1
|
Qi J, Zhang Z, He N, Liu X, Zhang C, Yan J. Cortical Stimulation Induces Excitatory Postsynaptic Potentials of Inferior Colliculus Neurons in a Frequency-Specific Manner. Front Neural Circuits 2020; 14:591986. [PMID: 33192337 PMCID: PMC7649762 DOI: 10.3389/fncir.2020.591986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022] Open
Abstract
Corticofugal modulation of auditory responses in subcortical nuclei has been extensively studied whereas corticofugal synaptic transmission must still be characterized. This study examined postsynaptic potentials of the corticocollicular system, i.e., the projections from the primary auditory cortex (AI) to the central nucleus of the inferior colliculus (ICc) of the midbrain, in anesthetized C57 mice. We used focal electrical stimulation at the microampere level to activate the AI (ESAI) and in vivo whole-cell current-clamp to record the membrane potentials of ICc neurons. Following the whole-cell patch-clamp recording of 88 ICc neurons, 42 ICc neurons showed ESAI-evoked changes in the membrane potentials. We found that the ESAI induced inhibitory postsynaptic potentials in 6 out of 42 ICc neurons but only when the stimulus current was 96 μA or higher. In the remaining 36 ICc neurons, excitatory postsynaptic potentials (EPSPs) were induced at a much lower stimulus current. The 36 ICc neurons exhibiting EPSPs were categorized into physiologically matched neurons (n = 12) when the characteristic frequencies of the stimulated AI and recorded ICc neurons were similar (≤1 kHz) and unmatched neurons (n = 24) when they were different (>1 kHz). Compared to unmatched neurons, matched neurons exhibited a significantly lower threshold of evoking noticeable EPSP, greater EPSP amplitude, and shorter EPSP latency. Our data allow us to propose that corticocollicular synaptic transmission is primarily excitatory and that synaptic efficacy is dependent on the relationship of the frequency tunings between AI and ICc neurons.
Collapse
Affiliation(s)
- Jiyao Qi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Na He
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiuping Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Caseng Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jun Yan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Abstract
The thalamocortical (TC) relay neuron of the dorsoLateral Geniculate Nucleus (dLGN) has borne its imprecise label for many decades in spite of strong evidence that its role in visual processing transcends the implied simplicity of the term "relay". The retinogeniculate synapse is the site of communication between a retinal ganglion cell and a TC neuron of the dLGN. Activation of retinal fibers in the optic tract causes reliable, rapid, and robust postsynaptic potentials that drive postsynaptics spikes in a TC neuron. Cortical and subcortical modulatory systems have been known for decades to regulate retinogeniculate transmission. The dynamic properties that the retinogeniculate synapse itself exhibits during and after developmental refinement further enrich the role of the dLGN in the transmission of the retinal signal. Here we consider the structural and functional substrates for retinogeniculate synaptic transmission and plasticity, and reflect on how the complexity of the retinogeniculate synapse imparts a novel dynamic and influential capacity to subcortical processing of visual information.
Collapse
Affiliation(s)
- Elizabeth Y Litvina
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| | - Chinfei Chen
- Department of Neurology,F.M. Kirby Neurobiology Center,Children's Hospital, Boston,Boston,Massachusetts 02115
| |
Collapse
|
3
|
Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse. PLoS One 2010; 5:e14038. [PMID: 21124980 PMCID: PMC2987806 DOI: 10.1371/journal.pone.0014038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 10/30/2010] [Indexed: 12/04/2022] Open
Abstract
Background Cortical neurons implement a high frequency-specific modulation of subcortical nuclei that includes the cochlear nucleus. Anatomical studies show that corticofugal fibers terminating in the auditory thalamus and midbrain are mostly ipsilateral. Differently, corticofugal fibers terminating in the cochlear nucleus are bilateral, which fits to the needs of binaural hearing that improves hearing quality. This leads to our hypothesis that corticofugal modulation of initial neural processing of sound information from the contralateral and ipsilateral ears could be equivalent or coordinated at the first sound processing level. Methodology/Principal Findings With the focal electrical stimulation of the auditory cortex and single unit recording, this study examined corticofugal modulation of the ipsilateral cochlear nucleus. The same methods and procedures as described in our previous study of corticofugal modulation of contralateral cochlear nucleus were employed simply for comparison. We found that focal electrical stimulation of cortical neurons induced substantial changes in the response magnitude, response latency and receptive field of ipsilateral cochlear nucleus neurons. Cortical stimulation facilitated auditory response and shortened the response latency of physiologically matched neurons whereas it inhibited auditory response and lengthened the response latency of unmatched neurons. Finally, cortical stimulation shifted the best frequencies of cochlear neurons towards those of stimulated cortical neurons. Conclusion Our data suggest that cortical neurons enable a high frequency-specific remodelling of sound information processing in the ipsilateral cochlear nucleus in the same manner as that in the contralateral cochlear nucleus.
Collapse
|
4
|
Ly T, Gupta N, Weinreb RN, Kaufman PL, Yücel YH. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vision Res 2010; 51:243-50. [PMID: 20692280 DOI: 10.1016/j.visres.2010.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/02/2010] [Indexed: 02/06/2023]
Abstract
Neural degeneration in glaucoma involves retinal ganglion cells and neurons of their major target, the lateral geniculate nucleus (LGN). Dendrites of relay LGN neurons projecting to the visual cortex were studied by immunocytochemical and quantitative Sholl analysis in combination with confocal microscopy and 3D-morphometry. In non-human adult primate glaucoma, relay LGN neurons showed reduced dendrite complexity and length, and these changes were modified by NMDA receptor blockade. Dendrite plasticity of LGN relay neurons in adult primate glaucoma has implications for potential disease modification by treatment interventions.
Collapse
Affiliation(s)
- Tina Ly
- Ophthalmology & Vision Sciences, Laboratory Medicine & Pathobiology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
5
|
Synaptic circuitry in the retinorecipient layers of the optic tectum of the lamprey (Lampetra fluviatilis). A combined hodological, GABA and glutamate immunocytochemical study. Brain Struct Funct 2009; 213:395-422. [PMID: 19252925 DOI: 10.1007/s00429-009-0205-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
The ultrastructure of the retinorecipient layers of the lamprey optic tectum was analysed using tract tracing techniques combined with GABA and glutamate immunocytochemistry. Two types of neurons were identified; a population of large GABA-immunonegative cells, and a population of smaller, highly GABA-immunoreactive interneurons, some of whose dendrites contain synaptic vesicles (DCSV). Five types of axon terminals were identified and divided into two major categories. The first of these are GABA-immunonegative, highly glutamate-immunoreactive, contain round synaptic vesicles, make asymmetrical synaptic contacts, and can in turn be divided into AT1 and AT2 terminals. The AT1 terminals are those of the retinotectal projection. The origin of the nonretinal AT2 terminals could not be determined. AT1 and AT2 terminals establish synaptic contacts with DCSV, with dendrites of the retinopetal neurons (DRN), and with conventional dendritic (D) profiles. The terminals of the second category are GABA-immunoreactive and can similarly be divided into AT3 and AT4 terminals. The AT3 terminals contain pleiomorphic synaptic vesicles and make symmetrical synaptic contacts for the most part with glutamate-immunoreactive D profiles. The AT4 terminals contain rounded synaptic vesicles and make asymmetrical synaptic contacts with DRN, with DCSV, and with D profiles. A fifth, rarely observed category of terminals (AT5) contain both clear synaptic vesicles and a large number of dense-core vesicles. Synaptic triads involving AT1, AT2 or AT4 terminals are rare. Our findings are compared to these of previous studies of the fine structure and immunochemical properties of the retinorecipient layers of the optic tectum or superior colliculus of Gnathostomes.
Collapse
|
6
|
Miceli D, Repérant J, Ward R, Rio JP, Jay B, Médina M, Kenigfest NB. Fine structure of the visual dorsolateral anterior thalamic nucleus of the pigeon (Columba livia): A hodological and GABA-immunocytochemical study. J Comp Neurol 2008; 507:1351-78. [DOI: 10.1002/cne.21635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Re DB, Nafia I, Melon C, Shimamoto K, Kerkerian-Le Goff L, Had-Aissouni L. Glutamate leakage from a compartmentalized intracellular metabolic pool and activation of the lipoxygenase pathway mediate oxidative astrocyte death by reversed glutamate transport. Glia 2006; 54:47-57. [PMID: 16673373 DOI: 10.1002/glia.20353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Astrocytes have essential roles for neuron survival and function, so that their demise in neurodegenerative insults, such as ischemia, deserves attention. A major event of the cell death cascade in ischemia is the reversed operation of excitatory amino acid transporters (EAAT), releasing glutamate. Cytotoxicity is conventionally attributed to extracellular glutamate accumulation. We previously reported that mimicking such dysfunction by EAAT substrate inhibitors, whose uptake induces glutamate release by heteroexchange, triggers glutathione (GSH) depletion and oxidative death of differentiated astrocytes in culture. Here we demonstrate that astrocyte death, although correlated with glutamate release, is not resulting from high extracellular glutamate-mediated toxicity. L-glutamate per se was gliotoxic only at concentrations much higher than the maximum reached with the potent EAAT substrate inhibitor L-trans-pyrrolidine-2,4-dicarboxylate (PDC), and toxicity was lower. Moreover, high glutamate concentrations offered protection against PDC. Protection was also provided by L-aspartate, which is both transported by EAAT and metabolized into glutamate, and by inhibiting glutamine synthetase, which uses transported glutamate to synthesize glutamine. Neither D-aspartate, a metabolically inert EAAT substrate, nor compounds that can provide glutamate intracellularly but are not EAAT substrates offered protection. Interestingly, only the compounds providing protection prevented PDC-induced GSH depletion. These data strongly suggest that reversed uptake-mediated astrocyte death results from the leakage of glutamate from a compartmentalized intracellular metabolic pool specifically fuelled by EAAT, crucial for preserving GSH contents. In addition, we provide evidence for a minor contribution of the cystine-glutamate antiporter x(c) (-) but a major role of the 5-lipoxygenase pathway in this death mechanism.
Collapse
Affiliation(s)
- Diane B Re
- Interactions Cellulaires Neurodégénérescence et Neuroplasticité, IC2N, CNRS UMR 6186, Marseille, France
| | | | | | | | | | | |
Collapse
|
8
|
Cudeiro J, Sillito AM. Looking back: corticothalamic feedback and early visual processing. Trends Neurosci 2006; 29:298-306. [PMID: 16712965 DOI: 10.1016/j.tins.2006.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/06/2006] [Accepted: 05/02/2006] [Indexed: 11/30/2022]
Abstract
Although once regarded as a simple sensory relay on the way to the cortex, it is increasingly apparent that the thalamus has a role in the ongoing moment-by-moment processing of sensory input and in cognition. This involves extensive corticofugal feedback connections and the interplay of these with the local thalamic circuitry and the other converging inputs. Here, using the feline visual system as the primary model, some of the latest developments in this field are reviewed and placed in the perspective of an integrated view of system function. Cortical feedback mediated by ionotropic and metabotropic glutamate receptors, and effects mediated by the neuromodulator nitric oxide, all have a role in integrating the thalamic mechanism into the cortical circuit. The essential point is that the perspective of higher-level sensory mechanisms shifts and modulates the thalamic circuitry in ways that optimize abstraction of a meaningful representation of the external world. This review is part of the TINS special issue on The Neural Substrates of Cognition.
Collapse
Affiliation(s)
- Javier Cudeiro
- NEUROcom (Neuroscience and Motor Control Group), Department of Medicine, University of A Coruña, Campus de Oza, 15006 A Coruña, Spain.
| | | |
Collapse
|
9
|
Rubio ME, Juiz JM. Differential distribution of synaptic endings containing glutamate, glycine, and GABA in the rat dorsal cochlear nucleus. J Comp Neurol 2004; 477:253-72. [PMID: 15305363 DOI: 10.1002/cne.20248] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dorsal cochlear nucleus (DCN) integrates the synaptic information depending on the organization of the excitatory and inhibitory connections. This study provides, qualitatively and quantitatively, analyses of the organization and distribution of excitatory and inhibitory input on projection neurons (fusiform cells), and inhibitory interneurons (vertical and cartwheel cells) in the DCN, using a combination of high-resolution ultrastructural techniques together with postembedding immunogold labeling. The combination of ultrastructural morphometry together with immunogold labeling enables the identification and quantification of four major synaptic inputs according to their neurotransmitter content. Only one category of synaptic ending was immunoreactive for glutamate and three for glycine and/or gamma-aminobutyric-acid (GABA). Among those, nine subtypes of synaptic endings were identified. These differed in their ultrastructural characteristics and distribution in the nucleus and on three cell types analyzed. Four of the subtypes were immunoreactive for glutamate and contained round synaptic vesicles, whereas five were immunoreactive for glycine and/or GABA and contained flattened or pleomorphic synaptic vesicles. The analysis of the distribution of the nine synaptic endings on the cell types revealed that eight distributed on fusiform cells, six on vertical cells and five on cartwheel cells. In addition, postembedding immunogold labeling of the glycine receptor alpha1 subunit showed that it was present at postsynaptic membranes in apposition to synaptic endings containing flattened or pleomorphic synaptic vesicles and immunoreactive for glycine and/or GABA on the three cells analyzed. This information is valuable to our understanding of the response properties of DCN neurons.
Collapse
Affiliation(s)
- Maria E Rubio
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269-4156, USA.
| | | |
Collapse
|
10
|
Hawkins LM, Prybylowski K, Chang K, Moussan C, Stephenson FA, Wenthold RJ. Export from the Endoplasmic Reticulum of Assembled N-Methyl-D-aspartic Acid Receptors Is Controlled by a Motif in the C Terminus of the NR2 Subunit. J Biol Chem 2004; 279:28903-10. [PMID: 15102836 DOI: 10.1074/jbc.m402599200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional N-methyl-d-aspartic acid (NMDA) receptors are formed from the assembly of NR1 and NR2 subunits. When expressed alone, the major NR1 splice variant and the NR2 subunits are retained in the endoplasmic reticulum (ER), reflecting a quality control mechanism found in many complex multisubunit proteins to ensure that only fully assembled and properly folded complexes reach the cell surface. Recent studies have identified an RRR motif in the C terminus of the NR1 subunit, which controls the ER retention of the unassembled subunit. Here we investigated the mechanisms controlling the ER retention of the NR2 subunit and the export of the assembled complex from the ER. We found that Tac chimeras of the C terminus of the NR2B subunit show that an ER retention signal is also present in the NR2B subunit. In assembled complexes, ER retention signals on the individual subunits must be overcome to allow the complex to leave the ER. One common mechanism involves mutual masking of the signals on the individual subunits. Our data do not support such a mechanism for regulating the release of assembled NMDA receptors from the ER. We found that the motif, HLFY, immediately following transmembrane domain 4 of the NR2 subunit, is required for the assembled complex to exit from the ER. Mutation of this motif allowed the assembly of NR1 and NR2 subunits into a complex that was functional, based on MK-801 binding, but it is retained in the ER. These results are consistent with HLFY functioning as a signal that is necessary for the release of the assembled functional NMDA receptor complex from the ER.
Collapse
Affiliation(s)
- Lynda M Hawkins
- Laboratory of Neurochemistry, NIDCD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
11
|
Persson S, Broman J. Glutamate, but not aspartate, is enriched in trigeminothalamic tract terminals and associated with their synaptic vesicles in the rat nucleus submedius. Exp Brain Res 2004; 157:152-61. [PMID: 14968283 DOI: 10.1007/s00221-004-1837-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 12/27/2003] [Indexed: 12/19/2022]
Abstract
To examine the possible roles of glutamate and aspartate as neurotransmitters in the nucleus submedius (Sm) of rats, the distributions of these amino acids were examined by electron microscopic immunogold labeling. High levels of glutamate were detected in trigeminothalamic tract terminals anterogradely labeled with horseradish peroxidase conjugates. These terminals also displayed a positive correlation between the densities of synaptic vesicles and gold particles signaling glutamate. In contrast, aspartate levels in such terminals were low and displayed no correlation with the density of synaptic vesicles. Terminals of presumed cortical origin contained the highest estimated levels of glutamate, but the positive correlation between glutamate signal and synaptic vesicle density did not reach statistical significance, presumably due to technical factors. The latter terminals also contained relatively high levels of aspartate, though without any correlation to synaptic vesicle density. The present findings provide strong support for glutamate, but not aspartate, as a trigeminothalamic tract neurotransmitter responsible for the fast synaptic transmission of nociceptive signals to neurons in the rat nucleus submedius. Aspartate presumably serves metabolic roles in these terminals. With respect to terminals of presumed cortical origin, our data are not at odds with the notion that also these terminals use glutamate as their neurotransmitter. Our findings do not support a neurotransmitter role for aspartate in the latter terminals, although such a role cannot be entirely refuted.
Collapse
Affiliation(s)
- Stefan Persson
- Department of Physiological Sciences, Section for Neurophysiology, Lund University, BMC F10, 221 84 Lund, Sweden
| | | |
Collapse
|
12
|
Moffett JR. Reductions in N-acetylaspartylglutamate and the 67 kDa form of glutamic acid decarboxylase immunoreactivities in the visual system of albino and pigmented rats after optic nerve transections. J Comp Neurol 2003; 458:221-39. [PMID: 12619078 DOI: 10.1002/cne.10570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study compares the immunohistochemical distributions of N-acetylaspartylglutamate (NAAG) and the large isoform of the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase (GAD(67)) in the visual system of albino and pigmented rats. Most retinal ganglion cells and their axons were strongly immunoreactive for NAAG, whereas GAD(67) immunoreactivity was very sparse in these cells and projections. In retinorecipient zones, NAAG and GAD(67) immunoreactivities occurred in distinct populations of neurons and in dense networks of strongly immunoreactive fibers and synapses. Dual-labeling immunohistochemistry indicated that principal neurons were stained for NAAG, whereas local interneurons were stained for GAD(67). In contrast to the distribution observed in retinorecipient zones, most or all neurons were doubly stained for NAAG and GAD(67) in the thalamic reticular nucleus. Ten days after unilateral optic nerve transection, NAAG-immunoreactive fibers and synapses were substantially reduced in all contralateral retinal terminal zones. The posttransection pattern of NAAG-immunoreactive synaptic loss demarcated the contralateral and ipsilateral divisions of the retinal projections. In addition, an apparent transynaptic reduction in GAD(67) immunoreactivity was observed in some deafferented areas, such as the lateral geniculate. These findings suggest a complicated picture in which NAAG and GABA are segregated in distinct neuronal populations in primary visual targets, yet they are colocalized in neurons of the thalamic reticular nucleus. This is consistent with NAAG acting as a neurotransmitter release modulator that is coreleased with a variety of classical transmitters in specific neural pathways.
Collapse
Affiliation(s)
- John R Moffett
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA.
| |
Collapse
|
13
|
Rio JP, Repérant J, Vesselkin NP, Kenigfest-Rio NB, Miceli D. Dual innervation of the lamprey retina by GABAergic and glutamatergic retinopetal fibers. A quantitative EM immunogold study. Brain Res 2003; 959:336-42. [PMID: 12493623 DOI: 10.1016/s0006-8993(02)03803-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A quantitative electron microscopic analysis of glutamate and GABA immunocytochemistry, using the postembedding immunogold technique, was undertaken in the lamprey retina to determine the proportion of glutamate-immunoreactive (GLU-ir) centrifugal visual terminals which were identified by anterograde axonal transport after an iontophoretic deposit of HRP in the sectioned optic nerve. Single immunogold labeling carried out with two different GABA and GLU antibodies showed that about 45% of the retinopetal axon terminals were GABAergic, and that two types of GLU-ir terminals (GLU-ir/1 and GLU-ir/2) were observed in the inner plexiform layer. The former type showed a high density of gold particles (Neosystem: 19.38+/-0.74; Sigma: 106.26+/-5.70) which statistically differed from the GLU-ir/2 (Neosystem: 3.23+/-0.31; Sigma: 31.73+/-5.61). Subcellular estimates showed that gold particles were concentrated over the vesicular pool in the GLU-ir/1 terminals and over mitochondria in the second terminal type. Consecutive sections alternately processed for GABA and GLU revealed that the GABA-immunonegative terminals corresponded to the GLU-ir/1, whereas the GABA-ir terminals only contained few GLU-ir particles, mostly concentrated in mitochondria. The occurrence of GABAergic and glutamatergic retinopetal terminals in the adult lamprey retina is discussed in functional terms of their differential inhibitory and excitatory effects on ganglion cell activity and the possible role of the centrifugal visual system in visually-guided behavior.
Collapse
Affiliation(s)
- J P Rio
- INSERM U 106, Neuromorphologie: Développement, Evolution, Hôpital de la Salpêtrière, 47 Bd de l'Hôpital, 75651 Paris, Cedex 13, France.
| | | | | | | | | |
Collapse
|
14
|
Morino P, Bahro M, Cuénod M, Streit P. Glutamate-like Immunoreactivity in the Pigeon Optic Tectum and Effects of Retinal Ablation. Eur J Neurosci 2002; 3:366-378. [PMID: 12106195 DOI: 10.1111/j.1460-9568.1991.tb00824.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pattern of glutamate-like immunoreactivity was investigated in the pigeon optic tectum. The most impressive aspect of the labelling pattern was an accumulation of immunoreactive terminal-like elements restricted to those superficial tectal layers that correspond to the termination zone of the retinal afferents. These immunoreactive puncta occurred frequently in small clusters. At the level of electron microscopy, many of the labelled nerve endings showed the characteristics of retinal terminals. Moreover, following unilateral retinal ablation a drastic loss of immunoreactive terminal-like puncta was observed in the retinorecipient layers of the tectum contralateral to the lesion. The remaining glutamate-immunoreactive terminal-like elements had the light and electron microscopic features typical of the afferents from the nucleus isthmi, pars parvocellularis (lpc). The relation between the latter result and the transmitter specificity of the afferents from this subtectal nucleus is unclear at present. On the other hand, the light and electron microscopic labelling patterns and the effect of retinal ablation suggest that afferents from retina and from lpc are the only major sources for glutamate-immunoreactive terminals in the pigeon optic tectum. Furthermore, the results are well in line with previous data indicating glutamate as neurotransmitter at least in part of the retinal afferents to the pigeon optic tectum.
Collapse
Affiliation(s)
- Patrizia Morino
- Brain Research Institute, University of Zürich, August-Forel-Str. 1, CH-8029, Zürich, Switzerland
| | | | | | | |
Collapse
|
15
|
Completing the corticofugal loop: a visual role for the corticogeniculate type 1 metabotropic glutamate receptor. J Neurosci 2002. [PMID: 11923460 DOI: 10.1523/jneurosci.22-07-02956.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The way in which the brain deals with sensory information relies not only on feedforward processing of signals from the periphery but also on feedback inputs. This is the case of the massive projection back from layer 6 in the visual cortex to the thalamus, for which, despite being the greatest single source of synaptic contacts, the functional role still remains unclear. In the cat lateral geniculate nucleus, part of this cortical feedback is mediated by type 1 metabotropic glutamate receptors (mGluR1s), which are exclusively located on distal segments of the relay-cell dendrites. Here we show that in adult cats the cortex uses a synaptic drive mediated by these receptors (mGluR1) specifically to enhance the excitatory center of the thalamic receptive field. Moreover the effect is maximum in response to those stimuli that effectively drive cortical cells, and importantly, it does not affect the spatiotemporal structure of the thalamic receptive field. Therefore, cortex, by closing this corticofugal "loop," is able to increase the gain of its thalamic input within a focal spatial window, selecting key features of the incoming signal.
Collapse
|
16
|
Kalloniatis M, Napper GA. Retinal neurochemical changes following application of glutamate as a metablolic substrate. Clin Exp Optom 2002; 85:27-36. [PMID: 11952393 DOI: 10.1111/j.1444-0938.2002.tb03069.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2001] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Retinal neural and glial cells share an intricate relationship that includes uptake and recycling of the amino acid neurotransmitters, glutamate and gamma-amino butyric acid (GABA), as well as metabolic links. The aim of this work was to determine the neurochemical and morphological changes induced by the removal of glucose but with the provision of exogenous glutamate in the isolated retinal preparation incubated under aerobic conditions. The carbon skeleton of glutamate can enter the tricarboxylic acid cycle as alpha-ketogluterate, providing an alternative metabolic substrate in cases of glucose deprivation. METHODS Isolated rat retinas were incubated in physiological media with and without glucose, using a range of glutamate concentrations to provide an alternative source of metabolic substrate. We conducted post-embedding immunocytochemistry and quantified the change in glutamate and GABA immunoreactivity within Müller cells under these different incubation conditions. RESULTS The provision of glutamate with normal (6 mM) glucose levels resulted in a gradual accumulation of glutamate and GABA in Müller cells, with Müller loading when exogenous glutamate concentrations were above 0.1 mM. However, when these varying levels of glutamate were applied in the absence of glucose, glutamate accumulation in Müller cells was decreased compared to the 6 mM glucose condition and GABA accumulation in Müller cells was at a minimum at moderate (0.5 and 1 mM) glutamate levels. Under hypoglycaemic conditions, exogenous glutamate (0.5 to 1 mM) is rapidly metabolised by Müller cells to the extent that no glial loading is evident, despite the high concentrations. CONCLUSIONS Normal neurochemical function appears to be maintained secondary to exogenous glutamate provision of 0.5 to 1 mM when glucose is not in the incubation medium, implying that glutamate can be used as an alternative metabolic substrate. We also show that Müller cells possess more rapid glutamate metabolic capabilities compared to the metabolism of GABA.
Collapse
Affiliation(s)
- Michael Kalloniatis
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | |
Collapse
|
17
|
Montero VM, Wright LS, Siegel F. Increased glutamate, GABA and glutamine in lateral geniculate nucleus but not in medial geniculate nucleus caused by visual attention to novelty. Brain Res 2001; 916:152-8. [PMID: 11597602 DOI: 10.1016/s0006-8993(01)02886-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study is concerned with cortico-thalamic neural mechanisms underlying attentional phenomena. Previous results from this laboratory demonstrated that the visual sector of the GABAergic thalamic reticular nucleus is selectively c-fos activated in rats that are naturally paying attention to features of a novel-complex environment, and that this activation is dependent on top-down glutamatergic inputs from the primary visual cortex. By contrast, the acoustic sector of the thalamic reticular nucleus is not activated despite noise generated by exploration and c-fos activation of brainstem acoustic centers (e.g. dorsal cochlear nucleus, inferior colliculus). A prediction of these results is that the levels of the neurotransmitters glutamate and GABA, and the glutamate-related amino acid glutamine, will be increased in the lateral geniculate nucleus (LGN), but not in the medial geniculate nucleus (MGN) of rats that explore a novel-complex environment in comparison to levels of these amino acids in control rats. By means of neurochemical analysis of these amino acids (HPLC) the results of this study confirmed this prediction. The results are consistent with the previously proposed 'focal attention' hypothesis postulating that a focus of attention in the primary visual cortex generates top-down center-surround facilitatory-inhibitory effects on geniculocortical transmission via corticoreticulogeniculate pathways. The results also supports the notion that a main function of corticothalamic pathways to relay thalamic nuclei is attention-dependent modulation of thalamocortical transmission.
Collapse
Affiliation(s)
- V M Montero
- Department of Physiology, University of Wisconsin, 1300 University Ave., Madison, WI 53706, USA.
| | | | | |
Collapse
|
18
|
Sun H, Crossland WJ. Quantitative assessment of localization and colocalization of glutamate, aspartate, glycine, and GABA immunoreactivity in the chick retina. THE ANATOMICAL RECORD 2000; 260:158-79. [PMID: 10993953 DOI: 10.1002/1097-0185(20001001)260:2<158::aid-ar60>3.0.co;2-v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We examined the posthatch chick retina for the frequency of occurrence of localization and colocalization of four amino acid transmitter candidates: glutamate (Glu), aspartate (Asp), gamma aminobutyric acid (GABA), and glycine (Gly) using postembedding methods. We support previous studies of Glu, Asp, GABA, and Gly localization in the direct and indirect functional pathways of the chick retina and extend these studies with new qualitative and quantitative observations. We found that photoreceptors show distinct cellular immunoreactivity for both Glu (Glu+) and Asp+, but not for Gly (Gly-) or GABA. Moreover, there is compartmentalization of Glu and Asp staining within the photoreceptors. All horizontal cells react strongly with Asp and Glu, about three-fourths are GABA+ and three-fourths of these are Gly+. Bipolar cells are uniformly Glu+, heterogeneously Asp+, occasionally Gly+, but GABA-. A majority of amacrine cells stain heterogeneously with all antibodies: 90% are Gly+, slightly more than half colocalize Glu, GABA, and Gly. Furthermore, amacrine cells in the outer two or three rows of cells are more likely to be stained by Gly than Glu, Asp, or GABA. Confirming previous studies, ganglion cells were mostly immunoreactive for Glu and Asp with fewer reactive for GABA and Gly. Strong and distinctly cellular immunoreactivity was found in both central and peripheral retina. Our findings show: 1) there is extensive colocalization of Glu, Asp, GABA, and Gly among most retinal neurons, including some cells that contain all four; 2) cells of the direct functional pathway tend to be labeled by Glu and Asp generally to the exclusion of GABA and Gly, while those of the indirect pathway tend to be labeled by GABA+ and/or Gly+ in addition to Glu+ and Asp+; 3) different cell body layers have distinct patterns of colocalization; and 4) there is no qualitative difference in staining patterns between peripheral and central retina.
Collapse
Affiliation(s)
- H Sun
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
19
|
Miceli D, Repérant J, Rio JP, Désilets J, Médina M. Quantitative immunogold evidence that glutamate is a neurotransmitter in afferent synaptic terminals within the isthmo-optic nucleus of the pigeon centrifugal visual system. Brain Res 2000; 868:128-34. [PMID: 10841897 DOI: 10.1016/s0006-8993(00)02316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A quantitative electron microscopic analysis of glutamate (GLU) immunoreactivity using the post-embedding immunogold technique was carried out within the isthmo-optic nucleus (ION) of the pigeon centrifugal visual system (CVS). Measurements were performed in each of eight different categories of axon terminals, including those that were GABA-immunoreactive (-ir), considered representing control profiles and identified using a single or double-label immunocytochemical procedure. The results demonstrated that the glutamate immunogold particle densities for both mitochondrial and vesicular pools and for total surface area of bouton profiles were significantly higher in P1a, P1b and P2b terminals and not significantly different in P4 and P5 terminals compared to those recorded in control GABA-ir terminals (P2a, P2c, P3). Moreover, the values measured in GLU-ir positive profiles were all significantly higher than in either P4 or P5 terminals. The results suggest that tectal neurons, which provide the main input to the ION cells, are either inhibitory GABA-ir possibly associated with P2c and/or P3 terminals or excitatory GLU-ir via P1a, P1b and P2b terminals. Such differential effects of tectal afferents may be the basis for the modulation of centrifugal activity and consequently of end target retinal ganglion cell responses. The data are relevant to hypotheses implicating the avian CVS in mechanisms of selective enhancement of visual attention to either novel or meaningful stimuli within the visual field.
Collapse
Affiliation(s)
- D Miceli
- Laboratoire de Neuropsychologie expérimentale et comparée, Université du Québec, Trois-Rivières, Canada
| | | | | | | | | |
Collapse
|
20
|
Montero VM. Attentional activation of the visual thalamic reticular nucleus depends on 'top-down' inputs from the primary visual cortex via corticogeniculate pathways. Brain Res 2000; 864:95-104. [PMID: 10793191 DOI: 10.1016/s0006-8993(00)02182-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study is concerned with corticothalamic neural mechanisms underlying attentional phenomena. Previous results from this laboratory demonstrated that the visual sector of the GABAergic thalamic reticular nucleus is activated by attention in rats. Here it is demonstrated that Fos-detected activation of the visual reticular sector in rats, induced by attentive exploration of a novel-complex environment, is dependent on 'top-down' cortical inputs from the primary visual cortex, on the basis (a) that activation of the visual reticular sector is drastically diminished after ibotenate lesions mostly restricted to layer 6 of the primary visual cortex, which gives origin to the corticogeniculate pathway that innervates both the visual reticular sector and the dorsal lateral geniculate nucleus; and (b) the lesions did not induce retrograde degeneration nor diminution of Fos label in the geniculate. The results are consistent with the previously proposed hypothesis that a focus of attention in V1 generates a column of increased thalamocortical transmission in LGN by means of monosynaptic glutamatergic corticogeniculate inputs, and decreased transmission of surrounding regions by disynaptic cortico-reticulo-geniculate (ultimately GABAergic) inputs. The results also suggest that attentional modulation of thalamocortical transmission is a main function of corticothalamic pathways to sensory relay nuclei.
Collapse
Affiliation(s)
- V M Montero
- Department of Physiology and Waisman Center on Mental Retardation, University of Wisconsin, 1500 Highland Ave., Madison, WI, USA.
| |
Collapse
|
21
|
Broman J, Hassel B, Rinvik E, Ottersen O. Chapter 1 Biochemistry and anatomy of transmitter glutamate. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
22
|
Wang B, Gonzalo-Ruiz A, Morte L, Campbell G, Lieberman AR. Immunoelectron microscopic study of glutamate inputs from the retrosplenial granular cortex to identified thalamocortical projection neurons in the anterior thalamus of the rat. Brain Res Bull 1999; 50:63-76. [PMID: 10507474 DOI: 10.1016/s0361-9230(99)00092-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have carried out an ultrastructural study to determine the characteristics and distribution of glutamate-containing constituents of the anterodorsal (AD) and anteroventral (AV) thalamic nuclei in adult rats. We used a polyclonal antibody to glutamate and a postembedding immunogold detection method in animals in which the neurons of AD/AV projecting to the cortex had been retrogradely labelled and the terminals of corticothalamic afferents anterogradely labelled by injection of cholera toxin-horseradish peroxidase (HRP) into the retrosplenial granular cortex. The heaviest immunogold labelling was over axon terminals 0.42 to 2.2 microm in diameter containing round synaptic vesicles and establishing Gray type 1 (asymmetric) synaptic contact (type 1 terminals) on HRP-labelled or non-labelled dendrites. Mean gold particle densities over such terminals were 3-4 times higher than the densities over the dendrites to which they were presynaptic and 5-6 times higher than over terminals establishing Gray type 2 (symmetric) synaptic contacts (type 2 terminals). Gold particle densities over neuronal cell bodies and dendrites and over a subpopulation of myelinated axons were intermediate between the densities over type 1 and type 2 terminals. In adjacent serial sections immunoreacted for gamma aminobutyric acid, type 2 terminals were heavily immunolabelled whereas type 1 terminals and other profiles with moderate gold particle densities after glutamate immunoreaction displayed very low labelling. A subpopulation of small type 1 axon terminals (up to 1 microm diameter) contained HRP reaction product identifying them as cortical in origin; they contacted small dendritic profiles (most <1 microm diameter) many of which also contained HRP reaction product. We conclude that terminals of the corticothalamic projection from retrosplenial granular cortex to AD/AV are glutamatergic and innervate predominantly distal dendrites of thalamocortical projection neurons.
Collapse
Affiliation(s)
- B Wang
- Department of Anatomy and Developmental Biology, University College London, UK
| | | | | | | | | |
Collapse
|
23
|
Montero VM. Amblyopia decreases activation of the corticogeniculate pathway and visual thalamic reticularis in attentive rats: a 'focal attention' hypothesis. Neuroscience 1999; 91:805-17. [PMID: 10391464 DOI: 10.1016/s0306-4522(98)00632-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In rats which were rendered monocular amblyopic by lid suturing one eye during a critical period, the intensity of neuronal activation in parts of the monocular segments of the striate cortex (layers 4 and 6) and lateral geniculate nucleus, and in the visual segment of the thalamic reticular nucleus, was determined after exploration of a novel-complex environment. Quantitative analysis of the number of Fos-labelled neurons per unit area showed that, in comparison to the structures contralateral to the normal eye, in the side contralateral to the deprived amblyopic eye there is a gradient of diminished activation. The strongest activation asymmetry was observed in the visual reticular segment, while in layers 6 and 4 of the visual cortex the activation asymmetry was less strong and weakest, respectively. In the lateral geniculate there was no Fos-detectable activation asymmetry. Furthermore, there was a positive correlation between the time rats spent in exploration and the degree of activation asymmetry in the visual reticular segment. From these results it is concluded: (1) Activation of the visual segment of the thalamic reticular nucleus in the alert, attentive animal is predominantly under visual cortical control via the cortico-reticulo-geniculate pathway originating in layer 6, because this layer showed activation asymmetry while the other visual input to reticularis, the geniculate, did not show this asymmetry. (2) Activation of the visual reticularis is a function of attention to the environment because its activation asymmetry was correlated to the amount of exploratory attentional behaviour. (3) Diminished activity in the cortico-reticulo-geniculate pathway originating in layer 6, and of visual reticularis, caused by visual deprivation during the critical period should be considered as additional etiological factors of the resulting amblyopia. The functional significance of these results is explained by a 'focal attention' hypothesis postulating that the observed activation of visual reticularis in exploring animals is necessarily a reflection of activation of the corticogeniculate pathway, because these axons innervate both the geniculate and the visual reticular segment. Mechanistically, a focus of animal's attention is transmitted in a top-down fashion from the extrastriate cortex, and from upper cortical layers, into striate cortex layer 6. In turn, activation of layer 6 cells corresponding to attentional foci generates a core of excitation in the geniculate by the direct glutamatergic corticogeniculate axons, and a surround inhibition by the disynaptic cortico-reticulo-geniculate (ultimately GABAergic) pathway. In the temporal domain, in light of recent results, activation of thalamic reticular nucleus visual segment will contribute to the induction of gamma oscillations in geniculocortical pathways and in their cortical targets. All together, these interactions result in increased effectiveness of thalamocortical transmission of features from the focalized visual scene. The postulated attention-dependent spatiotemporal influences on thalamocortical transmission would be a main function of the corticothalamic pathways in the awake, attentive animal.
Collapse
Affiliation(s)
- V M Montero
- Department of Physiology and Waisman Center on Mental Retardation, University of Wisconsin, Madison 53705, USA
| |
Collapse
|
24
|
Abstract
The suprachiasmatic nucleus (SCN) receives glutamatergic afferents from the retina and serotonergic afferents from the midbrain, and serotonin (5-HT) can modify the response of the SCN circadian oscillator to light. 5-HT1B receptor-mediated presynaptic inhibition has been proposed as one mechanism by which 5-HT modifies retinal input to the SCN (Pickard et al., 1996). This hypothesis was tested by examining the subcellular localization of 5-HT1B receptors in the mouse SCN using electron microscopic immunocytochemical analysis with 5-HT1B receptor antibodies and whole-cell patch-clamp recordings from SCN neurons in hamster hypothalamic slices. 5-HT1B receptor immunostaining was observed associated with the plasma membrane of retinal terminals in the SCN. 1-[3-(Trifluoromethyl)phenyl]-piperazine HCl (TFMPP), a 5-HT1B receptor agonist, reduced in a dose-related manner the amplitude of glutamatergic EPSCs evoked by stimulating selectively the optic nerve. Selective 5-HT1A or 5-HT7 receptor antagonists did not block this effect. Moreover, in cells demonstrating an evoked EPSC in response to optic nerve stimulation, TFMPP had no effect on the amplitude of inward currents generated by local application of glutamate. The effect of TFMPP on light-induced phase shifts was also examined using 5-HT1B receptor knock-out mice. TFMPP inhibited behavioral responses to light in wild-type mice but was ineffective in inhibiting light-induced phase shifts in 5-HT1B receptor knock-out mice. The results indicate that 5-HT can reduce retinal input to the circadian system by acting at presynaptic 5-HT1B receptors located on retinal axons in the SCN.
Collapse
|
25
|
Rubio ME, Juiz JM. Chemical anatomy of excitatory endings in the dorsal cochlear nucleus of the rat: differential synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc. J Comp Neurol 1998; 399:341-58. [PMID: 9733082 DOI: 10.1002/(sici)1096-9861(19980928)399:3<341::aid-cne4>3.0.co;2-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to identify cytochemical traits relevant to understanding excitatory neurotransmission in brainstem auditory nuclei, we have analyzed in the dorsal cochlear nucleus the synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc, three molecules probably involved in different steps of excitatory glutamatergic signaling. High levels of glutamate immunolabeling were found in three classes of synaptic endings in the dorsal cochlear nucleus, as determined by quantitation of immunogold labeling. The first type included auditory nerve endings, the second were granule cell endings in the molecular layer, and the third very large endings, better described as "mossy." This finding points to a neurotransmitter role for glutamate in at least three synaptic populations in the dorsal cochlear nucleus. The same three types of endings enriched in glutamate immunoreactivity also contained histochemically detectable levels of aspartate aminotransferase activity, suggesting that this enzyme may be involved in the synaptic handling of glutamate in excitatory endings in the dorsal cochlear nucleus. There was also extrasynaptic localization of the enzyme. Zinc ions were localized exclusively in granule cell endings, as determined by a Danscher-selenite method, suggesting that this ion is involved in the operation of granule cell synapses in the dorsal cochlear nucleus.
Collapse
Affiliation(s)
- M E Rubio
- Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain.
| | | |
Collapse
|
26
|
De Biasi S, Vitellaro-Zuccarello L, Brecha NC. Immunoreactivity for the GABA transporter-1 and GABA transporter-3 is restricted to astrocytes in the rat thalamus. A light and electron-microscopic immunolocalization. Neuroscience 1998; 83:815-28. [PMID: 9483565 DOI: 10.1016/s0306-4522(97)00414-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GABA plasma membrane transporters mediate GABA uptake into presynaptic terminals and surrounding glial processes and thus play a key role in shaping the time course and spatial extent of GABA's action. In the present study we have investigated the cellular and subcellular localization of two GABA transporters (1 and 3) in the rat thalamus using affinity-purified polyclonal antibodies. GABA transporter-1 and -3 immunoreactivity, detected with immunoperoxidase and immunofluorescence methods, is present throughout the thalamus in small punctate structures scattered in the neuropil among unlabelled neuronal perikarya. Labelling for GABA transporter-3 is always more intense than that for GABA transporter-1. Astrocytic processes, identified by their immunoreactivity for glial fibrillary acidic protein, express both GABA transporters. Ultrastructural investigations confirm that GABA transporter-1 and -3 labelling is restricted to astrocytes. Labelled astrocytes are adjacent to terminals making either symmetric or asymmetric synaptic contacts, and are close to neuronal profiles that do not form synaptic contacts in the plane of the section. In double-labelled thin sections some GABA transporter-1- or -3-positive astrocytic processes, detected with immunoperoxidase labelling, surround GABA-positive terminals, detected with antibodies to GABA and immunogold labelling. These findings demonstrate that in rat thalamus the GABA uptake system mediated by GABA transporter-1 and -3 is localized exclusively to astrocytes near the synapses and in the neuropil, and absent from GABAergic terminals. Astrocytes play therefore an important role in mediating GABA transmission in the thalamus, compared to cortical regions.
Collapse
Affiliation(s)
- S De Biasi
- Department of General Physiology and Biochemistry, University of Milan, Italy
| | | | | |
Collapse
|
27
|
Kenigfest N, Rep�rant J, Rio JP, Belekhova M, Ward R, Vesselkin N, Miceli D, Herbin M. Retinal and cortical afferents to the dorsal lateral geniculate nucleus of the turtle,Emys orbicularis: A combined axonal tracing, glutamate, and GABA immunocytochemical electron microscopic study. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980222)391:4<470::aid-cne5>3.0.co;2-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
|
29
|
Wenzel HJ, Buckmaster PS, Anderson NL, Wenzel ME, Schwartzkroin PA. Ultrastructural localization of neurotransmitter immunoreactivity in mossy cell axons and their synaptic targets in the rat dentate gyrus. Hippocampus 1997; 7:559-70. [PMID: 9347352 DOI: 10.1002/(sici)1098-1063(1997)7:5<559::aid-hipo11>3.0.co;2-#] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electrophysiologically identified and intracellularly biocytin-labeled mossy cells in the dentate hilus of the rat were studied using electron microscopy and postembedding immunogold techniques. Ultrathin sections containing a labeled mossy cell or its axon collaterals were reacted with antisera against the excitatory neurotransmitter glutamate and against the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). From single- and double-immunolabeled preparations, we found that 1) mossy cell axon terminals made asymmetric contacts onto postsynaptic targets in the hilus and stratum moleculare of the dentate gyrus and showed immunoreactivity primarily for glutamate, but never for GABA; 2) in the hilus, glutamate-positive mossy cell axon terminals targeted GABA-positive dendritic shafts of hilar interneurons and GABA-negative dendritic spines; and 3) in the inner molecular layer, the mossy cell axon formed asymmetric synapses with dendritic spines associated with GABA-negative (presumably granule cell) dendrites. The results of this study support the view that excitatory (glutamatergic) mossy cell terminals contact GABAergic interneurons and non-GABAergic neurons in the hilar region and GABA-negative granule cells in the stratum moleculare. This pattern of connectivity is consistent with the hypothesis that mossy cells provide excitatory feedback to granule cells in a dentate gyrus associational network and also activate local hilar inhibitory elements.
Collapse
Affiliation(s)
- H J Wenzel
- Department of Neurological Surgery, University of Washington, Seattle 98195-6470, USA
| | | | | | | | | |
Collapse
|
30
|
Repérant J, Rio JP, Wasowicz M, Ward R, Miceli D. Differential glutamate immunoreactivity in glial cells of the retino-recipient layer of the viper optic tectum following retinal ablation. A quantitative EM immunogold study. Brain Res 1997; 761:321-8. [PMID: 9252032 DOI: 10.1016/s0006-8993(97)00393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In normal conditions, retino-tectal terminals are densely glutamate-immunoreactive. During the degenerative process of these terminals, a significant increase of glutamate immunoreactivity has been exclusively observed in microglial cells. It is suggested that this phenomenon is consecutive to the synthesis of glutamate by these cells after their activation by degenerating optic terminals.
Collapse
Affiliation(s)
- J Repérant
- INSERM U-106, Hôpital de la Salpêtrière, Bâtiment de Pédiatrie, Paris, France
| | | | | | | | | |
Collapse
|
31
|
Stamp JA, Piggins HD, Rusak B, Semba K. Distribution of ionotropic glutamate receptor subunit immunoreactivity in the suprachiasmatic nucleus and intergeniculate leaflet of the hamster. Brain Res 1997; 756:215-24. [PMID: 9187335 DOI: 10.1016/s0006-8993(97)00199-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamate is thought to mediate the effects of light on the circadian pacemaker contained in the suprachiasmatic nucleus. Glutamate can reset this pacemaker both in vivo and in vitro while glutamate antagonists can reduce photically induced phase shifts in activity rhythms and c-fos expression in the suprachiasmatic nucleus. Most behavioural and gene expression experiments investigating circadian rhythms use hamsters, but the majority of the anatomical data on the presence and distribution of selected glutamate receptor subunits in the suprachiasmatic nucleus has been collected from rat. In the present study, we examined the distribution of ionotropic glutamate receptor subunits in the hamster suprachiasmatic nucleus using mono- and polyclonal antibodies directed against these subunits. In addition, we examined the distribution of immunostaining for these subunits in a second structure of the mammalian circadian system, the intergeniculate leaflet of the thalamus since it also is thought to receive glutamatergic input from the retina and is important in the entrainment of circadian rhythms. The results indicated that all of the subunits investigated (GluR1, GluR2/3, GluR4, GluR5/6/7, and NMDAR1) were present in the suprachiasmatic nucleus and that all but GluR4 were present in the intergeniculate leaflet. Each of the subunits investigated had a unique pattern of distribution and intensity of staining. The distribution of immunoreactivity for these subunits in the hamster suprachiasmatic nucleus and intergeniculate leaflet differed from that reported in the rat. The presence of these subunits in the suprachiasmatic nucleus and intergeniculate leaflet implies the presence of functional NMDA and non-NMDA receptors in these structures that may have a role in photic entrainment of the circadian pacemaker.
Collapse
Affiliation(s)
- J A Stamp
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
32
|
Repérant J, Rio JP, Ward R, Wasowicz M, Miceli D, Medina M, Pierre J. Enrichment of glutamate-like immunoreactivity in the retinotectal terminals of the viper Vipera aspis: an electron microscope quantitative immunogold study. J Chem Neuroanat 1997; 12:267-80. [PMID: 9243346 DOI: 10.1016/s0891-0618(97)00018-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A post-embedding immunogold study was carried out to estimate the immunoreactivity to glutamate in retinal terminals, P axon terminals and dendrites containing synaptic vesicles in the superficial layers of the optic tectum of Vipera. Retinal terminals, identified following either intraocular injection of tritiated proline, horseradish peroxidase (HRP) or short-term survivals after retinal ablation, were observed to be highly glutamate-immunoreactive. A detailed quantitative analysis showed that about 50% of glutamate immunoreactivity was localized over the synaptic vesicles, 35.8% over mitochondria and 14.2% over the axoplasmic matrix. The close association of immunoreactivity with the synaptic vesicles could indicate that Vipera retino-tectal terminals may use glutamate as their neurotransmitter. P axon terminals and dendrites containing synaptic vesicles, strongly gamma-aminobutyric (GABA)-immunoreactive, were shown to be also moderately glutamate-immunoreactive, but two to three times less than retinal terminals. Moreover, in P axon terminals, the glutamate immunoreactivity was denser over mitochondria than over synaptic vesicles, possibly reflecting the 'metabolic' pool of glutamate, which serves as a precursor in the formation of GABA.
Collapse
Affiliation(s)
- J Repérant
- INSERM U-106, Laboratoire de Neuromorphologie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Parnavelas J, Dinopoulos A, Brecha N. Transient features of tachykinin peptide innervation of the dorsal lateral geniculate nucleus of the rabbit during postnatal development. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970414)380:3<310::aid-cne2>3.0.co;2-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Grandes P, Mateos JM, Azkue J, Sarría R, Cuénod M, Streit P. Light microscopic comparison of the patterns of glutamate-like and homocysteate-like immunoreactivities in rat dorsal lateral geniculate after combined visual cortical and retinal ablations. Neurosci Res 1997; 27:377-80. [PMID: 9152050 DOI: 10.1016/s0168-0102(97)01162-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To study the contribution of retinal and cortical afferents to the patterns of glutamate- and homocysteate-like immunoreactivities in dorsal lateral geniculate, combined retinal and cortical ablations were performed in rats. In controls, glutamate immunoreactivity was in terminal-like dots and neurons. Homocysteate immunoreactivity was in small puncta. In lesioned animals, most glutamate-immunoreactive dots disappeared. In contrast, abundant puncta resembling parts of glial cells were immunoreactive for homocysteate.
Collapse
Affiliation(s)
- P Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 1997; 42:27-37. [PMID: 8978932 DOI: 10.1016/s0361-9230(96)00107-4] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study evaluated the occurrence, distribution, and number of GABAergic neurons in the thalamus of different mammalian species (bat, mouse, rat, guinea pig, rabbit, cat, monkey, humans), by means of light microscopical immunoenzymatic localization of GABA or of its biosynthetic enzyme glutamic acid decarboxylase and by ultrastructural immunogold detection of GABA. Our data demonstrated that: 1) GABAergic local circuit neurons were detected in the thalamic visual domain in all the species analyzed, whereas in other thalamic nuclei their presence and number varied among species; 2) the number of GABAergic local circuit neurons progressively increased in the dorsal thalamus of species with more complex behavior; 3) the presence of local circuit neurons conferred a similar intrinsic organization to the dorsal thalamic nuclei, characterized by complex synaptic arrangements; 4) in the reticular thalamic nucleus, whose neurons were GABA-immunoreactive in all the examined species, the cellular density decreased from the bat to humans. These findings strongly suggest that thalamic GABAergic local circuit neurons are not directly related to the ability to perform specific sensorimotor tasks, but they are likely to reflect an increasing complexity of the local information processing that occurs at thalamic level.
Collapse
Affiliation(s)
- P Arcelli
- Istituto Nazionale Neurologico C. Besta, Dipartimento di Neurofisiologia, Milano, Italia
| | | | | | | | | |
Collapse
|
36
|
Rivadulla C, Rodriguez R, Martinez-Conde S, Acuña C, Cudeiro J. The influence of nitric oxide on perigeniculate GABAergic cell activity in the anaesthetized cat. Eur J Neurosci 1996; 8:2459-66. [PMID: 8996795 DOI: 10.1111/j.1460-9568.1996.tb01540.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have tested the effect of iontophoretic application of the nitric oxide synthase inhibitor L-nitroarginine on the activity of a population of 53 perigeniculate (PGN) cells, recorded extracellularly in the anaesthetized paralysed cat. In all cells tested with visual stimulation during L-nitroarginine application (n = 15), the visually elicited responses were markedly reduced, on average by 63 +/- 15%, and there was a reduction in spontaneous activity too. This effect was blocked by co-application of the substrate for nitric oxide synthase, L-arginine, but not by the inactive D-isoform, although application of L-arginine alone was without effect. Pressure application of the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) elevated both visual responses and spontaneous discharge, an effect also seen with a second nitric oxide donor, sodium nitroprusside (n = 12). The nitric oxide synthase inhibitor L-nitroarginine was applied to a sub-population of seven cells and it selectively decreased NMDA mediated excitation (reduction 80 +/- 14%) with little or no effect on the excitation mediated by alpha-amino-3-hydroxy-5-5-methyl-4-isoxazole-propionic acid (AMPA) or quisqualate (effects not statistically significant), and it had no effect (n = 7) on excitation mediated by the metabotropic agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD). Furthermore, application of SNAP also increased the magnitude of excitatory responses mediated by NMDA receptors. On a different population of seven cells, application of the new NO donor diethylamine-nitric oxide (DEA-NO) enhanced the actions of NMDA without an effect on responses to AMPA. These effects are qualitatively and quantitatively similar to those we have previously described for X and Y type cells in the dorsal lateral geniculate nucleus (dLGN), despite the known opposite effects of acetylcholine (ACh) application in the dLGN and PGN (ACh is co-localized with nitric oxide synthase at both sites). We propose that within the PGN nitric oxide acts to enhance transmission utilizing NMDA receptors selectively (thereby interacting with the globally inhibiting effect of ACh at this site) to enhance visual responses, reducing or removing the non-specific inhibitory drive from PGN to dLGN seen in the spindling activity of slow-wave sleep. These effects will act in concert with the facilitatory actions of both ACh and nitric oxide within the dLGN proper, and will thereby enhance the faithful transmission of visual information from retina to cortex.
Collapse
Affiliation(s)
- C Rivadulla
- Laboratorio de Neurociencia, (Unidad asociada al C.S.I.C., Instituto Cajal), Complejo Hospitalario Universitario, Universidad de Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
37
|
Abstract
Pattern recognition of amino acid signals partitions virtually all of the macaque retina into 16 separable biochemical theme classes, some further divisible by additional criteria. The photoreceptor-->bipolar cell-->ganglion cell pathway is composed of six separable theme classes, each possessing a characteristic glutamate signature. Neuronal aspartate and glutamine levels are always positively correlated with glutamate signals, implying that they largely represent glutamate precursor pools. Amacrine cells may be parsed into four glycine-dominated (including one glycine/GABA immunoreactive population) and four GABA-dominated populations. Horizontal cells in central retina possess a distinctive GABA signature, although their GABA content is constitutively lower than that of amacrine cells and shows both regional and sample variability. Finally, a taurine-glutamine signature defines Müller's cells. We thus have established the fundamental biochemical signatures of the primate retina along with multiple metabolic subtypes for each neurochemical class and demonstrated that virtually all neuronal space can be accounted for by cells bearing characteristic glutamate, GABA, or glycine signatures.
Collapse
|
38
|
Nie F, Wong-Riley MT. Differential glutamatergic innervation in cytochrome oxidase-rich and -poor regions of the macaque striate cortex: quantitative EM analysis of neurons and neuropil. J Comp Neurol 1996; 369:571-90. [PMID: 8761929 DOI: 10.1002/(sici)1096-9861(19960610)369:4<571::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase (CO)-rich puffs and CO-poor interpuffs in its supragranular layers. However, the neurochemical basis for their differences in metabolic activity and physiological properties is not well understood. The goals of the present study were to determine whether CO levels in postsynaptic neuronal compartments were correlated with the proportion of excitatory glutamate-immunoreactive (Glu-IR) synapses they received and if Glu-IR terminals and synapses in puffs differed from those in interpuffs. By combining CO histochemistry and postembedding Glu immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. As a comparison, adjacent sections were identically processed for the double labeling of CO and GABA, an inhibitory neurotransmitter. In both puffs and interpuffs, most axon terminals forming asymmetric synapses (84%)--but not symmetric ones, which were GABA-IR--were intensely immunoreactive for Glu. GABA-IR neurons received mainly Glu-IR synapses on their cell bodies, and they had three times as many mitochondria darkly reactive for CO than Glu-rich neurons, which received only GABA-IR axosomatic synapses. In puffs, GABA-IR neurons received a significantly higher ratio of Glu-IR to GABA-IR axosomatic synapses and contained about twice as many darkly CO-reactive mitochondria than those in interpuffs. There were significantly more Glu-IR synapses and a higher ratio of Glu- to GABA-IR synapses in the neuropil of puffs than of interpuffs. Moreover, Glu-IR axon terminals in puffs contained approximately three times more darkly CO-reactive mitochondria than those in interpuffs, suggesting that the former may be synaptically more active. Thus, the present results are consistent with our hypothesis that the levels of oxidative metabolism in postsynaptic neurons and neuropil are positively correlated with the proportion of excitatory synapses they receive. Our findings also suggest that excitatory synaptic activity may be more prominent in puffs than in interpuffs, and that the neurochemical and synaptic differences may constitute one of the bases for physiological and functional diversities between the two regions.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | |
Collapse
|
39
|
Torrealba F, Bustos G, Montero VM. Glutamate in the glomus cells of the cat carotid body: immunocytochemistry and in vitro release. Neurochem Int 1996; 28:625-31. [PMID: 8792345 DOI: 10.1016/0197-0186(95)00130-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The identity of the postulated excitatory transmitter released by glomus cells is not known. Since our preliminary work on paraffin sections of the cat carotid body indicated that most glomus cells were intensely immunoreactive to glutamate, we decided to investigate whether glutamate might be such a transmitter, using two approaches. One approach was to make a quantitative immunogold analysis of ultrathin sections to assess the level of glutamate immunoreactivity of glomus cells relative to glia and to afferent axon terminals. The other approach was to measure the potassium-induced release of glutamate from carotid bodies superfused in vitro. We consistently found that glomus cell profiles had 50% more immunogold particles per unit of area than glial cell or axonal profiles. However, the levels of glutamate immunoreactivity of glomus cells were lower than those expected for glutamatergic terminals. We also found that glutamate was not released from in vitro carotid bodies stimulated with high concentrations of potassium. These findings indicate that the oxygen-sensitive glomus cells have a high concentration of glutamate, which is not released by superfusion with high potassium. Thus, glutamate is not the excitatory transmitter released by glomus cells. We speculate that the high concentrations of glutamate might instead be related to the known dependence of the "in vitro" chemosensory activity on metabolic substrates.
Collapse
Affiliation(s)
- F Torrealba
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
40
|
Abstract
Glutamate (E) is the putative amino acid neurotransmitter used by ganglion cells, photoreceptors, and bipolar cells. Aspartate (D) and glutamine (Q) are potential precursors of glutamate, and glutamate-utilizing neurons may use one or more of these amino acids to sustain production of glutamate. We used post-embedding immunocytochemistry for several amino acid neurotransmitters to characterize the amino acid signatures for displaced ganglion cells of the avian retina. We found two neurochemical signatures for displaced ganglion cells, EQ and EDQ, in mid-peripheral and far-peripheral retina, respectively. Differences in neurochemical signatures cannot be explained by the existence of two ganglion cell populations, and we propose that the two signature categories for the large-diameter displaced ganglion cells reflect variations in the aspartate precursor pool. The transamination reaction involved in glutamate production, aspartate/oxaloacetate and alpha-ketoglutarate/glutamate, requires an active TCA cycle, since the carbon skeleton of glutamate is derived from alpha-ketoglutarate, a TCA intermediary. We hypothesized that aspartate levels vary in the normal chicken retina because eccentricity-dependent differences in oxygen availability result in changes of alpha-ketoglutarate levels, and hence, alterations in the equilibrium of the transamination reaction. We tested this hypothesis by incubating isolated chicken retinas in anaerobic conditions and found elevated aspartate immunoreactivity in subpopulations of glutamate-utilizing neurons in the central retina. Under aerobic conditions, or in retinas placed directly into fixative, retinal samples from the central edge of the pecten did not show differential cellular staining for aspartate. We have, therefore, identified differences in neurochemical signatures for retinal neurons involving changes in active maintenance of precursor pools.
Collapse
Affiliation(s)
- M Kalloniatis
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
41
|
Abstract
The acidic dipeptide N-acetylaspartylglutamate (NAAG), which satisfies many of the criteria for a neurotransmitter, was identified immunohistochemically within two human retinae. We observed NAAG immunoreactivity in retinal ganglion cells, their dendrites in the inner plexiform layer, and their axons in the optic nerve fiber layer. The vast majority of ganglion cells were stained, including displaced ganglion cells, ganglion cells of different sizes, and those whose dendrites arborized in the inner and outer sublaminae of the inner plexiform layer, that is, presumed On- and Off- cells. The sizes of labeled and unlabeled cells in the ganglion cell layer, as measured in counterstained material, suggest that the unlabeled cells consist primarily or only of displaced amacrine cells. We also saw immunoreactivity in small cells along the inner margin of the inner nuclear layer, presumably amacrine cells, and in small cells with little cytoplasm in the inner plexiform and ganglion cell layers, presumably displaced amacrine cells. These results are consistent with a role for NAAG in the transmission of visual information from the retina to the rest of the brain. Further, they are similar to those reported previously in rat, cat and monkey, thus demonstrating the relevance of previous studies to humans.
Collapse
Affiliation(s)
- S B Tieman
- Department of Biological Sciences, State University of New York, Albany 12222, USA.
| | | |
Collapse
|
42
|
Li X, Hallqvist A, Jacobson I, Orwar O, Sandberg M. Studies on the identity of the rat optic nerve transmitter. Brain Res 1996; 706:89-96. [PMID: 8720495 DOI: 10.1016/0006-8993(95)01185-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The possible role of glutamate, aspartate, sulfur-containing excitatory amino acids and gamma-glutamyl peptides as major transmitters in the rat optic nerve was evaluated. Four days following optic nerve lesion the K(+)-evoked Ca(2+)-dependent glutamate release was reduced to 31 +/- 16% (+/- S.D., n = 9) comparing release from slices of the denervated (contralateral to the lesion) and non-denervated (ipsilateral) superior colliculus, indicative of a major transmitter function for glutamate. However, significant decreases in glutamate release could not be detected seven days following the lesion (n = 5). Other studies have shown that optic nerve denervation induce formation of synapses of non-retinal origin and cause other cellular changes which may reduce the effect of deafferentation on glutamate release after 7 days. No significant change was observed in aspartate release following the lesion. The concentrations of cysteine sulfinate, cysteate, homocysteine sulfinate, homocysteate and O-sulfo-serine in the optic layers of the superior colliculus were below 1 nmol/g tissue (n = 6). Theoretical considerations indicate that this level is too low for a function of any of these as a major optic nerve transmitter. All postsynaptic components in the rat superior colliculus response, evoked by electrical optic nerve stimulation, were reduced by kynurenate (1-10 mM), a broad spectrum glutamate-receptor antagonist. The study gives further support for the view that glutamate is a major transmitter in the rat optic nerve.
Collapse
Affiliation(s)
- X Li
- Institute of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
43
|
Salt TE, Eaton SA. Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Prog Neurobiol 1996; 48:55-72. [PMID: 8830348 DOI: 10.1016/0301-0082(95)00047-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The thalamic relay nuclei play a pivotal role in gating and processing sensory information en route to the cerebral cortex. The major ascending sensory afferents and the descending cortico-fugal afferents to the thalamus almost certainly use the excitatory amino acid L-glutamate as their transmitter. This paper reviews the nature of this transmission in terms of the receptor types which may be used (NMDA, AMPA, kainate and metabotropic glutamate receptors), their electrophysiological and pharmacological properties, and their differential location in the thalamus on neurones, terminals and glial elements. Whilst AMPA receptors, probably of more than one variety, are likely to mediate fast transmission in the thalamus, the contributions of NMDA receptors and metabotropic glutamate receptors to sensory responses under different stimulus conditions may be more varied. This is discussed in the context of the possible functional significance of the interplay of L-glutamate-gated currents with intrinsic membrane currents of thalamic neurones. The interaction of L-glutamate transmission with other modulators (acetylcholine, noradrenaline, serotonin, glycine, D-serine, nitric oxide, arginine, redox agents) is considered.
Collapse
Affiliation(s)
- T E Salt
- Department of Visual Science, University College London, U.K
| | | |
Collapse
|
44
|
Dinopoulos A, Dori I, Parnavelas JG. Serotonergic innervation of the lateral geniculate nucleus of the rat during postnatal development: a light and electron microscopic immunocytochemical analysis. J Comp Neurol 1995; 363:532-544. [PMID: 8847416 DOI: 10.1002/cne.903630403] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The serotonergic innervation of the developing lateral geniculate nucleus of the rat was studied with immunocytochemical techniques at the light and electron microscope levels. A relatively small number of thick serotonergic fibers were observed at the time of birth, distributed more densely in the ventral portion of the nucleus and in the intergeniculate leaflet than in the dorsal lateral geniculate nucleus. By the end of the first postnatal week, this distribution pattern was more clearly established, but the number of immunoreactive fibers was increased. Thereafter, and until the adult pattern was established at the end of the third postnatal week, serotonergic fibers increased further in number and changed morphologically (e.g., they became finer and more ramified with closely spaced varicosities), but their pattern of distribution remained unchanged. Electron microscopical analysis of the dorsal lateral geniculate nucleus revealed that the vast majority of serotonin varicosities formed asymmetrical synapses with dendritic shafts; axosomatic synapses were a feature of the nucleus only at the time of birth. The proportion of serotonin varicosities forming synapses increased gradually from birth to reach a peak at the end of the second postnatal week, then declined markedly in the following week before increasing again at a later stage. It may be speculated that synapses formed during the first two weeks of life may be related to the involvement of serotonin in the morphogenesis of the lateral geniculate nucleus, whereas those formed later in development may be involved in the mediation of neurotransmitter effects.
Collapse
Affiliation(s)
- A Dinopoulos
- Department of Anatomy, School of Veterinary Medicine, University of Thessaloniki, Greece
| | | | | |
Collapse
|
45
|
Rogers PC, Pow DV. Immunocytochemical evidence for an axonal localization of GABA in the optic nerves of rabbits, rats, and cats. Vis Neurosci 1995; 12:1143-9. [PMID: 8962833 DOI: 10.1017/s0952523800006787] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have examined, by light-microscopic immunocytochemistry, the distribution of GABA in the optic nerves of adult rabbits, rats, and cats. Within the optic nerves, immunoreactivity for GABA was restricted to a small subset of axons; some axons were strongly labelled, others weakly labelled, whilst most axons were unlabelled. Glia and other non-neuronal elements were always unlabelled. Our ability to detect GABA in optic nerve axons of adult mammals contrasts with previous reports that indicate a lack of GABA immunoreactivity in such axons. We suggest that this discrepancy may be due to the sensitivity of our immunocytochemical techniques which enable us to detect low concentrations of GABA.
Collapse
Affiliation(s)
- P C Rogers
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
46
|
Pape HC, McCormick DA. Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 1995; 68:1105-25. [PMID: 8544986 DOI: 10.1016/0306-4522(95)00205-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the electrophysiological and pharmacological properties of morphologically identified and putative interneurons within laminae A and A1 of the cat dorsal lateral geniculate nucleus maintained in vitro. These intralaminar interneurons possess unique electrophysiological characteristics, including (1) action potentials of a short duration (average width at half amplitude of 0.34 ms). (2) the ability to generate high-frequency trains of action potentials exceeding 500 Hz, without strong spike frequency adaptation, and (3) a low-threshold regenerative response with variable magnitude of expression, ranging from a subthreshold depolarization towards the generation of one to several action potentials in different cells. The low-threshold regenerative depolarization following a hyperpolarizing current pulse was increased in size by application of 4-aminopyridine, was reduced by nickel, and was not influenced by extracellular cesium. These findings indicate that this event is mediated by an underlying Ca(2+)-dependent mechanism, such as a low-threshold Ca(2+) current, that is regulated by the activation of opposing transient K+ currents. Every interneuron tested responded to glutamate, kainate, quisqualate, or N-methyl-D-aspartate with depolarization and action potential discharge. In contrast, we did not observe a postsynaptic response to activation of the metabotropic receptors with 1S,3R-(+/-)-1-amino-cyclopentane-1,3-dicarboxylate. Application of gamma-amino-butyric acid (GABA) strongly inhibited spike firing through a biphasic hyperpolarization and increase in membrane conductance, a response that reversed close to the presumed chloride equilibrium potential and was imitated by the GABAA receptor agonist muscimol. The GABAB receptor agonist baclofen evoked only a weak membrane hyperpolarization from rest and suppression of spontaneous spike activity. Application of acetylcholine, or the muscarinic agonist acetyl-beta-methylcholine, inhibited spontaneous action potential activity through hyperpolarization of the membrane potential, presumably resulting from an increase in membrane potassium conductance. In contrast, application of serotonin only slightly facilitated tonic activity in a subpopulation of interneurons, histamine induced a small slow depolarization apparently through activation of presynaptic excitatory pathways, and noradrenaline and adenosine had no detectable effect on the spontaneous firing or resting potential of interneurons. We suggest that intralaminar interneurons may function in a relatively linear manner to transform retinal and cortical inputs into a local field of inhibition in the dorsal lateral geniculate and that the excitability of these neurons is largely controlled by retinal, cortical, GABAergic, and cholinergic (brainstem) afferents.
Collapse
Affiliation(s)
- H C Pape
- Institut für Physiologie, Otto-von-Guericke-Universitaet, Magdeburg, Germany
| | | |
Collapse
|
47
|
Montero VM, Jian S. Induction of c-fos protein by patterned visual stimulation in central visual pathways of the rat. Brain Res 1995; 690:189-99. [PMID: 8535836 DOI: 10.1016/0006-8993(95)00620-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Localized patterned visual stimulation was used in rats to investigate the feasibility of stimulus-dependent induction of the immediate early gene c-fos in neurons of cortical and subcortical visual centers of this mammal. Moving and stationary visual patterns, consisting of gratings and arrays of dark dots, induced Fos-like immunoreactivity in populations of neurons in retinotopically corresponding stimulated regions of the dorsal and ventral lateral geniculate nucleus (dLGN, vLGN), stratum griseum superficiale of the superior colliculus, nucleus of the optic tract, and primary (striate) visual cortex. Only moving stimuli induced Fos-like immunoreactive (FLI) neurons in extrastriate visual areas, particularly in the anterolateral (AL) visual area. This suggests that area AL is equivalent to the motion sensitive areas MT and PMLS of the monkey and cat. Stimulus-induced FLI neurons in the striate cortex were predominantly distributed in layers 4 and 6, while few labeled neurons were present in layers 2-3, and almost none in layer 5. The laminar distribution of stimulus-induced FLI cells in the extrastriate cortical area AL was similar to that of the striate cortex, with the exception that more FLI cells were present in layer 5. Statistical comparison of somata size of the stimulus-induced FLI neurons in dLGN with that of Cresyl violet stained neurons in the same sections revealed that the population of geniculate FLI neurons is composed of relay cells and interneurons.
Collapse
Affiliation(s)
- V M Montero
- Department of Neurophysiology, University of Wisconsin, Madison 53705, USA
| | | |
Collapse
|
48
|
Ortega F, Hennequet L, Sarría R, Streit P, Grandes P. Changes in the pattern of glutamate-like immunoreactivity in rat superior colliculus following retinal and visual cortical lesions. Neuroscience 1995; 67:125-34. [PMID: 7477893 DOI: 10.1016/0306-4522(95)00057-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the pattern of glutamate-like immunoreactivity in the superficial layers of the rat superior colliculus by means of postembedding immunocytochemical methods for light and electron microscopy. At the light microscopic level, labelling was faintly to moderately intense in most perikarya of the stratum zonale, stratum griseum superficiale and stratum opticum. Furthermore, strong glutamate-immunoreactive terminal-like elements were accumulated most densely in stratum zonale, stratum griseum superficiale and stratum opticum. At the electron microscopic level, a postembedding immunogold method revealed that the vast majority of those labelled elements corresponded to retinal and visual cortical terminals. These profiles were about twice as heavily labelled as their postsynaptic partners. To determine the contribution of retinal and cortical afferents to the pattern of glutamate-like immunoreactivity, rats were subjected to right retinal ablation, left cortical ablation or combined right retinal and left cortical ablations. After retinal ablation, strongly labelled perikarya were observed in the retinorecipient layers. Furthermore, a prominent loss of glutamate-immunoreactive terminal-like elements occurred in stratum zonale and stratum griseum superficiale. Ipsilateral superior colliculus to cortical ablation exhibited subtle changes characterized by a moderate increase in perikaryal immunostaining in stratum zonale, stratum griseum superficiale and stratum opticum and by an apparent discrete reduction of labelled dots in stratum griseum superficiale and stratum opticum. In cases with combined lesions, strongly immunoreactive cell bodies and dendrites were accompanied by a massive disappearance of labelled terminal-like elements in stratum zonale, stratum griseum superficiale and stratum opticum. The effect of retinal and visual cortical ablations on the pattern of glutamate-like immunoreactivity suggests that these afferents are the major sources for glutamate-immunoreactive terminals in the rat superior colliculus. In addition, these findings provide further evidence for glutamate as neurotransmitter in the visual pathways studied.
Collapse
Affiliation(s)
- F Ortega
- Department of Neurosciences, Faculty of Medicine and Dentistry, Basque Country University, Bilbao, Spain
| | | | | | | | | |
Collapse
|
49
|
Kechagias S, Broman J. Immunocytochemical evidence for vesicular storage of glutamate in cat spinocervical and cervicothalamic tract terminals. Brain Res 1995; 675:316-20. [PMID: 7796145 DOI: 10.1016/0006-8993(95)00122-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The densities of synaptic vesicles and gold particles, signaling fixed glutamate, were examined in spinocervical and cervicothalamic tract terminals. Statistically significant positive correlations between these parameters were detected in both terminal populations, whereas presumed inhibitory profiles displayed insignificant or negative correlations. These findings indicate a vesicular storage of glutamate in spinocervical and cervicothalamic tract terminals, and thus provide further evidence for glutamate as a neurotransmitter in the spinocervicothalamic pathway.
Collapse
Affiliation(s)
- S Kechagias
- Department of Cell Biology, Faculty of Health Sciences, Linköping University, Sweden
| | | |
Collapse
|
50
|
Ericson AC, Blomqvist A, Craig AD, Ottersen OP, Broman J. Evidence for glutamate as neurotransmitter in trigemino-and spinothalamic tract terminals in the nucleus submedius of cats. Eur J Neurosci 1995; 7:305-17. [PMID: 7757265 DOI: 10.1111/j.1460-9568.1995.tb01066.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus submedius in the medial thalamus of cats is an important termination site for lamina I trigemino-and spinothalamic tract (TSTT) neurons, many of which are nociceptive-specific, and the nucleus submedius has been proposed to be a dedicated nociceptive substrate involved in the affective aspect of pain. In the present study, the distribution of glutamate was examined by immunocytochemical methods in order to evaluate the possible role of this amino acid as a neurotransmitter in TSTT terminals in the nucleus submedius. TSTT terminals were identified by anterograde transport of horseradish peroxidase and wheatgerm agglutinin-horseradish peroxidase conjugate from the spinal cord or the medullary dorsal horn. Quantitative analysis of immunogold labelling revealed that TSTT terminals contain about twice the tissue average of glutamate-like immunoreactivity. A strong positive correlation was found between the density of synaptic vesicles and the density of gold particles in these terminals, whereas no relationship was seen between these variables in GABAergic presynaptic dendrites. Enrichment of glutamate-like immunoreactivity (approximately 250% of the tissue average) was also observed in terminals of presumed cortical origin. Presynaptic dendrites and neuron cell bodies in the nucleus submedius were found to contain relatively low levels of glutamate-like immunoreactivity, at or below the tissue average. These observations provide evidence that glutamate is a neurotransmitter in lamina I TSTT terminals in the nucleus submedius. The findings also suggest glutamatergic neurotransmission between cortical afferents and nucleus submedius neurons. Glutamate is therefore likely to be an important mediator of nociceptive processing in the medial thalamus.
Collapse
Affiliation(s)
- A C Ericson
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden
| | | | | | | | | |
Collapse
|