral funiculus, or in rats treated intraperitoneally with naloxone (1 and 2 m/kg), methysergide (1 and 2 m/kg) or phenoxybenzamine (2 m/kg), but remained unchanged in rats treated with atropine, mecamylamine, or haloperidol (all given at doses of 1 and 2 m/kg). We conclude that the antinociceptive effect evoked from the ZI is not due to a reduced motor performance, is likely to result from the activation of a pain-inhibitory mechanism that descends to the spinal cord via the dorsolateral funiculus, and involves at least opioid, serotonergic and α-adrenergic mechanisms. This profile resembles the reported effects of these antagonists on the antinociception caused by stimulating the periaqueductal gray or the pedunculopontine tegmental nucleus.
Collapse
|
14
|
Rossaneis AC, Reis GM, Prado WA. Stimulation of the occipital or retrosplenial cortex reduces incision pain in rats. Pharmacol Biochem Behav 2011; 100:220-7. [DOI: 10.1016/j.pbb.2011.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
15
|
Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WHT, Ju C, Gong W, Koekkoek SKE, De Zeeuw CI. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 2011; 5:53. [PMID: 22065951 PMCID: PMC3207327 DOI: 10.3389/fnint.2011.00053] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/26/2011] [Indexed: 11/29/2022] Open
Abstract
The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.
Collapse
Affiliation(s)
- Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| | | | - Cullen B. Owens
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Nouk Tanke
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Negah Rahmati
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chiheng Ju
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Wei Gong
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| |
Collapse
|
16
|
Reis GM, Rossaneis AC, Silveira JWS, Dias QM, Prado WA. Stimulation-Produced Analgesia From the Occipital or Retrosplenial Cortex of Rats Involves Serotonergic and Opioid Mechanisms in the Anterior Pretectal Nucleus. THE JOURNAL OF PAIN 2011; 12:523-30. [DOI: 10.1016/j.jpain.2010.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/06/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
17
|
Aronoff R, Matyas F, Mateo C, Ciron C, Schneider B, Petersen CC. Long-range connectivity of mouse primary somatosensory barrel cortex. Eur J Neurosci 2010; 31:2221-33. [DOI: 10.1111/j.1460-9568.2010.07264.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Reis GM, Dias QM, Silveira JWS, Del Vecchio F, Garcia-Cairasco N, Prado WA. Antinociceptive effect of stimulating the occipital or retrosplenial cortex in rats. THE JOURNAL OF PAIN 2010; 11:1015-26. [PMID: 20418174 DOI: 10.1016/j.jpain.2010.01.269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 11/15/2022]
Abstract
UNLABELLED A role for the occipital or retrosplenial cortex in nociceptive processing has not been demonstrated yet, but connections from these cortices to brain structures involved in descending pain-inhibitory mechanisms were already demonstrated. This study demonstrated that the electrical stimulation of the occipital or retrosplenial cortex produces antinociception in the rat tail-flick and formalin tests. Bilateral lesions of the dorsolateral funiculus abolished the effect of cortical stimulation in the tail-flick test. Injection of glutamate into the same targets was also antinociceptive in the tail-flick test. No rats stimulated in the occipital or retrosplenial cortex showed any change in motor performance on the Rota-rod test, or had epileptiform changes in the EEG recording during or up to 3 hours after stimulation. The antinociception induced by occipital cortex stimulation persisted after neural block of the retrosplenial cortex. The effect of retrosplenial cortex stimulation also persisted after neural block of the occipital cortex. We conclude that stimulation of the occipital or retrosplenial cortex in rats leads to antinociception activating distinct descending pain-inhibitory mechanisms, and this is unlikely to result from a reduced motor performance or a postictal phenomenon. PERSPECTIVE This study presents evidence that stimulation of the retrosplenial or occipital cortex produces antinociception in rat models of acute pain. These findings enhance our understanding of the role of the cerebral cortex in control of pain.
Collapse
Affiliation(s)
- Glaucia Melo Reis
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Murray PD, Masri R, Keller A. Abnormal anterior pretectal nucleus activity contributes to central pain syndrome. J Neurophysiol 2010; 103:3044-53. [PMID: 20357063 DOI: 10.1152/jn.01070.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Central pain syndrome (CPS) is a debilitating condition that affects a large number of patients with a primary lesion or dysfunction in the CNS, most commonly due to spinal cord injury, stroke, and multiple sclerosis lesions. The pathophysiological processes underlying the development and maintenance of CPS are poorly understood. We have recently shown, in an animal model of CPS, that neurons in the posterior thalamic nucleus (PO) have increased spontaneous and evoked activity. We also demonstrated that these changes are due to suppressed inhibitory inputs from the zona incerta (ZI). The anterior pretectal nucleus (APT) is a diencephalic nucleus that projects on both the PO and ZI, suggesting that it might be involved in the pathophysiology of CPS. Here we test the hypothesis that CPS is associated with abnormal APT activity by recording single units from APT in anesthetized rats with CPS resulting from spinal cord lesions. The firing rate of APT neurons was increased in spinal-lesioned animals, compared with sham-operated controls. This increase was due to a selective increase in firing of tonic neurons that project to and inhibit ZI and an increase in bursts in fast bursting and slow rhythmic neurons. We also show that, in normal animals, suppressing APT results in increased PO spontaneous activity and evoked responses in a subpopulation of PO neurons. Taken together, these findings suggest that APT regulates ZI inputs to PO and that enhanced APT activity during CPS contributes to the abnormally high activity of PO neurons in CPS.
Collapse
Affiliation(s)
- Peter D Murray
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
20
|
Giber K, Slézia A, Bokor H, Bodor ÁL, Ludányi A, Katona I, Acsády L. Heterogeneous output pathways link the anterior pretectal nucleus with the zona incerta and the thalamus in rat. J Comp Neurol 2008; 506:122-40. [PMID: 17990275 PMCID: PMC2670449 DOI: 10.1002/cne.21545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The anterior pretectal nucleus (APT) and the zona incerta (ZI) are diencephalic nuclei that exert a strong inhibitory influence selectively in higher order thalamic relays. The APT is also known to project to the ZI as well as the thalamus, but anatomical details of the APT-ZI projection have not been described. In the present study, the efferent pathways of the APT were examined in the APT-ZI-thalamus network by using anterograde and retrograde tracing in combination with pre- and postembedding immunocytochemical stainings and in situ hybridization. The vast majority of APT fibers selectively innervated the parvalbumin-positive, ventral part of the ZI, which contains ZI neurons with axons projecting to higher order thalamic nuclei. The APT-ZI pathway consisted of both gamma-aminobutyric acid (GABA)-negative and GABA-positive components; 38.2% of the terminals in the ZI contained GABA, and 8.6% of the projecting somata in the APT were glutamic acid decarboxylase 67 (GAD67) mRNA positive. The combination of parvalbumin immunostaining with retrograde tracing showed that strongly and weakly parvalbumin-positive as well as parvalbumin-negative neurons were all among the population of APT cells projecting to the ZI. Similar heterogeneity was found among the APT cells projecting to the thalamus. Double retrograde tracing from higher order thalamic nuclei and their topographically matched ZI regions revealed hardly any APT neuron with dual projections. Our data suggest that both ZI and the higher order thalamic relays are innervated by distinct, physiologically heterogeneous APT neurons. These various efferent pathways probably interact via the rich recurrent collaterals of the projecting APT cells. Therefore, the powerful, GABAergic APT and ZI outputs to the thalamus are apparently co-modulated in a synergistic manner via dual excitatory and inhibitory APT-ZI connections.
Collapse
Affiliation(s)
- Kristóf Giber
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083 Hungary
| | - Andrea Slézia
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083 Hungary
| | - Hajnalka Bokor
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083 Hungary
| | - Ágnes L. Bodor
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083 Hungary
| | - Anikó Ludányi
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083 Hungary
| | - István Katona
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083 Hungary
| | - László Acsády
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083 Hungary
| |
Collapse
|
21
|
Abstract
Research over the past two decades in mammals, especially primates, has greatly improved our understanding of the afferent and efferent connections of two retinorecipient pretectal nuclei, the nucleus of the optic tract (NOT) and the pretectal olivary nucleus (PON). Functional studies of these two nuclei have further elucidated some of the roles that they play both in oculomotor control and in relaying oculomotor-related signals to visual relay nuclei. Therefore, following a brief overview of the anatomy and retinal projections to the entire mammalian pretectum, the connections and potential roles of the NOT and the PON are considered in detail. Data on the specific connections of the NOT are combined with data from single-unit recording, microstimulation, and lesion studies to show that this nucleus plays critical roles in optokinetic nystagmus, short-latency ocular following, smooth pursuit eye movements, and adaptation of the gain of the horizontal vestibulo-ocular reflex. Comparable data for the PON show that this nucleus plays critical roles in the pupillary light reflex, light-evoked blinks, rapid eye movement sleep triggering, and modulating subcortical nuclei involved in circadian rhythms.
Collapse
Affiliation(s)
- Paul D R Gamlin
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
22
|
Bokor H, Frère SGA, Eyre MD, Slézia A, Ulbert I, Lüthi A, Acsády L. Selective GABAergic Control of Higher-Order Thalamic Relays. Neuron 2005; 45:929-40. [PMID: 15797553 DOI: 10.1016/j.neuron.2005.01.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/17/2005] [Accepted: 01/31/2005] [Indexed: 11/20/2022]
Abstract
GABAergic signaling is central to the function of the thalamus and has been traditionally attributed primarily to the nucleus reticularis thalami (nRT). Here we present a GABAergic pathway, distinct from the nRT, that exerts a powerful inhibitory effect selectively in higher-order thalamic relays of the rat. Axons originating in the anterior pretectal nucleus (APT) innervated the proximal dendrites of relay cells via large GABAergic terminals with multiple release sites. Stimulation of the APT in an in vitro slice preparation revealed a GABA(A) receptor-mediated, monosynaptic IPSC in relay cells. Activation of presumed single APT fibers induced rebound burst firing in relay cells. Different APT neurons recorded in vivo displayed fast bursting, tonic, or rhythmic firing. Our data suggest that selective extrareticular GABAergic control of relay cell activity will result in effective, state-dependent gating of thalamocortical information transfer in higher-order but not in first-order relays.
Collapse
Affiliation(s)
- Hajnalka Bokor
- Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, 1450 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
23
|
Villarreal CF, Kina VAV, Prado WA. Antinociception induced by stimulating the anterior pretectal nucleus in two models of pain in rats. Clin Exp Pharmacol Physiol 2004; 31:608-13. [PMID: 15479168 DOI: 10.1111/j.1440-1681.2004.04057.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. This study examined whether different parts of the rat anterior pretectal nucleus (APtN) may be involved in the spinal control of brief (tail flick test) or persistent (surgical incision of the plantar aspect of a hind paw) noxious inputs via activation of descending pathways. 2. We have confirmed that stimulation of the dorsal APtN produces a strong antinociceptive effect in the tail flick test, as opposed to a very weak effect obtained from the ventral APtN. Stimulation at the ventral APtN was the most effective part of the nucleus against a persistent incisional pain. 3. The incisional pain was significantly increased following injection of 1 or 2% lignocaine (0.25 microL) into the nucleus, but the effect was more intense after neural block of the ventral rather than the dorsal APtN. Injection of 2% lignocaine (0.10 microL) into the ventral, but not dorsal, APtN significantly increased the perception of the incisional pain. 4. We conclude that the effect of stimulating the APtN depends on the site of stimulation and model of pain used. Sustained noxious stimuli activate pathways from the ventral APtN to reduce further noxious spinal inputs. The noxious stimulation produced during the tail flick test may be not enough to activate the same circuitry, but electrical stimulation at the dorsal APtN is very effective in inhibiting brief thermal noxious inputs at the spinal level.
Collapse
Affiliation(s)
- Cristiane F Villarreal
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto-USP, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
24
|
Morin L, Blanchard J. Interconnections among nuclei of the subcortical visual shell: The intergeniculate leaflet is a major constituent of the hamster subcortical visual system. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980706)396:3<288::aid-cne2>3.0.co;2-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Zagon A, Terenzi MG, Roberts MH. Direct projections from the anterior pretectal nucleus to the ventral medulla oblongata in rats. Neuroscience 1995; 65:253-72. [PMID: 7753399 DOI: 10.1016/0306-4522(94)00468-k] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The anterior pretectal nucleus has recently been implicated in the descending modulation of nociception. Electrical stimulation of the nucleus was found to reduce the nociceptive responses of deep dorsal horn neurons and to inhibit spinally integrated withdrawal reflexes. It is believed that at least part of the descending inhibitory effects of the anterior pretectal nucleus are mediated by reticulospinal cells of the ventrolateral medulla. The purpose of the present study was to trace the direct medullary projections of the anterior pretectal nucleus, to describe their topographical organization and to reveal the chemical nature of some of their putative target cells. The connections were studied using anterograde tract-tracing with Phaseolus vulgaris leucoagglutinin. Direct projections from the anterior pretectal nucleus to the ipsilateral rostral ventral medulla were found in all cases. A dense innervation of the dorsal inferior olive, the gigantocellular reticular nucleus pars ventralis and pars alpha and the ventral pontine reticular nucleus was found from all aspects of the anterior pretectal nucleus. Descending labelled terminals were also observed in the gigantocellular reticular nucleus proper and, laterally, in the lateral paragigantocellular nucleus and in the region of the A5 noradrenergic cell group. A relatively lower density of labelled terminals was noted in the medullary raphe nuclei and in the rostroventrolateral reticular nucleus. Following tract-tracer injections into five distinct subregions of the anterior pretectal nucleus, the topographical organization of the projection was examined and the relatively highest density and most widespread projection was found to originate from the caudoventral part of the anterior pretectal nucleus. A combined tract-tracing and immunolabelling study revealed that some of the descending, labelled terminals were in close proximity of tyrosine hydroxylase-immunoreactive dendrites in the C1 and A5 cell groups. Some labelled fibres were also noted among the serotonin-immunoreactive cells in the lateral extension of the B3 cell population. The existence of direct projections to the ventral medulla and pons correlates well with physiological data which showed that the descending, antinociceptive effects of the anterior pretectal nucleus are relayed via the rostral ventrolateral medulla. The data are also in keeping with pharmacological studies that suggested the role of catecholaminergic cells in the mediation of these descending effects. It is proposed that the rostral ventral medullary projections provide a path through which antinociceptive effects of the anterior pretectal nucleus are mediated to the spinal cord.
Collapse
Affiliation(s)
- A Zagon
- Department of Physiology, University of Wales, College of Cardiff, U.K
| | | | | |
Collapse
|
26
|
Abstract
A general theory of neural circuitry is proposed wherein neural impulses travel in a continuous circuit from the brain to the extremities and back to the brain. At the extremities the impulse may be modified by the environment there. At the spinal column the return signal is compared with the outgoing signal and the appropriate motoneuronal 'reflex' signal is generated if the difference is sufficiently large. In the thalamus the return signal is again compared with the outgoing signal and the difference between the two generates a sensory impulse which is sent to the cortical regions of the brain for comparison with stored patterns from similar signals of past experience. This theory allows for an explanation of feelings of pain and pleasure, pain remote from an area of trauma, phantom limb pain and the relationship between sensory impulses and motor impulses. New approaches to reducing pain are suggested by this theory.
Collapse
|
27
|
Porro CA, Cavazzuti M. Spatial and temporal aspects of spinal cord and brainstem activation in the formalin pain model. Prog Neurobiol 1993; 41:565-607. [PMID: 8284437 DOI: 10.1016/0301-0082(93)90044-s] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C A Porro
- Istituto di Fisiologia Umana, Universita' di Modena, Italy
| | | |
Collapse
|
28
|
Abstract
Four nuclei of the pretectal complex, the olivary pretectal nucleus, the medial pretectal nucleus, the nucleus of the optic tract and the posterior pretectal nucleus, all have a demonstrated role in visual function. In contrast, the anterior pretectal nucleus (APtN) has no inputs from retina and has few outputs to visual accessory nuclei. The APtN has connections with areas associated with sensory functions and it has been suggested that this nucleus may have a role to play in somatosensory processing. An increasing number of behavioural and electrophysiological studies support this view. Brief low-intensity electrical or chemical stimulation of the APtN causes antinociception in the tail flick test in both unanaesthetised and anaesthetised animals. This inhibition of the tail flick response is attenuated by naloxone, alpha-adrenoceptor antagonists and muscarinic cholinergic receptor antagonists. Electrical stimulation of the APtN is similarly effective in the paw pressure and formalin tests. APtN stimulation also causes a brief inhibition of the tooth pulp-evoked jaw opening reflex. studies with [C14]2-deoxyglucose indicate that peripheral noxious stimuli will cause an increase in metabolic activity within the APtN. Animals with electrodes placed in the APtN will self-administer electrical stimulation and this can reduce the aversive and autonomic effects of stimulating the ventromedial hypothalamus. Part of the antinociceptive effects of stimulating the APtN are due to a descending inhibition of spinal dorsal horn projection neurones. Multireceptive neurones deep in the dorsal horn are inhibited by APtN stimulation. In contrast, superficial projection neurones that respond to intense cutaneous stimuli are excited by APtN stimulation. The APtN receives an excitatory input from low-threshold afferents via the dorsal column pathway and a high-threshold excitatory drive from superficial cells projecting through the dorsolateral funiculus. The excitatory input from the dorsal columns may well participate in the long-term inhibition of spinal projection neurones evoked by dorsal column stimulation. These ascending excitatory pathways may also be important to the long-term activation of descending inhibition from the APtN.
Collapse
Affiliation(s)
- H Rees
- Department of Physiology, University of Wales College of Cardiff, Cardiff CF1 ISS, WalesUK
| | | |
Collapse
|
29
|
Braun CM. Estimation of interhemispheric dynamics from simple unimanual reaction time to extrafoveal stimuli. Neuropsychol Rev 1992; 3:321-65. [PMID: 1306109 DOI: 10.1007/bf01108415] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This essay reviews research on interhemispheric transfer time derived from simple unimanual reaction time to hemitachistoscopically presented visual stimuli. Part 1 reviews major theoretical themes including (a) the significance of the eccentricity effect on interhemispheric transfer time in the context of proposed underlying neurohistological constraints; (b) the significance of gender differences in interhemispheric transfer time and findings in dyslexics and left-handers in the context of a fetal brain testosterone model; and (c) the significance of complexity effects on interhemispheric transfer time in a context of "dynamic" vs. "hard-wired" concepts of the underlying interhemispheric communication systems. Part 2 consists of a meta-analysis of 49 published behavioral experiments, in view of drawing a portrait of the best set of experimental conditions apt to produce salient, reliable, and statistically significant measures of interhemispheric transfer time, namely (a) index rather than thumb response, (b) low rather than high target luminance, (c) short rather than prolonged target display, and (d) very eccentric rather than near-foveal stimulus location. Part 3 proposes a theoretical model of interhemispheric transfer time, postulating the measurable existence of fast and slow interhemispheric channels. The proposed mechanism's evolutionary adaptive value, the neurophysiological evidence in its support, and favorable functional evidence from studies of callosotomized patients are then presented followed by proposals for critical experimental tests of the model.
Collapse
Affiliation(s)
- C M Braun
- Laboratoire de Neurosciences Cognitives, (UQAM), Université du Québecà Montréal, Canada
| |
Collapse
|
30
|
Terenzi MG, Rees H, Roberts MH. The pontine parabrachial region mediates some of the descending inhibitory effects of stimulating the anterior pretectal nucleus. Brain Res 1992; 594:205-14. [PMID: 1450946 DOI: 10.1016/0006-8993(92)91127-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrical stimulation of the anterior pretectal nucleus (APtN) elicits antinociception by inhibiting the responses of spinal multireceptive neurones to noxious stimuli. This descending inhibition is mediated, in part, by activating cells in the ventrolateral medulla. Neuronal tract tracing has previously shown that the APtN also projects directly to the pontine parabrachial region (PPR). The PPR, investigated by Katayama et al. (Brain Res., 296 (1984) 263-283), corresponds to the cholinergic cell group Ch5 of Mesulam et al. (Neuroscience, 10 (1983) 1185-1201). In this study, the pathway from APtN to PPR was investigated using urethane anaesthetised rats. Electrical stimulation (single square wave 0.2 ms pulses, 1-10 V, 5 Hz) of the APtN potently excites 40% of the cells recorded in the PPR. In the reverse experiment, stimulation of the PPR at the same parameters excited 36% of the cells recorded in the APtN. The contribution of this pathway to the spinal inhibitory effects of APtN stimulation was then examined. Unanaesthetised animals received electrical stimulation to the APtN (35 microA r.m.s., 15 s) and the increase in tail-flick latencies was measured. Bilateral electrolytic lesions of the PPR caused a 67% reduction of the antinociceptive effect of APtN stimulation. In urethane anaesthetised rats, microinjection of tetracaine into the PPR blocked the inhibition of multireceptive dorsal horn neurones caused by APtN stimulation (20 s train of 50 microA square wave 0.1 ms pulses, 100 Hz). In conclusion, these experiments strongly sugget that the PPR may be an important part of a descending antinociceptive pathway originating in the APtN.
Collapse
Affiliation(s)
- M G Terenzi
- Department of Physiology, University of Wales, College of Cardiff, UK
| | | | | |
Collapse
|
31
|
Yoshida A, Sessle BJ, Dostrovsky JO, Chiang CY. Trigeminal and dorsal column nuclei projections to the anterior pretectal nucleus in the rat. Brain Res 1992; 590:81-94. [PMID: 1384936 DOI: 10.1016/0006-8993(92)91084-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The projections of the trigeminal (V) sensory nuclei (VSN) and the dorsal column nuclei (DCN) to the anterior pretectal nucleus (APT) of the rat were investigated by the use of anterograde and retrograde transport of wheat-germ agglutinin-conjugated horseradish peroxidase (WGA-HRP). Injections of WGA-HRP into the APT retrogradely labeled neurons in the contralateral VSN and DCN. The labeled neurons in the VSN were most concentrated in the rostral V subnucleus interpolaris (Vi), but were also found in caudal V subnucleus oralis (Vo). No labeled neurons were seen in V subnucleus caudalis. In the DCN, retrogradely labeled neurons were observed in rostral portions of both the cuneate (Cu) and gracile (Gr) nuclei. Injections of WGA-HRP into the rostral Vi or caudal Vo resulted in dense anterograde terminal labeling in the ventral two-thirds of the APT; the labeling was maximal in the ventromedial part of the caudal half of the APT and did not extend into its most rostral portion. Labeling resulting from injections of tracer into Cu or Gr was located primarily in the ventral half of the APT, was maximal in the mid-levels of the nucleus and extended into its rostral portions. These results indicate the existence of prominent somatosensory projections to the APT and are consistent with recent findings suggesting a role for the APT in sensorimotor integration.
Collapse
Affiliation(s)
- A Yoshida
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Wang XM, Yuan B, Hou ZL. Role of the deep mesencephalic nucleus in the antinociception induced by stimulation of the anterior pretectal nucleus in rats. Brain Res 1992; 577:321-5. [PMID: 1351417 DOI: 10.1016/0006-8993(92)90291-g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study showed that the inhibitory effect on the tail-flick reflex (TF) of stimulating the deep mesencephalic nucleus (DpMe) was very similar to that produced by stimulation of the anterior pretectal nucleus (APtN). An electrolytic lesion of the ipsilateral DpMe greatly reduced the inhibitory effect of APtN stimulation on the TF. Furthermore, activating the neuronal cell bodies in DpMe but not the fibers of passage by microinjection of L-glutamate into this area was also shown to elicit inhibition of TF. On the other hand, inhibiting the neuronal cells in DpMe by microinjection of gamma-aminobutyric acid produced a marked reduction in the APtN-induced inhibition of TF, which was comparable to that produced by DpMe lesions. It is suggested that the APtN-induced antinociception is, at least in part, mediated via a relay through the DpMe.
Collapse
Affiliation(s)
- X M Wang
- Research Laboratory of Neurophysiology, Xi'an Medical University, Shaanxi, People's Republic of China
| | | | | |
Collapse
|
33
|
Chiang CY, Chen IC, Dostrovsky JO, Sessle BJ. Anterior pretectal nucleus-induced modulatory effects on trigeminal brainstem somatosensory neurons. Neurosci Lett 1992; 134:233-7. [PMID: 1589150 DOI: 10.1016/0304-3940(92)90524-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study examined the effects of anterior pretectal nucleus (APT) conditioning stimulation on the activity of 92 functionally identified somatosensory brainstem neurons in the trigeminal (V) subnuclei oralis, interpolaris and caudalis of anesthetized rats. Conditioning stimulation inhibited most of the nociceptive neurons and some of the non-nociceptive neurons; facilitation was observed only in some non-nociceptive neurons. These data indicate that the ATP has modulatory effects on both nociceptive and non-nociceptive V somatosensory neurons.
Collapse
Affiliation(s)
- C Y Chiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Ont., Canada
| | | | | | | |
Collapse
|
34
|
Wiberg M. Reciprocal connections between the periaqueductal gray matter and other somatosensory regions of the cat midbrain: a possible mechanism of pain inhibition. Ups J Med Sci 1992; 97:37-47. [PMID: 1523733 DOI: 10.3109/03009739209179280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lectin-conjugated horseradish peroxidase was injected or implanted in crystalline form into various parts of the periaqueductal gray matter (PAG) in the cat. After varying survival periods, the animals were fixed and the mesencephalon was sectioned and incubated for HRP histochemistry. Outside PAG, labelled cells and terminal labelling were observed in the cuneiform, parabrachial and intercollicular nuclei, in the deep and intermediate gray layers of the superior colliculus, in the anterior and posterior pretectal nuclei and in the nucleus of Darkschewitsch. This study has shown that the region of PAG that is known to receive heavy ascending somatosensory input from the spinal cord and to be part of descending pain-inhibiting systems, also has reciprocal connections with other somatosensory areas of the midbrain. The results are discussed in relation to nociception and nociceptive inhibiting mechanisms.
Collapse
Affiliation(s)
- M Wiberg
- Department of Human Anatomy, University of Uppsala, Sweden
| |
Collapse
|
35
|
Terenzi MG, Rees H, Morgan SJS, Foster GA, Roberts MHT. The antinociception evoked by anterior pretectal nucleus stimulation is partially dependent upon ventrolateral medullary neurones. Pain 1991; 47:231-239. [PMID: 1762819 DOI: 10.1016/0304-3959(91)90209-g] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrical stimulation (35 microA rms/15 s) of the anterior pretectal nucleus (APtN) inhibits the spinal reflex of the tail-flick (TF) to noxious heat in unanaesthetised rats. APtN stimulation also reduces the nociceptive response of spinal dorsal horn neurones in halothane-anaesthetised rats. This study determined if the antinociceptive effects of APtN stimulation depended on neurones in the ventral medulla. Bilateral electrolytic lesions of the ventrolateral medulla, but not the nucleus raphe magnus, reduced by 70% the antinociceptive effect of APtN stimulation in the TF test. In rats anaesthetised with halothane, electrical stimulation of the APtN (single square wave 0.1 msec pulses, 2-20 microA, 1 Hz) excited cells in the ventrolateral medulla. These data suggest a connection between both areas. This connection is further confirmed by neuroanatomical tract tracing studies in which the retrograde dye Fast Blue was injected into the ventrolateral medulla. Fluorescent cell bodies were found in the APtN. We therefore conclude that the ventrolateral medulla is part of a descending antinociceptive pathway from the APtN.
Collapse
Affiliation(s)
- M G Terenzi
- Department of Physiology, University of Wales College of Cardiff, Cardiff CF1 1SS U.K
| | | | | | | | | |
Collapse
|
36
|
Chiang CY, Dostrovsky JO, Sessle BJ. Periaqueductal gray matter and nucleus raphe magnus involvement in anterior pretectal nucleus-induced inhibition of jaw-opening reflex in rats. Brain Res 1991; 544:71-8. [PMID: 1855139 DOI: 10.1016/0006-8993(91)90886-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In previous studies we have shown that electrical stimulation of the cortex or anterior pretectal nucleus (APT) inhibits the jaw-opening reflex (JOR). In the present study we investigated whether these effects are mediated by a relay in the periaqueductal gray matter (PAG) or rostroventromedial medulla (RVM). Experiments were performed on chloralose-urethane anesthetized rats. The JOR which was elicited by electrical stimulation of the mandibular incisor tooth was monitored by recording the evoked digastric muscle activity. Conditioning stimulation (20 ms train of 0.2 ms pulses at 400 Hz) was delivered to the facial area of the sensorimotor cortex, APT, PAG or nucleus raphe magnus (NRM) 50 ms prior to the test stimulus to the tooth that evoked the JOR. In addition, the effects of microinjections of glutamate into APT, PAG and NRM on the tooth-evoked JOR were also evaluated. The inhibition of the JOR by electrical and glutamate conditioning stimulation was found to be most potent for activation of the NRM and least potent for the APT. Local anesthetic (2% lidocaine, 0.3-0.6 microliters) block of the PAG could partially, significantly (P less than 0.05) and reversibly reduce both the APT and cortical-induced depression of the JOR. Lidocaine block of the ventromedial pons reversibly reduced the PAG, APT and cortical-induced inhibition of the JOR (P less than 0.05). Lidocaine block of the lateral RVM had powerfully (P less than 0.01) and reversibly reduced the PAG-induced inhibition, but had only a small effect (P less than 0.05) on the APT-induced inhibition and no significant effect on the cortical-induced inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Y Chiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Ont. Canada
| | | | | |
Collapse
|
37
|
Brandão ML, Rees H, Witt S, Roberts MH. Central antiaversive and antinociceptive effects of anterior pretectal nucleus stimulation: attenuation of autonomic and aversive effects of medial hypothalamic stimulation. Brain Res 1991; 542:266-72. [PMID: 2029634 DOI: 10.1016/0006-8993(91)91577-n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous studies have shown that stimulation of the rat anterior pretectal nucleus (APtN) strongly depresses a spinal reflex to noxious heat without causing significant aversion or depression of other motor responses. It is not known if APtN stimulation can similarly reduce the aversiveness of electrical stimulation of the brain, nor is it known if APtN stimulation is itself rewarding or aversive. This study used a simple switch-off paradigm to examine the rewarding properties of APtN stimulation at different sites throughout the nucleus and also used the tail-flick test to determine if the stimulation produced antinociception. The effects of APtN stimulation on the behavioural and autonomic responses to electrical stimulation of the medial hypothalamus (MH) and the nucleus raphe magnus (NRM) were also examined. The results show that electrical stimulation of dorsal APtN was rewarding and also caused antinociception which lasted for 50 min. However, sites which gave the strongest reward were not necessarily those which gave the greatest antinociception, as these effects were not correlated. Electrical stimulation of ventral APtN induced only aversive effects. The aversive and autonomic effects of MH stimulation were significantly reduced by conditioning stimulation of dorsal APtN. However, the very similar escape and autonomic effects of NRM stimulation were unaffected by APtN stimulation. These results suggest that electrical stimulation of the dorsal parts of the APtN has positive rewarding properties as well as the well-known antinociceptive effects. The antiaversive effects of dorsal APtN stimulation may be due in part to the inhibition of central substrates of aversion as well as inhibition of sensory neurones.
Collapse
Affiliation(s)
- M L Brandão
- Department of Physiology, University of Wales College, Cardiff, U.K
| | | | | | | |
Collapse
|
38
|
Porro CA, Cavazzuti M, Galetti A, Sassatelli L. Functional activity mapping of the rat brainstem during formalin-induced noxious stimulation. Neuroscience 1991; 41:667-80. [PMID: 1870704 DOI: 10.1016/0306-4522(91)90358-u] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Functional activity changes in 35 selected structures of the rat brainstem elicited by subcutaneous formalin injection in a forepaw were investigated by the [14C]2-deoxyglucose method in unanesthetized, freely moving animals. Experiments were initiated 2 min ("early" group) or 60 min ("late" group) after the injection. Treatment induced a significant increase of [14C]2-deoxyglucose uptake relative to controls in 17 structures of the "early" group, including portions of the bulbar, pontine and mesencephalic reticular formation, nucleus raphe magnus, median and dorsal raphe nuclei, the ventrolateral and dorsal subdivisions of the periaqueductal gray matter, deep layers of the superior colliculus and the anterior pretectal nucleus. Most changes were bilateral, with the exception of the increases observed in the nucleus reticularis paragigantocellularis and the lateral parabrachial area, which were contralateral, and the one in the mesencephalic reticular formation, which was ipsilateral to the injected paw. In pentobarbital-anesthetized rats a significant difference in metabolic activity values between formalin- and saline-injected animals was only detected at the medullary level. In the "late" unanesthetized formalin group functional activity levels were higher than controls in four structures, including the lateral reticular and paragigantocellular nuclei, contralaterally, and nucleus cuneiformis and ventrolateral periaqueductal gray matter, bilaterally. No between-groups difference was observed in visual or auditory structures. These results provide evidence for activation of several brainstem regions, which are conceivably involved in different sensory, motivational or motor circuits, during the initial phase of formalin-evoked noxious stimulation in unanesthetized animals. Functional changes blunted over time as did pain-related behavior integrated at the supraspinal level, but they persisted in some brainstem regions for which involvement in endogenous antinociceptive systems have been suggested. The mechanisms underlying these time-related changes need to be clarified.
Collapse
Affiliation(s)
- C A Porro
- Istituto di Fisiologia Umana, Modena, Italy
| | | | | | | |
Collapse
|
39
|
Rees H, Roberts MH. Activation of cells in the anterior pretectal nucleus by dorsal column stimulation in the rat. J Physiol 1989; 417:361-73. [PMID: 2621599 PMCID: PMC1189271 DOI: 10.1113/jphysiol.1989.sp017806] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. The responses of neurones in the anterior pretectal nucleus (APTN) to electrical stimulation of the dorsal columns at twice the threshold for A fibres were studied in the rat anaesthetized with urethane. 2. APTN cells were excited by dorsal column stimulation. Forty-six discharged phasically in response to a single stimulus. Sixteen cells did not respond phasically but slowly increased the discharge rate with repeated stimulation. 3. Electrical stimulation of the contralateral gracile fasciculus caused neurones in the APTN to discharge with a variable latency of 2-22 ms. Stimulations of the ipsilateral gracile and contralateral cuneate fasciculi had weaker effects. 4. Microinjection of DL-homocysteic acid into the contralateral gracile nucleus increased the discharge rate of APTN neurones. Microinjection of gamma-aminobutyric acid into the contralateral gracile nucleus blocked the gracile fasciculus evoked excitation of APTN neurones. 5. On thirteen occasions cells in the gracile nucleus were driven antidromically by electrical stimulation of the APTN. 6. It is concluded that electrical stimulation of the gracile fasciculus activates a monosynaptic excitatory input to the APTN.
Collapse
Affiliation(s)
- H Rees
- Department of Physiology, University of Wales, College of Cardiff
| | | |
Collapse
|