1
|
Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. J Neurosci 2001. [PMID: 11264295 DOI: 10.1523/jneurosci.21-07-02195.2001] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the steady-state distribution and axonal transport of neurofilament (NF) subunits within growing axonal neurites of NB2a/d1 cells. Ultrastructural analyses demonstrated a longitudinally oriented "bundle" of closely apposed NFs that was surrounded by more widely spaced individual NFs. NF bundles were recovered during fractionation and could be isolated from individual NFs by sedimentation through sucrose. Immunoreactivity toward the restrictive C-terminal phospho-dependent antibody RT97 was significantly more prominent on bundled than on individual NFs. Microinjected biotinylated NF subunits, GFP-tagged NF subunits expressed after transfection, and radiolabeled endogenous subunits all associated with individual NFs before they associated with bundled NFs. Biotinylated and GFP-tagged NF subunits did not accumulate uniformly along bundled NFs; they initially appeared within the proximal portion of the NF bundle and only subsequently were observed along the entire length of bundled NFs. These findings demonstrate that axonal NFs are not homogeneous but, rather, consist of distinct populations. One of these is characterized by less extensive C-terminal phosphorylation and a relative lack of NF-NF interactions. The other is characterized by more extensive C-terminal NF phosphorylation and increased NF-NF interactions and either undergoes markedly slower axonal transport or does not transport and undergoes turnover via subunit and/or filament exchange with individual NFs. Inhibition of phosphatase activities increased NF-NF interactions within living cells. These findings collectively suggest that C-terminal phosphorylation and NF-NF interactions are responsible for slowing NF axonal transport.
Collapse
|
2
|
Jung C, Yabe J, Wang FS, Shea TB. Neurofilament subunits can undergo axonal transport without incorporation into Triton-insoluble structures. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:44-58. [PMID: 9605971 DOI: 10.1002/(sici)1097-0169(1998)40:1<44::aid-cm5>3.0.co;2-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We examined the form(s) in which NF subunits undergo axonal transport. Pulse-chase radiolabeling analyses with 35S-methioinine revealed that newly synthesized Triton-soluble NF subunits accumulated within axonal neurites elaborated by NB2a/d1 neuroblastoma prior to the accumulation of Triton-insoluble subunits. Gel chromatographic, immunological, ultrastructural, and autoradiographic analyses of Triton-soluble axonal fractions demonstrated that radiolabeled, Triton-soluble subunits were associated with NFs. Triton-soluble, radiolabeled axonal NF subunits were also detected within retinal ganglion cell axons following intravitreal injection of 35S-methioinine. Microinjected biotinylated subunits were prominent within axonal neurites of NB2a/d1 cells and cultured dorsal root ganglion neurons substantially before they were retained following Triton-extraction. Prevention of biotinylated subunit, but not dextran tracer, translocation into neurites by nocodazole confirmed that microinjected subunits did not enter axons merely due to diffusion or injection-based pressure. Immuno-EM confirmed the association of biotin label with axonal NFs. These findings point towards multiple populations of NF subunits within axons and leave open the possibility that axonal NFs may be more dynamic than previously considered.
Collapse
Affiliation(s)
- C Jung
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts-Lowell, 01854, USA
| | | | | | | |
Collapse
|
3
|
Yabe JT, Pimenta A, Shea TB. Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J Cell Sci 1999; 112 ( Pt 21):3799-814. [PMID: 10523515 DOI: 10.1242/jcs.112.21.3799] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined cytoskeleton-associated forms of NF proteins during axonal neuritogenesis in cultured dorsal root ganglion (DRG) neurons and NB2a/d1 neuroblastoma. In addition to filamentous immunoreactivity, we observed punctate NF immunoreactivity throughout perikarya and neurites. Immuno-electron microscopy revealed this punctate immunoreactivity to consist of non-membrane-bound 75 nm round/ovoid structures consisting of amorphous, fibrous material. Endogenous and microinjected NF subunits incorporated into dots prior to their accumulation within filaments. A transfected GFP-conjugated NF-M incorporated into dots and translocated at a rate consistent with slow axonal transport in real-time video analyses. Some dots converted into a filamentous form or exuded filamentous material during transport. Dots contained conventional kinesin immunoreactivity, associated with microtubules, and their transport into axons was blocked by anti-kinesin antibodies and nocodazole. These oligomeric structures apparently represent one form in which NF subunits are transported in growing axons and may utilize kinesin as a transport motor.
Collapse
Affiliation(s)
- J T Yabe
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts at Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | |
Collapse
|
4
|
Ochs S, Pourmand R, Jersild RA, Friedman RN. The origin and nature of beading: a reversible transformation of the shape of nerve fibers. Prog Neurobiol 1997; 52:391-426. [PMID: 9304699 DOI: 10.1016/s0301-0082(97)00022-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nerve fibers which appear beaded (varicose, spindle-shaped, etc.) are often considered the result of pathology, or a preparation artifact. However, beading can be promptly elicited in fresh normal nerve by a mild stretch and revealed by fast-freezing and freeze-substitution, or by aldehyde fixating at a temperature near 0 degree C (cold-fixation). The key change in beading are the constrictions, wherein the axon is much reduced in diameter. Axoplasmic fluid and soluble components are shifted from the constrictions into the expansions leaving behind compacted microtubules and neurofilaments. Labeled cytoskeletal proteins carried down by slow axonal transport are seen to move with the soluble components and not to have been incorporated into and remain with, the cytoskeletal organelles on beading the fibers. Lipids and other components of the myelin sheath are also shifted from the constrictions into the expansions, with preservation of its fine structure and thickness. Additionally, myelin intrusions into the axons are produced and a localized bulging into the axon termed "leafing". The beading constrictions do not arise from the myelin sheath: beading occurs in the axons of unmyelinated fibers. It does not depend on the axonal cytoskeleton: exposure of nerves in vitro to beta, beta'-iminodipropionitrile (IDPN) disaggregates the cytoskeletal organelles and even augments beading. The hypothesis advanced was that the beading constrictions are due to the membrane skeleton; the subaxolemmal network comprised of spectrin/fodrin, actin, ankyrin, integrins and other transmembrane proteins. The mechanism can be activated directly by neurotoxins, metabolic changes, and by an interruption of axoplasmic transport producing Wallerian degeneration.
Collapse
Affiliation(s)
- S Ochs
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | |
Collapse
|
5
|
Nixon RA, Lewis SE, Mercken M, Sihag RK. [32P]orthophosphate and [35S]methionine label separate pools of neurofilaments with markedly different axonal transport kinetics in mouse retinal ganglion cells in vivo. Neurochem Res 1994; 19:1445-53. [PMID: 7534878 DOI: 10.1007/bf00972474] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Newly synthesized neurofilament proteins become highly phosphorylated within axons. Within 2 days after intravitreously injecting normal adult mice with [32P]orthophosphate, we observed that neurofilaments along the entire length of optic axons were radiolabeled by a soluble 32P-carrier that was axonally transported faster than neurofilaments. 32P-incorporation into neurofilament proteins synthesized at the time of injection was comparatively low and minimally influenced the labeling pattern along axons. 32P-incorporation into axonal neurofilaments was considerably higher in the middle region of the optic axons. This characteristic non-uniform distribution of radiolabel remained nearly unchanged for at least 22 days. During this interval, less than 10% of the total 32P-labeled neurofilaments redistributed from the optic nerve to the optic tract. By contrast, newly synthesized neurofilaments were selectively pulse-labeled in ganglion cell bodies by intravitreous injection of [35S]methionine and about 60% of this pool translocated by slow axoplasmic transport to the optic tract during the same time interval. These findings indicate that the steady-state or resident pool of neurofilaments in axons is not identical to the newly synthesized neurofilament pool, the major portion of which moves at the slowest rate of axoplasmic transport. Taken together with earlier studies, these results support the idea that, depending in part on their phosphorylation state, transported neurofilaments can interact for short or very long periods with a stationary but dynamic neurofilament lattice in axons.
Collapse
Affiliation(s)
- R A Nixon
- Laboratories for Molecular Neuroscience, McLean Hospital, Belmont, Massachusetts 02178
| | | | | | | |
Collapse
|
6
|
Nixon RA, Paskevich PA, Sihag RK, Thayer CY. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol 1994; 126:1031-46. [PMID: 7519617 PMCID: PMC2120120 DOI: 10.1083/jcb.126.4.1031] [Citation(s) in RCA: 241] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The high molecular weight subunits of neurofilaments, NF-H and NF-M, have distinctively long carboxyl-terminal domains that become highly phosphorylated after newly formed neurofilaments enter the axon. We have investigated the functions of this process in normal, unperturbed retinal ganglion cell neurons of mature mice. Using in vivo pulse labeling with [35S]methionine or [32P]orthophosphate and immunocytochemistry with monoclonal antibodies to phosphorylation-dependent neurofilament epitopes, we showed that NF-H and NF-M subunits of transported neurofilaments begin to attain a mature state of phosphorylation within a discrete, very proximal region along optic axons starting 150 microns from the eye. Ultrastructural morphometry of 1,700-2,500 optic axons at each of seven levels proximal or distal to this transition zone demonstrated a threefold expansion of axon caliber at the 150-microns level, which then remained constant distally. The numbers of neurofilaments nearly doubled between the 100- and 150-microns level and further increased a total of threefold by the 1,200-microns level. Microtubule numbers rose only 30-35%. The minimum spacing between neurofilaments also nearly doubled and the average spacing increased from 30 nm to 55 nm. These results show that carboxyl-terminal phosphorylation expands axon caliber by initiating the local accumulation of neurofilaments within axons as well as by increasing the obligatory lateral spacing between neurofilaments. Myelination, which also began at the 150-microns level, may be an important influence on these events because no local neurofilament accumulation or caliber expansion occurred along unmyelinated optic axons. These findings provide evidence that carboxyl-terminal phosphorylation triggers the radial extension of neurofilament sidearms and is a key regulatory influence on neurofilament transport and on the local formation of a stationary but dynamic axonal cytoskeletal network.
Collapse
Affiliation(s)
- R A Nixon
- Laboratory for Molecular Neuroscience, McLean Hospital, Department of Psychiatry, Belmont, Massachusetts 02178
| | | | | | | |
Collapse
|
7
|
Endo H, Kittur S, Sabri MI. Acrylamide alters neurofilament protein gene expression in rat brain. Neurochem Res 1994; 19:815-20. [PMID: 7969750 DOI: 10.1007/bf00967449] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acrylamide, a prototype neurotoxin, alters neurofilament protein (NF) gene expression in rat brain. Levels of mRNA coding for neurofilament protein subunits NF-L, NF-M, and NF-H have been determined by Northern blot analysis using 32P-labeled cDNA probes. Acrylamide given acutely (100 mg/kg, single intraperitoneal injection) causes a selective increase in NF-M mRNA (approximately 50%) compared to controls. The expression of NF-L or NF-H mRNA is not affected by acrylamide. In contrast, chronic treatment with acrylamide [0.03% (w/v) in drinking water for 4 weeks] induces a modest but significant increase (approximately 22%) in NF-L mRNA compared to controls. Levels of NF-M, and NF-H mRNA are not altered by acrylamide treatment. The expression of beta-actin mRNA, an ubiquitous protein, is not affected by either treatment regimen of acrylamide. The results of this study show that acrylamide increases the expression of mRNA for NF protein subunits in rat brain. The increase of specific mRNA for NF subunits depends on the dose, duration and route of acrylamide administration.
Collapse
Affiliation(s)
- H Endo
- Gerontology Research Center, NIA, NIH Baltimore, Maryland
| | | | | |
Collapse
|
8
|
Archer DR, Watson DF, Griffin JW. Phosphorylation-dependent immunoreactivity of neurofilaments and the rate of slow axonal transport in the central and peripheral axons of the rat dorsal root ganglion. J Neurochem 1994; 62:1119-25. [PMID: 8113799 DOI: 10.1046/j.1471-4159.1994.62031119.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The rate of axonal transport of tubulin, actin, and the neurofilament proteins was measured in the peripheral and central projections of the rat L5 dorsal root ganglion (DRG). [35S]Methionine was injected into the DRG, and the "front" of the radiolabeled protein was located 7, 14, and 20 days postinjection. Transport rates calculated for the neurofilament triplet proteins, tubulin, and actin in the peripheral nerve were approximately 1.5-fold faster than those in the dorsal root. A progressive decrease in the rate of transport was observed from 7 to 20 days after radiolabeling in both the central and peripheral directions (neurofilaments, approximately 1.7-fold; tubulin/actin, 2.1-fold). A surgical preparation, leaving the peripheral sciatic nerve with predominantly sensory fibers, was the basis for ELISAs for phosphorylation-dependent immunoreactivity of the high-molecular-weight neurofilament protein. In both dorsal roots and peripheral sensory axons the degree of phosphorylation was greater in nerve segments further away from the cell bodies. The degree of phosphorylation-related immunoreactivity correlates with the slowing of transport of radiolabeled cytoskeletal protein.
Collapse
Affiliation(s)
- D R Archer
- Department of Neurology, Johns Hopkins University Medical School, Baltimore, Maryland
| | | | | |
Collapse
|
9
|
Tashiro T, Komiya Y. Organization and slow axonal transport of cytoskeletal proteins under normal and regenerating conditions. Mol Neurobiol 1992; 6:301-11. [PMID: 1282336 DOI: 10.1007/bf02780559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The organization of the axonal cytoskeleton was investigated by analyzing the solubility and transport profile of the major cytoskeletal proteins in motor axons of the rat sciatic nerve under normal and regenerating conditions. When extracted with the Triton-containing buffer at low temperature, 50% of tubulin and 30% of actin were recovered in the insoluble form resistant to further depolymerizing treatments. Most of this cold-insoluble form was transported in slow component a (SCa), the slower of the two subcomponents of slow axonal transport, whereas the cold-soluble form showed a biphasic distribution between SCa and SCb (slow component b). Changes in slow transport during regeneration were studied by injuring the nerve either prior to (experiment I) or after (experiment II) radioactive labeling. In experiment I where the transport of proteins synthesized in response to injury was examined, selective acceleration of SCb was detected together with an increase in the relative proportion of this component. In experiment II where the response of the preexisting cytoskeleton was examined, a shift from SCa to SCb of the cold-soluble form was observed. The differential distribution and response of the two forms of tubulin and actin suggest that the cold-soluble form may be more directly involved in axonal transport.
Collapse
Affiliation(s)
- T Tashiro
- Department of Molecular and Cellular Neurobiology, Gunma University School of Medicine, Japan
| | | |
Collapse
|
10
|
Bray JJ, Fernyhough P, Bamburg JR, Bray D. Actin depolymerizing factor is a component of slow axonal transport. J Neurochem 1992; 58:2081-7. [PMID: 1374117 DOI: 10.1111/j.1471-4159.1992.tb10949.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We examined the low molecular weight proteins transported with actin in the chicken sciatic nerve after injection of [35S]methionine into the lumbar spinal cord. A prominent component of slow axonal transport with apparent molecular mass 19 kDa comigrated on two-dimensional gels with chicken actin depolymerizing factor (ADF), previously shown to be a major actin-binding protein in brain. There was comparatively little radioactivity associated with the actin monomer sequestering proteins, profilin or cofilin, and examination of the rapid component of axonal transport failed to reveal appreciable quantities of actin, ADF, profilin, or cofilin. These results show that both actin and ADF are carried by slow axonal transport and raise the possibility that actin travels within the axon in an unpolymerized form in a complex with ADF.
Collapse
Affiliation(s)
- J J Bray
- MRC Cell Biophysics Unit, London, England
| | | | | | | |
Collapse
|
11
|
Nixon RA, Shea TB. Dynamics of neuronal intermediate filaments: a developmental perspective. CELL MOTILITY AND THE CYTOSKELETON 1992; 22:81-91. [PMID: 1633625 DOI: 10.1002/cm.970220202] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R A Nixon
- Laboratories for Molecular Neuroscience, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02178
| | | |
Collapse
|
12
|
Tashiro T, Komiya Y. Maturation and aging of the axonal cytoskeleton: biochemical analysis of transported tubulin. J Neurosci Res 1991; 30:192-200. [PMID: 1724468 DOI: 10.1002/jnr.490300120] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Changes in solubility and axonal transport of tubulin during maturation and aging have been investigated using sciatic motor fibers of rats at 4, 7, 14, 30, and 80 weeks of age. One to six weeks after injection of L-[35S]methionine into the spinal cord, labeled cytoskeletal proteins in consecutive segments of the sciatic nerve and the ventral roots were fractionated into soluble and insoluble forms by extraction in 1% Triton at low temperature. In 4-week-old rats, the two forms of tubulin were transported coordinately in a single wave with the average rate of 2 mm/day. At 7 weeks of age, two components in tubulin transport were observed to develop, possibly reflecting the maturation of the axonal cytoskeleton. The slower main component (1.5 mm/day) contained most of the insoluble form together with the neurofilament proteins and the faster component (3 mm/day) was enriched in the soluble form. Though significantly different in composition, the two components correspond to slow component a (SCa) and slow component b (SCb) originally defined in the optic system. A progressive decrease in transport rates of both SCa and SCb was observed with rats at 14, 30, and 80 weeks of age. In addition, there was a large decrease in the proportion of insoluble tubulin during the course of transport in animals older than 30 weeks. This loss of the insoluble form seems to be accounted for partly by the proteolytic degradation of the severely retarded SCa proteins. Changes in axonal transport of tubulin may thus reflect age-related changes in dynamics and turnover of the axonal cytoskeleton.
Collapse
Affiliation(s)
- T Tashiro
- Department of Molecular and Cellular Neurobiology, Gunma University School of Medicine, Japan
| | | |
Collapse
|
13
|
Reles A, Friede RL. Axonal cytoskeleton at the nodes of Ranvier. JOURNAL OF NEUROCYTOLOGY 1991; 20:450-8. [PMID: 1869882 DOI: 10.1007/bf01252273] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The relationship between the degree of nodal narrowing and the changes in the structure of the axonal cytoskeleton was studied in 53 fibres of mouse sciatic nerve. Nodal narrowing increased with increasing fibre calibre to reach about 20% of the internodal area in the thicker fibres. The narrowing corresponded quantitatively to a decreased number of nodal neurofilaments. Nodal microtubule numbers varied greatly, and a majority of fibres had considerably (approximately 55%) more microtubules in their nodal profile than in the internode. Nodal profiles of different calibre showed an increase in the number of filaments and of microtubules with nodal calibre, although at rates different from those in the internode. The degree of observed axon non-circularities had no discernible effect on the restructuring of the axonal cytoskeleton at the node. A transnodal transport of the axonal cytoskeleton can occur with: (1) accelerated transnodal transport of filaments, (2) stationary internodal fraction of filaments, (3) depolymerization of filaments proximal to the node and repolymerization distally, or (4) different nodal and internodal polymerization equilibria.
Collapse
Affiliation(s)
- A Reles
- Department of Neuropathology, University of Göttingen, Federal Republic of Germany
| | | |
Collapse
|
14
|
Abstract
Cytoskeletal proteins--neurofilament polypeptides, tubulin and actin--are transported along axons by slow transport. How or in what form they are transported is not known. One hypothesis is that they are assembled into the cytoskeleton at the cell body and transported as intact polymers down the axon. However, recent radiolabeling and photobleaching studies have shown that tubulin and actin exist in both a mobile phase and a stationary phase in the axon. Consequently, it is more likely that cytoskeletal proteins move along the axon in some form of transport complex and are assembled into a cytoskeleton which is stationary. In this overview we discuss these topics and consider the evidence for the existence of transport complexes associated with slow axonal flow. Such evidence includes the slow transport of particulate complexes containing tubulin and neurofilament polypeptides along reconstituted microtubules in vitro, and the coordinate slow transport of actin with actin-binding proteins in vivo.
Collapse
Affiliation(s)
- J J Bray
- Neuroscience Centre, University of Otago Medical School, Dunedin, New Zealand
| | | |
Collapse
|
15
|
Shea TB, Sihag RK, Nixon RA. Dynamics of phosphorylation and assembly of the high molecular weight neurofilament subunit in NB2a/d1 neuroblastoma. J Neurochem 1990; 55:1784-92. [PMID: 2213024 DOI: 10.1111/j.1471-4159.1990.tb04969.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In neuronal systems thus far studied, newly synthesized neurofilament subunits rapidly associate with the Triton-insoluble cytoskeleton and subsequently undergo extensive phosphorylation. However, in the present study we demonstrate by biochemical and immunological criteria that NB2a/d1 neuroblastoma cells also contain Triton-soluble, extensively phosphorylated 200-kDa high molecular weight neurofilament subunits (NF-H). High-speed centrifugation (100,000 g) of the Triton-soluble fraction for 1 h sedimented some, but not all, soluble NF-H subunits; immunoelectron microscopic analyses of the resulting pellet indicated that a portion of the NF-H subunits in this fraction are assembled into (Triton-soluble) neurofilaments. When cells were pulse labeled for 15 min with [35S]methionine, radiolabel was first associated with the Triton-soluble 200-kDa NF-H variants. Because only extensively phosphorylated NF-H subunits migrate at 200 kDa, whereas hypophosphorylated subunits migrate instead at 160 kDa, these findings suggest that some newly synthesized subunits were phosphorylated before they polymerized. In pulse-chase analyses, radiolabeled 200-kDa NF-H migrated into the 100,000 g particulate fraction of Triton-soluble extracts before its arrival in the Triton-insoluble cytoskeleton. Undifferentiated cells, which do not possess axonal neurites and lack a significant amount of Triton-insoluble, extensively phosphorylated NF-H, contain a sizeable pool of Triton-soluble extensively phosphorylated NF-H subunits and polymers. We interpret these data to indicate that the integration of newly synthesized NF-H into the cytoskeleton occurs in a progression of distinct stages, and that assembly of NF-H into neurofilaments and integration into the Triton-insoluble cytoskeleton are not prerequisites for the incorporation of certain phosphate groups on these polypeptides.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T B Shea
- Ralph Lowell Laboratories, McLean Hospital, Belmont, MA 02178
| | | | | |
Collapse
|