1
|
Qin Z, Lewis JE, Perry SF. Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for environmental CO2. J Physiol 2010; 588:861-72. [PMID: 20051495 DOI: 10.1113/jphysiol.2009.184739] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adult zebrafish exhibit hyperventilatory responses to absolute environmental CO(2) levels as low as 0.13% ( mmHg), more than an order of magnitude lower than the typical arterial levels (40 mmHg) monitored by the mammalian carotid body. The sensory basis underlying the ability of fish to detect and respond to low ambient CO(2) levels is not clear. Here, we show that the neuroepithelial cells (NECs) of the zebrafish gill, known to sense O(2) levels, also respond to low levels of CO(2). An electrophysiological characterization of this response using both current and voltage clamp protocols revealed that for increasing CO(2) levels, a background K(+) channel was inhibited, resulting in a partial pressure-dependent depolarization of the NEC. To elucidate the signalling pathway underlying K(+) channel inhibition, we used immunocytochemistry to show that these NECs express carbonic anhydrase (CA), an enzyme involved in CO(2) sensing in the mammalian carotid body. Further, the NEC response to CO(2) (magnitude of membrane depolarization and time required to achieve maximal response), under conditions of constant pH, was reduced by 50% by the CA-inhibitor acetazolamide. This suggests that the CO(2) detection mechanism involves an intracellular sensor that is responsive to the rate of acidification associated with the hydration of CO(2) and which does not require a change of extracellular pH. Because some cells that were responsive to increasing also responded to hypoxia with membrane depolarization, the present results demonstrate that a subset of the NECs in the zebrafish gill are bimodal sensors of CO(2) and O(2).
Collapse
Affiliation(s)
- Z Qin
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | |
Collapse
|
2
|
Hypercapnia modulates synaptic interaction of cultured brainstem neurons. Respir Physiol Neurobiol 2007; 160:147-59. [PMID: 17964865 DOI: 10.1016/j.resp.2007.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 11/22/2022]
Abstract
CO(2) is an important metabolic product whose concentrations are constantly monitored by CO(2) chemoreceptors. However, the high systemic CO(2) sensitivity may not be achieved by the CO(2) chemoreceptors without neuronal network processes. To show modulation of network properties during hypercapnia, we studied brainstem neurons dissociated from embryonic rats (P17-19) in multielectrode arrays (MEA) after initial period (3 weeks) of culture. Spike trains of 33,622 pairs of units were analyzed using peri-event histograms (PEH). The amplitude of peri-central peaks between two CO(2)-stimulated units increased and the peak latency decreased during hypercapnia. Similar enhancement of synaptic strength was observed in those sharing a common input. These phenomena were not seen in CO(2)-unresponsive neurons. The amplitude of peri-central peaks between two CO(2) inhibited units also increased without changing latency. Over 60% CO(2)-stimulated neurons studied received mono-/oligosynaptic inputs from other CO(2)-stimulated cells, whereas only approximately 10% CO(2)-unresponsive neurons had such synaptic inputs. A small number of brainstem neurons showed electrical couplings. The coupling efficiency of CO(2)-stimulated but not CO(2)-unresponsive units was suppressed by approximately 50% with high PCO(2). Inhibitory synaptic projections were also found, which was barely affected by hypercapnia. Consistent with the strengthening of excitatory synaptic connections, CO(2) sensitivity of post-synaptic neurons was significantly higher than presynaptic neurons. The difference was eliminated with blockade of presynaptic input. Based on these indirect assessments of synaptic interaction, our PEH analysis suggests that hypercapnia appears to modulate excitatory synaptic transmissions, especially those between CO(2)-stimulated neurons.
Collapse
|
3
|
Putnam RW, Filosa JA, Ritucci NA. Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 2004; 287:C1493-526. [PMID: 15525685 DOI: 10.1152/ajpcell.00282.2004] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in CO(2)/H(+) is a major stimulus for increased ventilation and is sensed by specialized brain stem neurons called central chemosensitive neurons. These neurons appear to be spread among numerous brain stem regions, and neurons from different regions have different levels of chemosensitivity. Early studies implicated changes of pH as playing a role in chemosensitive signaling, most likely by inhibiting a K(+) channel, depolarizing chemosensitive neurons, and thereby increasing their firing rate. Considerable progress has been made over the past decade in understanding the cellular mechanisms of chemosensitive signaling using reduced preparations. Recent evidence has pointed to an important role of changes of intracellular pH in the response of central chemosensitive neurons to increased CO(2)/H(+) levels. The signaling mechanisms for chemosensitivity may also involve changes of extracellular pH, intracellular Ca(2+), gap junctions, oxidative stress, glial cells, bicarbonate, CO(2), and neurotransmitters. The normal target for these signals is generally believed to be a K(+) channel, although it is likely that many K(+) channels as well as Ca(2+) channels are involved as targets of chemosensitive signals. The results of studies of cellular signaling in central chemosensitive neurons are compared with results in other CO(2)- and/or H(+)-sensitive cells, including peripheral chemoreceptors (carotid body glomus cells), invertebrate central chemoreceptors, avian intrapulmonary chemoreceptors, acid-sensitive taste receptor cells on the tongue, and pain-sensitive nociceptors. A multiple factors model is proposed for central chemosensitive neurons in which multiple signals that affect multiple ion channel targets result in the final neuronal response to changes in CO(2)/H(+).
Collapse
Affiliation(s)
- Robert W Putnam
- Department of Anatomy and Physiology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
4
|
Schultz JH, Czachurski J, Volk T, Ehmke H, Seller H. Central sympathetic chemosensitivity and Kir1 potassium channels in the cat. Brain Res 2003; 963:113-20. [PMID: 12560116 DOI: 10.1016/s0006-8993(02)03952-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The possible involvement of potassium channels in central chemosensitivity, with special reference to the Kir1.1 potassium channel, was investigated by studying the CO(2) response of presympathetic neurons in the rostroventrolateral medulla (RVLM) in the absence or presence of various K(+) channel inhibitors. Synaptic input to RVLM neurons was blocked by local injection of omega-agatoxin and omega-conotoxin. Activity of RVLM neurons was measured by recording the electrical activity in preganglionic (WR-T(3)) or postganglionic (renal) sympathetic nerves after perfusion of the lower brainstem via the left vertebral artery with CO(2)-enriched saline solution. Unspecific K(+) channel blockade by BaCl(2) reduced the excitatory response of sympathetic activity after CO(2)-perfusion to 56% of control. A quantitatively similar inhibition of the central CO(2) response was obtained after administration of 9-fluorenylmethylchloroformate (FMOC-Cl) which eliminates pH sensitivity of Kir1 and Kir4.1. Furthermore, two structurally different Kir1 inhibiting toxins, tertiapin and Lq2, also reduced the central CO(2) response to approximately 50% of control. In contrast, charybdotoxin (CTX) had no effect on the CO(2) response. Using RT-PCR the expression of mRNA homologous to rat Kir1 mRNA was identified in the cat medulla oblongata. These data suggest that a modulation of potassium channel activity possibly via Kir1 may contribute to central chemosensitivity.
Collapse
Affiliation(s)
- Jobst Hendrik Schultz
- Institut für Vegetative Physiologie und Pathophysiologie, Universität Hamburg, D-20246, Hamburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Li A, Nattie E. CO2 dialysis in one chemoreceptor site, the RTN: stimulus intensity and sensitivity in the awake rat. Respir Physiol Neurobiol 2002; 133:11-22. [PMID: 12385727 DOI: 10.1016/s1569-9048(02)00134-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We stimulate single central chemoreceptor sites in the unanesthetized rat by focal microdialysis of artificial cerebrospinal fluid (aCSF) equilibrated with 25% CO(2). Here, in the retrotrapezoid nucleus (RTN) we measured the focal stimulus intensity with a pH electrode adjacent to the dialysis probe. During 25% CO(2) dialysis, RTN pH decreased by 0.069 (0.013, SEM) pH units (N=5), 44% of the change observed during 7% CO(2) breathing, -0.157 (0.019) pH units (N=4). During 7% CO(2) breathing, Pa(CO(2)) increased by 15 Torr (N=5). We calculate the deltaPa(CO(2)) that would produce a deltapH at the RTN approximately like that observed during 25% CO(2) dialysis as 44% of 15 Torr, or 6.6 Torr deltaPa(CO(2)). Using ventilatory response data from our lab, we estimate overall chemoreceptor sensitivity as 13% deltaVE/Torr deltaPa(CO(2)) and RTN sensitivity as 3% deltaVE/Torr deltaPa(CO(2)). The RTN provides 23% of the overall response. This may be an underestimate. During RTN stimulation Pa(CO(2)) decreases by 4.9 (0.7) Torr (N=5), which may inhibit other chemoreceptor sites. Multiple chemoreceptor sites may interact to provide high sensitivity in systemic hypercapnia and stability during heterogeneous stimulation and inhibition.
Collapse
Affiliation(s)
- Aihua Li
- Department of Physiology, Dartmouth Medical School, 706E Borwell Building, Lebanon, NH 03756-0001, USA
| | | |
Collapse
|
6
|
Abu-Shaweesh JM, Dreshaj IA, Martin RJ, Wirth KJ, Heinelt U, Haxhiu MA. Inhibition of Na(+)/H(+) exchanger type 3 reduces duration of apnea induced by laryngeal stimulation in piglets. Pediatr Res 2002; 52:459-64. [PMID: 12193685 DOI: 10.1203/00006450-200209000-00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reflexes from the larynx induce cessation of breathing in newborn animals. The magnitude of respiratory inhibition is inversely related to the level of central chemical input. Recent studies indicate that selective inhibition of Na(+)/H(+) exchanger type 3 (NHE3) activates CO(2)/H(+)-sensitive neurons, resembling the responses evoked by hypercapnic stimuli. Hence, the use of NHE3 inhibitors may reduce reflexly mediated respiratory depression and duration of apnea in the neonatal period. This possibility was examined in decerebrate, vagotomized, ventilated, and paralyzed piglets by testing the effects of i.v. administration of NHE3 blocker S8218 on the response of phrenic nerve amplitude, frequency, and duration of apnea induced by graded electrical stimulation of the superior laryngeal nerve. Superior laryngeal nerve stimulation caused a significant decrease in phrenic nerve amplitude, frequency, minute phrenic activity, and inspiratory time (all p < 0.01) that was proportional to the level of electrical stimulation. Increased levels of stimulation were more likely to induce apnea both during and after cessation of stimulation. NHE3 blocker S8218 reduced the superior laryngeal nerve stimulation-induced decrease in phrenic nerve amplitude, minute phrenic activity, and phrenic nerve frequency (all p < 0.05) and reduced superior laryngeal nerve stimulation-induced apnea and duration of poststimulation apnea (p < 0.05). In six other pigs the brain concentrations of S8218 were measured at different intervals after i.v. administration of the drug and were found to be higher in the brain tissue than plasma at all intervals. These findings suggest that the use of NHE3 blockers may decrease the duration of apnea and possibly reduce the pathophysiologic consequences of potentially life-threatening apnea in infants.
Collapse
Affiliation(s)
- Jalal M Abu-Shaweesh
- Department of Pediatrics, Case Western Reserve University Cleveland, Ohio 44106, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Pete G, Mack SO, Haxhiu MA, Walbaum S, Gauda EB. CO(2)-induced c-Fos expression in brainstem preprotachykinin mRNA containing neurons. Respir Physiol Neurobiol 2002; 130:265-74. [PMID: 12093623 DOI: 10.1016/s0034-5687(02)00013-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tachykinin peptides are found in brainstem regions involved in central chemoreception and they may play a modulatory role in ventilatory response to hypercapnia. We determined whether tachykinin peptide containing neurons are activated by CO(2) by combining in situ hybridization and immunohistochemistry (IHH). Experiments were performed in 21-day-old rats exposed to 12% CO(2) for 1 h. c-Fos expression was identified by IHH on free floating sections (40 microm) that were mounted and then hybridized with anti-sense 35S labeled ribonucleotide probe of the rat preprotachykinin A (PPT-A) gene. Sections were analyzed for expression of the PPT-A gene, c-Fos protein and colocalization of PPT-A gene with c-Fos protein. Within the chemosensory region of the nucleus tractus solitarius (nTS), 19% of c-Fos positive cells expressed PPT-A mRNA after hypercapnic loading. In medullary raphe nuclei, 64% of c-Fos positive cells expressed the PPT-A gene after exposure to CO(2), while 21% of c-Fos labeled neurons in parapyramidal nuclei also expressed PPT-A mRNA. These results indicate that a subpopulation of CO(2) activated neurons within the nTS and in the parapyramidal and midline regions of the ventral aspect of the medulla oblongata express the PPT-A gene, suggesting that these are substance P- or neurokinin A-containing neurons. Furthermore, these peptides may play a role in modulation of respiratory and cardiovascular responses to changes in CO(2)/H(+) content of the extracellular fluid.
Collapse
Affiliation(s)
- Gina Pete
- Department of Physiology and Biophysics, Specialized Neuroscience Research Program, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | | | | | | | | |
Collapse
|
8
|
Wang W, Bradley SR, Richerson GB. Quantification of the response of rat medullary raphe neurones to independent changes in pH(o) and P(CO2). J Physiol 2002; 540:951-70. [PMID: 11986382 PMCID: PMC2290275 DOI: 10.1113/jphysiol.2001.013443] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/24/2001] [Accepted: 01/30/2002] [Indexed: 11/08/2022] Open
Abstract
The medullary raphe nuclei contain putative central respiratory chemoreceptor neurones that are highly sensitive to acidosis. To define the primary stimulus for chemosensitivity in these neurones, the response to hypercapnic acidosis was quantified and compared with the response to independent changes in P(CO2) and extracellular pH (pH(o)). Neurones from the ventromedial medulla of neonatal rats (P0-P2) were dissociated and maintained in tissue culture for long enough to develop a mature response (up to 70 days). Perforated patch clamp recordings were used to record membrane potential and firing rate while changes were made in pH(o), P(CO2) and/or [NaHCO(3)](o) from baseline values of 7.4, 5 % and 26 mM, respectively. Hypercapnic acidosis (P(CO2) 9 %; pH(o) 7.17) induced an increase in firing rate to 285 % of control in one subset of neurones ('stimulated neurones') and induced a decrease in firing rate to 21 % of control in a different subset of neurones ('inhibited neurones'). Isocapnic acidosis (pH(o) 7.16; [NaHCO(3)](o) 15 mM) induced an increase in firing rate of stimulated neurones to 309 % of control, and a decrease in firing rate of inhibited neurones to 38 % of control. In a different group of neurones, isohydric hypercapnia (9 % P(CO2); [NaHCO(3)](o) 40 mM) induced an increase in firing rate of stimulated neurones by the same amount (to 384 % of control) as in response to hypercapnic acidosis (to 327 % of control). Inhibited neurones also responded to isohydric hypercapnia in the same way as they did to hypercapnic acidosis. In Hepes-buffered solution, both types of neurone responded to changes in pH(o) in the same way as they responded to changes in pH(o) in bicarbonate-buffered Ringer solution. It has previously been shown that all acidosis-stimulated neurones in the medullary raphe are immunoreactive for tryptophan hydroxylase (TpOH-ir). Here it was found that TpOH-ir neurones in the medullary raphe were immunoreactive for carbonic anhydrase type II and type IV (CA II and CA IV). However, CA immunoreactivity was also common in neurones of the hypoglossal motor nucleus, inferior olive, hippocampus and cerebellum, indicating that its presence is not uniquely associated with chemosensitive neurones. In addition, under the conditions used here, acetazolamide (100 microM) did not have a significant effect on the response to hypercapnic acidosis. We conclude that chemosensitivity of raphe neurones can occur independently of changes in pH(o), P(CO2) or bicarbonate. The results suggest that a change in intracellular pH (pH(i)) may be the primary stimulus for chemosensitivity in these putative central respiratory chemoreceptor neurones.
Collapse
Affiliation(s)
- Wengang Wang
- Departments of Neurology and Cellular & Molecular Physiology, Yale University, New Haven, CT 06510, USA
| | | | | |
Collapse
|
9
|
Tankersley CG, Haxhiu MA, Gauda EB. Differential CO(2)-induced c-fos gene expression in the nucleus tractus solitarii of inbred mouse strains. J Appl Physiol (1985) 2002; 92:1277-84. [PMID: 11842068 DOI: 10.1152/japplphysiol.00609.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic determinants confer variation between inbred mouse strains with respect to the magnitude and pattern of ventilation during hypercapnic challenge. Specifically, inheritance patterns derived from low-responsive C3H/HeJ (C3) and high-responsive C57BL/6J (B6) mouse strains suggest that differential hypercapnic ventilatory sensitivity (HCVS) is controlled by two independent genes. The present study also tests whether differential neuronal activity in respiratory control regions of the brain is positively associated with strain variation in HCVS. With the use of whole body plethysmography, ventilation was assessed in C3 and B6 strains at baseline and during 30 min of hypercapnia (inspired CO(2) fraction = 0.15, inspired O(2) fraction = 0.21 in N(2)). Subsequently, in situ hybridization histochemistry was performed to determine changes in c-fos gene expression in the commissural subnucleus of the nucleus tractus solitarius (NTS). During hypercapnia, breathing frequency and tidal volume were significantly (P < 0.01) different between strains: C3 mice showed a slow, deep-breathing pattern relative to a rapid, shallow phenotype of B6 mice. CO(2)-induced increase in c-fos gene expression was significantly (P < 0.01) greater in NTS regions of B6 compared with C3 mice. In this genetic model of differential HCVS, the results suggest that a genomic basis for varied hypercapnic chemoreception or transduction confers greater afferent neuronal activity in the caudal NTS for high-responsive B6 mice compared with low-responsive C3 mice.
Collapse
Affiliation(s)
- Clarke G Tankersley
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
10
|
Wiemann M, Bingmann D. Ventrolateral neurons of medullary organotypic cultures: intracellular pH regulation and bioelectric activity. RESPIRATION PHYSIOLOGY 2001; 129:57-70. [PMID: 11738646 DOI: 10.1016/s0034-5687(01)00282-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hypothesized role of the intracellular pH (pH(i)) as a proximate stimulus for central chemosensitive neurons is reviewed on the basis of data obtained from organotypic cultures of the medulla oblongata (obex level) of new born rats (OMC). Within OMC a subset of neurons responds to hypercapnia as do neurons in the same (or similar) brain areas in vivo. Maneuvers altering intra- and/or extracellular pH (pH(o)) such as hypercapnia, bicarbonate-withdrawal, or ammonium pre-pulses, evoked well defined changes of the neuronal pH(i). During hypercapnia (pH(o) 7.0) or bicarbonate-withdrawal (pH(o) 7.4) most ventrolateral neurons adopted a pH(i) which was < or = 0.2 pH units below the steady state pH(i), while signs of pH(i)-regulation occurred only in a small fraction of neurons. During all treatments leading to intracellular acidosis, bioelectric activity of chemosensitive neurons increased and was often indistinguishable from the response to hypercapnia, regardless of whether pH(o) was unchanged, decreased or increased during the treatment. These data strongly suggest that the pH(i) acts as proximate stimulus. The mode of acid extrusion of chemosensitive neurons is, therefore, of major importance for the control of central chemosensitivity. Immunocytochemical data, pH(i) measurements and neuropharmacological studies with novel drugs pointed to the Na(+)/H(+) exchanger subtype 3 (NHE3) as a main acid extruder in ventrolateral chemosensitive neurons. Possible functions and neuropharmacological strategies arising from this very local NHE3 expression are discussed.
Collapse
Affiliation(s)
- M Wiemann
- Institut für Physiologie, Universität und Gesamthochschule Essen, Hufelandstr. 55, D-45122 Essen, Germany.
| | | |
Collapse
|
11
|
Haxhiu MA, Tolentino-Silva F, Pete G, Kc P, Mack SO. Monoaminergic neurons, chemosensation and arousal. RESPIRATION PHYSIOLOGY 2001; 129:191-209. [PMID: 11738654 DOI: 10.1016/s0034-5687(01)00290-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, immense progress has been made in understanding central chemosensitivity at the cellular and functional levels. Combining molecular biological techniques (early gene expression as an index of cell activation) with neurotransmitter immunohistochemistry, new information has been generated related to neurochemical coding in chemosensory cells. We found that CO(2) exposure leads to activation of discrete cell groups along the neuraxis, including subsets of cells belonging to monoaminergic cells, noradrenaline-, serotonin-, and histamine-containing neurons. In part, they may play a modulatory role in the respiratory response to hypercapnia that could be related to their behavioral state control function. Activation of monoaminergic neurons by an increase in CO(2)/H(+) could facilitate respiratory related motor discharge, particularly activity of upper airway dilating muscles. In addition, these neurons coordinate sympathetic and parasympathetic tone to visceral organs, and participate in adjustments of blood flow with the level of motor activity. Any deficit in CO(2) chemosensitivity of a network composed of inter-related monoaminergic nuclei might lead to disfacilitation of motor outputs and to failure of neuroendocrine and homeostatic responses to life-threatening challenges (e.g. asphyxia) during sleep.
Collapse
Affiliation(s)
- M A Haxhiu
- Department of Physiology and Biophysics, Howard University College of Medicine, 520 W Street, N.W. Washington, DC 20059, USA.
| | | | | | | | | |
Collapse
|
12
|
Nottingham S, Leiter JC, Wages P, Buhay S, Erlichman JS. Developmental changes in intracellular pH regulation in medullary neurons of the rat. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1940-51. [PMID: 11705781 DOI: 10.1152/ajpregu.2001.281.6.r1940] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined intracellular pH (pH(i)) regulation in the retrotrapezoid nucleus (RTN), a CO(2)-sensitive site, and the hypoglossal nucleus, a nonchemosensitive site, during development (postnatal days 2-18) in rats. Respiratory acidosis [10% CO(2), extracellular pH (pH(o)) 7.18] caused acidification without pH(i) recovery in the RTN at all ages. In the hypoglossal nucleus, pH(i) recovered in young animals, but as animal age increased, the slope of pH(i) recovery diminished. In animals older than postnatal day 11, the pH(i) responses to hypercapnia were identical in the hypoglossal nucleus and the RTN, but hypoglossal nucleus and RTN neurons could regulate pH(i) during intracellular acidification at constant pH(o) at all ages. Recovery of pH(i) from acidification in the RTN depended on extracellular Na+ and was inhibited by amiloride but was unaffected by DIDS, suggesting a role for Na+/H+ exchange. Hence, pH(i) regulation during acidosis is more effective in the hypoglossal nucleus in younger animals, possibly as a requirement of development, but in older juvenile animals (older than postnatal day 11), pH(i) regulation is relatively poor in chemosensitive (RTN) and nonchemosensitive nuclei (hypoglossal nucleus).
Collapse
Affiliation(s)
- S Nottingham
- Department of Biology, Allegheny College, Meadville, PA 16335, USA
| | | | | | | | | |
Collapse
|
13
|
Kiwull-Schöne H, Wiemann M, Frede S, Bingmann D, Wirth KJ, Heinelt U, Lang HJ, Kiwull P. A novel inhibitor of the Na+/H+ exchanger type 3 activates the central respiratory CO2 response and lowers the apneic threshold. Am J Respir Crit Care Med 2001; 164:1303-11. [PMID: 11673226 DOI: 10.1164/ajrccm.164.7.2010147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cultured CO2-sensitive neurons from the ventrolateral medulla of newborn rats enhanced their bioelectric activity upon intracellular acidification induced by inhibition of the Na+/H+ exchanger type 3 (NHE3). Now we detected NHE3 also in the medulla oblongata of adult rabbits. Therefore, this animal model was employed to determine whether NHE3 inhibition also affects central respiratory chemosensitivity in vivo. Seven anesthetized (pentobarbital), vagotomized, paralyzed rabbits were artificially ventilated with O2-enriched air. From the phrenic nerve compound discharge, integrated burst amplitude (IPNA), respiratory rate (fR), and phrenic minute activity (IPNA. fR) were taken as measures of central respiratory rhythm and drive. Effects of potent NHE3 inhibition with the novel brain permeant substance S8218 were studied by comparing respiratory characteristics before and after up to 9.2 +/- 1.1 mg/kg cumulative drug application, yielding average plasma concentrations of 0.9 +/- 0.2 microg/ml. In response to S8218, the baseline level of IPNA. fR was significantly enhanced by an average of 51.0 +/- 6.4% (n = 27, p < 0.0001). The influence of NHE3 inhibition on the respiratory CO2 response was studied at plasma concentrations of S8218 maintained in the range of 0.3 microg/ml (10(-6) M). Although the metabolic acid-base status thereby remained widely unchanged, the group mean apneic threshold PaCO2 was significantly lowered by 0.45 +/- 0.11 kPa (n = 7, p < 0.01), whereby in four of seven animals even strong hyperventilation failed to suppress phrenic nerve rhythmicity completely. Likewise, S8218 significantly augmented IPNA. fR, in the range of PaCO2 between 1 and 6 kPa above threshold, by an average of 38.0 +/- 8.5% (n = 35, p < 0.0001). These in vivo results are compatible with the effects of NHE3 inhibition on chemosensitive brainstem neurons in vitro. Moreover, rhythmogenesis is supported through NHE3 inhibition by lowering the threshold PCO2 for central apnea.
Collapse
Affiliation(s)
- H Kiwull-Schöne
- Department of Physiology, Faculty of Medicine, Ruhr-University, Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Stunden CE, Filosa JA, Garcia AJ, Dean JB, Putnam RW. Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats. RESPIRATION PHYSIOLOGY 2001; 127:135-55. [PMID: 11504586 DOI: 10.1016/s0034-5687(01)00242-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We used pressure plethysmography to study breathing patterns of neonatal and adult rats acutely exposed to elevated levels of CO2. Ventilation (VE) increased progressively with increasing inspired CO2. The rise in VE was associated with an increase in tidal volume, but not respiratory rate. In all animals studied, the CO2 sensitivity (determined from the slope of the VE vs. inspired % CO2 curve) was variable on a day to day basis. Chemosensitivity was high in neonates 1 day after birth (P1) and fell throughout the first week to a minimum at about P8. Chemosensitivity rose again to somewhat higher values in P10 through adult rats. The developmental pattern of these in vivo ventilatory responses was different than individual locus coeruleus (LC) neuron responses to increased CO2. The membrane potential (V(m)) of LC neurons was measured using perforated patch (amphotericin B) techniques in brain slices. At all ages studied, LC neurons increased their firing rate by approximately 44% in response to hypercapnic acidosis (10% CO2, pH 7.0). Thus the in vivo ventilatory response to hypercapnia was not correlated with the V(m) response of individual LC neurons to hypercapnic acidosis in neonatal rats. These data suggest that CO2 sensitivity of ventilation in rats may exist in two forms, a high-sensitivity neonatal (or fetal) form and a lower-sensitivity adult form, with a critical window of very low sensitivity during the period of transition between the two (approximately P8).
Collapse
Affiliation(s)
- C E Stunden
- Department of Physiology and Biophysics, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
15
|
Wang W, Tiwari JK, Bradley SR, Zaykin RV, Richerson GB. Acidosis-Stimulated Neurons of the Medullary Raphe Are Serotonergic. J Neurophysiol 2001; 85:2224-35. [PMID: 11353037 DOI: 10.1152/jn.2001.85.5.2224] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons of the medullary raphe project widely to respiratory and autonomic nuclei and contain co-localized serotonin, thyrotropin-releasing hormone (TRH), and substance P, three neurotransmitters known to stimulate ventilation. Some medullary raphe neurons are highly sensitive to pH and CO2 and have been proposed to be central chemoreceptors. Here it was determined whether these chemosensitive neurons are serotonergic. Cells were microdissected from the rat medullary raphe and maintained in primary cell culture for 13–70 days. Immunoreactivity for serotonin, substance P, and TRH was present in these cultures. All acidosis-stimulated neurons ( n = 22) were immunoreactive for tryptophan hydroxylase (TpOH-IR), the rate-limiting enzyme for serotonin biosynthesis, whereas all acidosis-inhibited neurons ( n= 16) were TpOH-immunonegative. The majority of TpOH-IR medullary raphe neurons (73%) were stimulated by acidosis. The electrophysiological properties of TpOH-IR neurons in culture were similar to those previously reported for serotonergic neurons in vivo and in brain slices. These properties included wide action potentials (4.55 ± 0.5 ms) with a low variability of the interspike interval, a postspike afterhyperpolarization (AHP) that reversed 25 mV more positive than the Nernst potential for K+, prominent A current, spike frequency adaptation and a prolonged AHP after a depolarizing pulse. Thus the intrinsic cellular properties of serotonergic neurons were preserved in cell culture, indicating that the results obtained using this in vitro approach are relevant to serotonergic neurons in vivo. These results demonstrate that acidosis-stimulated neurons of the medullary raphe contain serotonin. We propose that serotonergic neurons initiate a homeostatic response to changes in blood CO2 that includes increased ventilation and modulation of autonomic function.
Collapse
Affiliation(s)
- W Wang
- Departments of Neurology and Cellular and Molecular Physiology, Yale University, New Haven Connecticut, 06510, USA
| | | | | | | | | |
Collapse
|
16
|
Douglas RM, Trouth CO, James SD, Sexcius LM, Kc P, Dehkordi O, Valladares ER, McKenzie JC. Decreased CSF pH at ventral brain stem induces widespread c-Fos immunoreactivity in rat brain neurons. J Appl Physiol (1985) 2001; 90:475-85. [PMID: 11160045 DOI: 10.1152/jappl.2001.90.2.475] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physiological evidence has indicated that central respiratory chemosensitivity may be ascribed to neurons located at the ventral medullary surface (VMS); however, in recent years, multiple sites have been proposed. Because c-Fos immunoreactivity is presumed to identify primary cells as well as second- and third-order cells that are activated by a particular stimulus, we hypothesized that activation of VMS cells using a known adequate respiratory stimulus, H(+), would induce production of c-Fos in cells that participate in the central pH-sensitive respiratory chemoreflex loop. In this study, stimulation of rostral and caudal VMS respiratory chemosensitive sites in chloralose-urethane-anesthetized rats with acidic (pH 7.2) mock cerebrospinal fluid induced c-Fos protein immunoreactivity in widespread brain sites, such as VMS, ventral pontine surface, retrotrapezoid, medial and lateral parabrachial, lateral reticular nuclei, cranial nerves VII and X nuclei, A(1) and C(1) areas, area postrema, locus coeruleus, and paragigantocellular nuclei. At the hypothalamus, the c-Fos reaction product was seen in the dorsomedial, lateral hypothalamic, supraoptic, and periventricular nuclei. These results suggest that 1) multiple c-Fos-positive brain stem and hypothalamic structures may represent part of a neuronal network responsive to cerebrospinal fluid pH changes at the VMS, and 2) VMS pH-sensitive neurons project to widespread regions in the brain stem and hypothalamus that include respiratory and cardiovascular control sites.
Collapse
Affiliation(s)
- R M Douglas
- Department of Physiology, College of Medicine, Howard University, Washington, District of Columbia 20059, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Francis D, Coats A, Ponikowski P. Chemoreceptor-Baroreceptor Interactions in Cardiovascular Disease. SLEEP APNEA 2000. [DOI: 10.1201/b15277-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Abstract
Neurons from many brainstem nuclei involved in respiratory control increase their firing rate in response to acidosis in vitro, suggesting that they are central chemoreceptors. This property has been considered to be either unique to neurons involved in respiratory control, or at least very unusual for non-respiratory neurons. However, recordings of intrinsic pH responses of neurons have not been made from enough non-respiratory regions of the CNS to be certain this assumption is true. Here, we have quantified changes in firing rate of neurons cultured from the hippocampus (n=43), neocortex (n=33), and cerebellum (n=29) in response to changes in CO(2) between 3% and 9% (pH approximately 7.6-7.2) after blockade of glutamatergic and GABAergic transmission. The responses of neurons from these three regions were similar, with a subset of neurons (12% of the total 105) inhibited by acidosis, decreasing their firing rate to a mean of 70% of control in response to a decrease in pH of 0.2. Some neurons (5% of total) were stimulated by acidosis, with an increase in firing rate to a mean of 175% of control in response to a decrease in pH of 0.2. We previously quantified chemosensitivity of neurons from the medullary raphe using the same methods [W. Wang, J.H. Pizzonia, G.B. Richerson, Chemosensitivity of rat medullary raphe neurones in primary tissue culture, J. Physiol., 511 (1998) 433-450]. Compared to these non-respiratory neurons, more raphe neurons were stimulated by acidosis (22%), and the average response was greater (to 300% of control) in response to the same stimulus. Thus, over a physiologically relevant pH range, stimulation by acidosis occurs in a significant percentage of neurons not involved in respiratory chemoreception. However, the degree of chemosensitivity of these neurons was less than medullary raphe neurons under the same conditions. Chemosensitivity is not an all-or-none neuronal property, and the degree of chemosensitivity may be relevant to the role neurons play in sensing pH in vivo.
Collapse
Affiliation(s)
- W Wang
- Department of Neurology, West Haven, CT, USA.
| | | |
Collapse
|
19
|
Abstract
The regulation of breathing relies upon chemical feedback concerning the levels of CO2 and O2. The carotid bodies, which detect O2, provide tonic excitation to brainstem respiratory neurons under normal conditions and dramatic excitation if O2 levels fall. Feedback for CO2 involves the carotid body and receptors in the brainstem, central chemoreceptors. Small increases in CO2 produce large increases in breathing. Decreases in CO2 below normal can, in sleep and anesthesia, decrease breathing, even to apnea. Central chemoreceptors, once thought localized to the surface of the ventral medulla, are likely distributed more widely with sites presently identified in the: (1) ventrolateral medulla; (2) nucleus of the solitary tract; (3) ventral respiratory group; (4) locus ceruleus; (5) caudal medullary raphé; and (6) fastigial nucleus of the cerebellum. Why so many chemoreceptor sites? Hypotheses, some with supporting data, include the following. Geographical specificity; all regions of the brainstem with respiratory neurons contain chemoreceptors. Stimulus intensity; some sites operate in the physiological range of CO2 values, others only with more extreme changes. Stimulus specificity; CO2 or pH may be sensed by multiple mechanisms. Temporal specificity; some sites respond more quickly to changes on blood or brain CO2 or pH. Syncytium; chemosensitive neurons may be connected via low resistance, gap junctions. Arousal state: sites may vary in effectiveness and importance dependent on state of arousal. Overall, as judged by experiments of nature, and in the laboratory, central chemoreceptors are critical for adequate breathing in sleep, but other aspects of the control system can maintain breathing in wakefulness.
Collapse
Affiliation(s)
- E Nattie
- Dartmouth Medical School, Department of Physiology, Lebanon, NH 03756-0001, USA
| |
Collapse
|
20
|
Belegu R, Hadziefendić S, Dreshaj IA, Haxhiu MA, Martin RJ. CO2-induced c-fos expression in medullary neurons during early development. RESPIRATION PHYSIOLOGY 1999; 117:13-28. [PMID: 10505476 DOI: 10.1016/s0034-5687(99)00046-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we characterized the responses of brainstem neurons to hypercapnic loading at 5, 15, and 40 postnatal days, using c-fos gene encoded protein (Fos), as a marker of neuronal activity. At any of these studied ages exposure to 10% CO2 for 1 h produced a significant increase in the number of activated neurons within the ventral and the dorsal aspects of the brainstem. In the ventrolateral aspect of the medulla oblongata, Fos positive cells were observed within the ventrolateral medulla, extending from the pontomedullary border to the decussation of the pyramids. In the most rostral regions, within the retrotrapezoid field, the number of Fos positive cells was lower than in caudal ventral medullary regions at the levels of the area postrema and the caudal to it. No age related differences were observed in the number of neurons exhibiting CO2-induced Fos expression. Fos positive cells were additionally observed in the lateral paragigantocellular and gigantocellular reticular nuclei, in the medullary midline complex, in the raphe pallidus and in the raphe obscurus. The number of activated cells in the midline neurons was higher at 5 than at 40 days of age. In the dorsal aspect of the medulla oblongata Fos positive neurons were observed mainly within the caudal nucleus tractus solitarius (nTS). Postnatal age had no effect on the distribution and number of nTS cells activated by hypercapnic loading. These findings indicate that neurons activated by increases in CO2/H+ concentrations appear to be well developed from the first days of postnatal life in maturing rat pups.
Collapse
Affiliation(s)
- R Belegu
- Institute of Histology, Faculty of Medicine, University of Prishtinë, Yugoslavia
| | | | | | | | | |
Collapse
|
21
|
Abstract
In many neonatal mammals, including humans and rats, there is a developmental increase in the ventilatory response to elevated pCO2. This maturation of central respiratory chemoreception may result from maturation of intrinsic chemosensitivity of brainstem neurons. We have examined age-related changes in chemosensitivity of neurons from the rat medullary raphe, a putative site for central chemoreception, using perforated patch-clamp recordings in vitro. In brain slices from rats younger than 12 days old, firing rate increased in 3% of neurons and decreased in 17% of neurons in response to respiratory acidosis (n = 36). In contrast, in slices from rats 12 days and older, firing rate increased in 18% of neurons and decreased in 15% of neurons in response to the same stimulus (n = 40). A tissue culture preparation of medullary raphe neurons was used to examine changes in chemosensitivity with age from three to 74 days in vitro. In cultured neurons younger than 12 days in vitro, firing rate increased in 4% of neurons and decreased in 44% of neurons in response to respiratory acidosis (n = 54). In contrast, in neurons 12 days in vitro and older, firing rate increased in 30% of neurons and decreased in 24% of neurons in response to respiratory acidosis (n = 105). In both types of chemosensitive neuron ("stimulated" and "inhibited"), the magnitudes of the changes in firing rate were greater in older neurons than in young neurons. These results indicate that the incidence and the degree of chemosensitivity of medullary raphe neurons increase with age in brain slices and in culture. This age-related increase in cellular chemosensitivity may underlie the development of respiratory chemoreception in vivo. Delays in this maturation process may contribute to developmental abnormalities of breathing, such as sudden infant death syndrome.
Collapse
Affiliation(s)
- W Wang
- Yale University, New Haven, CT 06510, USA
| | | |
Collapse
|
22
|
Patil MM, Durand DM, LaManna JC, Whittingham TS, Haxhiu MA. Effects of oxygen deprivation on parapyramidal neurons of the ventrolateral medulla in the rat. RESPIRATION PHYSIOLOGY 1999; 115:11-22. [PMID: 10344411 DOI: 10.1016/s0034-5687(98)00108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We characterized the electrophysiological properties and responses of neurons located in the parapyramidal region of the ventral aspect of the rat medulla oblongata (parapyramidal neurons, PP neurons) to oxygen deprivation, in order to understand the mechanisms involved in hypoxia induced respiratory depression. The responses of PP neurons to oxygen deprivation were compared to those of the functionally dissimilar neurons of the dentate gyrus (DG). Neurons from the PP region were found to fire spontaneously with a frequency of 3-3.5 spikes/sec in both adults and neonates and responded to an anoxic insult with a complete loss of spontaneous firing. Discrete metabolite analysis showed a small (about 17%) decrease in tissue adenosine triphosphate (ATP) levels of the PP neurons during an anoxic insult and the decrease was significantly smaller than in the DG cell region (28%). In contrast to the DG neurons, the PP neurons recovered from an anoxic insult lasting more than 30 min, indicating a greater survival capacity of the PP neurons during oxygen deprivation. The PP neurons were also capable of withstanding successive anoxic insults better than the DG cells as demonstrated by their complete recovery following reoxygenation. It is suggested that the PP neurons may depress their electrical activity as an energy conservation mechanism, and thereby survive anoxic insults longer than the dentate neurons, whereas the loss of cellular activity in the DG neurons may be a result of energy depletion.
Collapse
Affiliation(s)
- M M Patil
- Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4938, USA
| | | | | | | | | |
Collapse
|
23
|
Wellner-Kienitz MC, Shams H. Hyperpolarization-activated inward currents contribute to spontaneous electrical activity and CO2/H+ sensitivity of cultivated neurons of fetal rat medulla. Neuroscience 1998; 87:109-21. [PMID: 9722145 DOI: 10.1016/s0306-4522(98)00159-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons growing out from cultivated fetal medullary slices that exhibited spontaneous electrical activity after blockade of synaptic transmission were investigated by the patch-clamp technique for their response to decreases in the extracellular pH. Increases in the [H+], induced by increases in pCO2, resulted in a decrease in spike frequency associated with a decrease in the rate of depolarization preceding each action potential. The type of ion channel, contributing to interspike depolarization, and which may therefore be the site of CO2/H+ action, was identified by application of agents that inhibited the hyperpolarization-activated cation, IH, channel (Cs+ and ZD7288). Application of Cs+ and ZD7288 slightly hyperpolarized the cell membrane, decreased the interspike slope and inhibited CO2/H+-induced modulations of spike frequency in one group of CO2-inhibited medullary neurons, suggesting that IH contributes to spontaneous neuronal activity and to CO2/H+-sensitivity. CO2/H+ effects on IH were further confirmed in voltage-clamp experiments. Increasing the bath CO2 from 2% to 9% reduced the IH amplitude, shifted the mean EH from -54 to -60 mV, lengthened the voltage-dependent delay of current activation and increased the time-constants of activation at all potentials studied. It is concluded that depolarizing inward currents through IH channels participate in the gradual ramp-like change in membrane potential which depolarizes the cell up to the threshold of Na+ spike generation. CO2/H+-induced inhibition of IH reduces the contribution of this ion current to the interspike depolarization and accounts for the CO2/H+-induced decrease in spike frequency in one type of CO2/H+-inhibited medullary cells.
Collapse
|
24
|
Wang W, Pizzonia JH, Richerson GB. Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J Physiol 1998; 511 ( Pt 2):433-50. [PMID: 9706021 PMCID: PMC2231124 DOI: 10.1111/j.1469-7793.1998.433bh.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1998] [Accepted: 05/27/1998] [Indexed: 11/30/2022] Open
Abstract
1. The medullary raphe, within the ventromedial medulla (VMM), contains putative central respiratory chemoreceptors. To study the mechanisms of chemosensitivity in the raphe, rat VMM neurones were maintained in primary dissociated tissue culture, and studied using perforated patch-clamp recordings. Baseline electrophysiological properties were similar to raphe neurones in brain slices and in vivo. 2. Neurones were exposed to changes in CO2 from 5% to 3 or 9% while maintaining a constant [NaHCO3]. Fifty-one per cent of neurones (n = 210) did not change their firing rate by more than 20% in response to hypercapnic acidosis. However, 22% of neurones responded to 9% CO2 with an increase in firing rate ('stimulated'), and 27% of neurones responded with a decrease in firing rate ('inhibited'). 3. Chemosensitivity has often been considered an all-or-none property. Instead, a method was developed to quantify the degree of chemosensitivity. Stimulated neurones had a mean increase in firing rate to 298 +/- 215% of control when pH decreased from 7.40 to 7.19. Inhibited neurones had a mean increase in firing rate to 232 +/- 265% of control when pH increased from 7. 38 to 7.57. 4. Neurones were also exposed to isocapnic acidosis. All CO2-stimulated neurones tested (n = 15) were also stimulated by isocapnic acidosis, and all CO2-inhibited neurones tested (n = 19) were inhibited by isocapnic acidosis. Neurones with no response to hypercapnic acidosis also had no response to isocapnic acidosis (n = 12). Thus, the effects of CO2 on these neurones were mediated in part via changes in pH. 5. In stimulated neurones, acidosis induced a small increase in the after-hyperpolarization level of 1.38 +/- 1. 15 mV per -0.2 pH units, which was dependent on the level of tonic depolarizing current injection. In voltage clamp mode at a holding potential near resting potential, there were small and inconsistent changes in whole-cell conductance and holding current in both stimulated and inhibited neurones. These results suggest that pH modulates a conductance in stimulated neurones that is activated during repetitive firing, with a reversal potential close to resting potential. 6. The two subtypes of chemosensitive VMM neurones could be distinguished by characteristics other than their response to acidosis. Stimulated neurones had a large multipolar soma, whereas inhibited neurones had a small fusiform soma. Stimulated neurones were more likely than inhibited neurones to fire with the highly regular pattern typical of serotonergic raphe neurones in vivo. 7. Within the medullary raphe, chemosensitivity is a specialization of two distinct neuronal phenotypes. The response of these neurones to physiologically relevant changes in pH is of the magnitude that suggests that this chemosensitivity plays a functional role. Elucidating their mechanisms in vitro may help to define the cellular mechanisms of central chemoreception in vivo.
Collapse
Affiliation(s)
- W Wang
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
25
|
Wellner-Kienitz MC, Shams H. CO2-sensitive neurons in organotypic cultures of the fetal rat medulla. RESPIRATION PHYSIOLOGY 1998; 111:137-51. [PMID: 9574866 DOI: 10.1016/s0034-5687(97)00124-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Medullary slices of the fetal rat at gestational day 16 were cultivated (organotypic culture) for up to 20 days and current clamp experiments were performed on outgrowing neurons. CO2-sensitivity was tested by changing the P(CO2) in the bath solution (equilibrating CO2 fraction from 0.02 to 0.09). Two groups of CO2-sensitive neurons were found; one with and the other without intrinsic CO2-chemosensitivity. Neurons with intrinsic CO2-sensitivity maintained their spontaneous activity and chemosensitivity after blockade of synaptic transmission. These neurons exhibited action potentials that were preceeded by a spontaneous interspike depolarization and followed by an afterhyperpolarization (beating neurons). Increasing P(CO2) either decreased (inhibited neurons, n = 55) or increased the spike frequency of these neurons (stimulated neurons, n = 31). The reduced activity of CO2-inhibited neurons was associated with membrane hyperpolarization and/or decreases in the slope of interspike depolarization. In contrast CO2-stimulated neurons were depolarized and the slope of their interspike depolarization was augmented during acidosis. In addition, we demonstrated a strong voltage dependence of CO2-induced effects on membrane potential and spike frequency. Neurons with non-beating activity did not show a spontaneous interspike depolarization and their spike generation and CO2-sensitivity appeared to be entirely produced through synaptic inputs. The CO2-mediated changes in electrical properties of these neurons closely resemble those of various CNS neurons, including respiratory neurons, in whole animal or neonatal brainstem-spinal cord preparations.
Collapse
|
26
|
Pineda J, Aghajanian GK. Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Neuroscience 1997; 77:723-43. [PMID: 9070748 DOI: 10.1016/s0306-4522(96)00485-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The electrophysiological effects of CO2 on locus coeruleus noradrenergic neurons were investigated in rat brain slices. Under control conditions, when slices were perfused with artificial cerebrospinal fluid containing 24 mM NaHCO3/5% CO2 (pH approximately 7.34, 33 degrees C) and exposed to 5% CO2/95% O2 arriving through an interface chamber, locus coeruleus neurons discharged spontaneously at approximately 1 Hz. Extracellular recordings showed that lowering CO2 that arrived through the chamber below 5% resulted in reductions in firing rate, often with a complete cessation of activity when exogenous CO2 was removed completely. Intracellular recordings revealed that lowering CO2 produced an outward current with an increase in slope conductance and a reversal potential near the potassium equilibrium potential; doubling the concentration of external potassium shifted the reversal potential of the current activated by CO2 removal by approximately +20 mV. Raising CO2 above 5% induced an increase in firing rate, an inward current, a decreased slope conductance at potentials near resting membrane voltage, and an increased slope conductance at more negative potentials. These effects of CO2 were mimicked by other manipulations that are known to affect intracellular pH. For example, NH4Cl, which acutely induces intracellular alkalinization, caused a marked reduction in firing rate, an outward current and an increased slope conductance that reversed near the potassium equilibrium potential. Bath-applied barium blocked the effects induced by removal of CO2 or addition of NH4Cl. The polyamine spermine (tetrahydrochloride) applied via intracellular micropipettes blocked the outward current induced by removal of CO2 or addition of NH4Cl. Spermine (free base) or an equivalent concentration of putrescine failed to alter the CO2 (0%)- or NH4Cl-induced effects. We conclude that CO2 maintains the tonic activity of locus coeruleus neurons by decreasing intracellular pH which, in turn, closes inward rectifier potassium channels, an effect that may be mediated by a protonated polyamine. According to this model, when there is alkalinization of locus coeruleus cells through removal of CO2 or addition of NH4Cl, endogenous spermine or a similar polyamine becomes partially deprotonated, releasing the channel block and allowing the cell to hyperpolarize. The possible implications of these results for the physiological effects of CO2 in the locus coeruleus are discussed.
Collapse
Affiliation(s)
- J Pineda
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven 06508, U.S.A
| | | |
Collapse
|
27
|
|
28
|
Ritucci NA, Erlichman JS, Dean JB, Putnam RW. A fluorescence technique to measure intracellular pH of single neurons in brainstem slices. J Neurosci Methods 1996; 68:149-63. [PMID: 8912188 DOI: 10.1016/0165-0270(96)00051-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have developed a technique to measure the pH, of single neurons in brainstem slices using a fluorescence imaging system. Slices were loaded with the pH-sensitive fluorescent dye BCECF and fluorescence was visualized by exciting the slices alternately at 500 and 440 nm. The emitted fluorescence at 530 nm was directed through an MTI GenIISys image intensifier and MT1 CCD72 camera. The images were processed by image-1/FL software. The ratio of emitted fluorescence at excitation wavelengths of 500 and 440 nm was measured and converted to pH by constructing a calibration curve using high K+/nigericin solutions at pH values ranging from 5.8 to 8.6. BCECF-loaded slices showed distinct spheres of intense fluorescence and diffuse background fluorescence. Slices labeled with a neuron-specific antibody, neuron-specific enolase, showed staining that correlated with the spheres of intense fluorescence of BCECF-loaded cells. Slices labeled with a glial-specific antibody, glial fibrillary acidic protein, showed a diffuse, background staining. Neurons that were retrograde-labeled with rhodamine beads fluoresced as large spheres that exactly correlated with the fluorescence from BCECF-loaded cells. Further, large fluorescent spheres had membrane potentials of about -60 mV and generated action potentials. These findings indicate that the large fluorescent spheres are neurons. pHi was measured in these large spheres (neurons) in the dorsal and ventral medullary chemosensitive regions, and was 7.32 +/- 0.02 (n = 110) and 7.38 +/- 0.02 (n = 85), respectively.
Collapse
Affiliation(s)
- N A Ritucci
- Department of Physiology & Biophysics, Wright State University, School of Medicine, Dayton, OH 45435, USA
| | | | | | | |
Collapse
|
29
|
Haxhiu MA, Yung K, Erokwu B, Cherniack NS. CO2-induced c-fos expression in the CNS catecholaminergic neurons. RESPIRATION PHYSIOLOGY 1996; 105:35-45. [PMID: 8897649 DOI: 10.1016/0034-5687(96)00034-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In these studies we examined c-fos expression in catecholaminergic neurons following exposure of unanesthetized rats to hypercapnic stress. Breathing a gas mixture with elevated CO2 (15% CO2, 21% O2 and 64% N2, or 15% CO2 balance O2) for 60 min, induced activation of the c-fos gene in widespread regions of the CNS, as indicated by the expression of Fos-like immunoreactive protein (Fos). Similar results were obtained in carotid body denervated animals. Colocalization studies of tyrosine hydroxylase (TH) and Fos protein revealed that in the brainstem, 73 to 85% of noradrenaline-containing cells expressed Fos immunoreactivity. Double-labeled neurons were found in the ventrolateral medullary reticular formation (A1 noradrenaline cells), in the dorsal aspect of medulla oblongata (A2 noradrenaline cells), in the ventrolateral pons (A5 noradrenaline cells), and in the locus coeruleus (A6 noradrenaline cells). However, over 90% of TH-immunoreactive neurons in the mesencephalon and diencephalon (dopaminergic cells) did not express Fos-like immunoreactivity in response to CO2. These results indicate that the brainstem noradrenaline-containing neurons are part of the neuronal networks that react to hypercapnic exposure.
Collapse
Affiliation(s)
- M A Haxhiu
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
30
|
Kawai A, Ballantyne D, Mückenhoff K, Scheid P. Chemosensitive medullary neurones in the brainstem--spinal cord preparation of the neonatal rat. J Physiol 1996; 492 ( Pt 1):277-92. [PMID: 8730602 PMCID: PMC1158880 DOI: 10.1113/jphysiol.1996.sp021308] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. Using the isolated medulla and spinal cord of the neonatal rat, the response to CO2-induced changes in superfusate pH was examined in whole cell and perforated patch recordings from ventral medullary neurones which were identified by injection of Lucifer Yellow. The respiratory response to changing the CO2 concentration (from 2 to 8%) consisted of an increase in phrenic burst frequency, which could be accompanied by an increase, decrease or no change in burst amplitude. 2. Five classes of neurone - inspiratory, post-inspiratory, expiratory, respiration-modulated and ionic - were distinguished on the basis of their membrane potential and discharge patterns. Almost all (112 of 123) responded rapidly to 8% CO2 with a sustained change in membrane potential. Depolarizing responses (3-18 mV) occurred in inspiratory, respiration-modulated and 45% of tonic neurones. Hyperpolarizing responses (2-19 mV) occurred in expiratory and post-inspiratory neurones. The remaining tonic neurones were inhibited or showed no response. 3. In representatives of each class of neurone, membrane potential responses to 8% CO2 were retained when tested in the presence of tetrodotoxin (n = 7), low (0.2 mM) Ca(2+)-high (5 mM) Mg2+ (n = 23) or Cd2+ (0.2 mM) (n = 3)-containing superfusate, implying that they are mediated by intrinsic membrane or cellular mechanisms. 4. Neurones were distributed between 1200 microns rostral and 400 microns caudal to obex, and their cell bodies were located between 50 and 700 microns below the ventral surface (n = 104). Almost all responsive neurones (n = 78) showed dendritic projections to within 50 microns of the surface. 6. These experiments indicate that significant numbers of ventral medullary neurones, including respiratory neurones, are intrinsically chemosensitive. The consistency with which these neurones show surface dendritic projections suggests that this sensitivity may arise in part at this level.
Collapse
Affiliation(s)
- A Kawai
- Institut für Physiologie, Ruhr-Universtät Bochum, Germany
| | | | | | | |
Collapse
|
31
|
Baker RE, Ballantyne D, Bingmann D, Jones D, Widman G. Rhythm generation in organotypic medullary cultures of newborn rats. Int J Dev Neurosci 1995; 13:799-809. [PMID: 8770653 DOI: 10.1016/0736-5748(95)00081-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Organotypic transverse medullary slices (obex level) from six-day-old rats, cultured for two to four weeks in chemically defined medium contained rhythmically discharging neurones which were activated by CO2 and H+. The mechanisms underlying this rhythmicity and the spread of excitation and synaptic transmission within this organotypic tissue were examined by modifying the composition of the external solution. Our findings showed that (1) Exposure to tetrodotoxin (0.2 microM) or to high magnesium (6 mM) and low calcium (0.2 mM) concentrations abolished periodic activity. (2) Neither the blockade of GABAergic potentials with bicuculline methiodide (200 microM) and/or hydroxysaclofen (200 microM) nor the blockade of glycinergic potentials with strychnine hydrochloride (100 microM) abolished rhythmicity. (3) While atropine sulphate (5 microM) was ineffective in modulating periodic discharges nicotine (100 microM) - like CO2-shortened the intervals between the periodic events; hexamethonium (50-100 microM) reduced both periodic and aperiodic activity. (4) Exposure to the NMDA antagonist 2-aminophosphonovaleric acid (50 microM) suppressed periodic events only transiently. In the presence of 2-aminophosphonovaleric acid rhythmicity recovered. However, the AMPA-antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10-50 microM), abolished periodic activity reversibly within less than 5 min. When 6-cyano-7-nitroquinoxaline-2,3-dione and nicotine were administered simultaneously periodic events persisted for up to 10 min. These findings indicate that synaptic excitatory drive is a prerequisite for the generation of rhythmic discharges of medullary neurones in this preparation. This drive may activate voltage-dependent channels or it may facilitate endogenous cellular mechanisms which initiate oscillations of intracellular calcium concentration. To test the latter possibility (5) calcium antagonists were added to the bath saline. The organic calcium antagonists verapamil and flunarizine (50-100 microM each) and the inorganic calcium antagonists cobalt (2 mM) and magnesium (6 mM) suppressed periodic activity and abolished or weakened the chemosensitivity towards CO2/acidosis. (6) Dantrolene (10 microM). an inhibitor of intracellular calcium release decreased the periodicity, while thapsigargin (2 microM) which blocks endoplasmic Ca(2+)-ATPase, transiently accelerated the occurrence of periodic events. (7) Oscillations of intracellular free calcium concentrations in Fura-2 AM-loaded cells were weakened or abolished by cobalt (2 mM). The results of (5)-(7) indicate that transmembrane calcium fluxes as well as intracellular Ca(2+)-release and -clearance mechanisms are a prerequisite for intracellular free calcium oscillations which may be important in the generation of rhythmic discharges in medullary neurones.
Collapse
Affiliation(s)
- R E Baker
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Bingmann D, Baker RE, Ballantyne D, Jones D, Widman G. Suppression of rhythmic discharges of medullary neurones in organotypic cultures of new-born rats by calcium antagonists. Neurosci Lett 1995; 199:187-90. [PMID: 8577394 DOI: 10.1016/0304-3940(95)12047-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The contribution of transmembrane calcium flux to the generation of periodic bioelectric activity in cultured organotypic medullary tissue of 6 day old rats was determined by adding calcium antagonists (CA) to the recording saline and by lowering the calcium concentration of this saline. Organic CA flunarizine and verapamil (50-100 mumol/l) reversibly suppressed rhythmic discharge and diminished the CO2 response of medullary neurones within 30-60 min. Inorganic CA cobalt and magnesium exerted the same effects within a few minutes. After lowering the calcium concentration rhythmic activity became unstable, but recovered on exposure to increased CO2 concentration, the excitatory effect of which was strongly reduced. These findings point to a significant role for transmembrane calcium flux and intracellular calcium concentration in sustaining both periodic activity and the CO2 response of medullary neurones.
Collapse
Affiliation(s)
- D Bingmann
- Institut für Physiologie, Universitätsklinikum Essen, Germany.
| | | | | | | | | |
Collapse
|
33
|
König SA, Offner B, Czachurski J, Seller H. Changes in medullary extracellular pH, sympathetic and phrenic nerve activity during brainstem perfusion with CO2 enriched solutions. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1995; 51:67-75. [PMID: 7722217 DOI: 10.1016/0165-1838(95)80008-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Measurements are presented of sympathetic nerve activity (SNA), phrenic nerve activity (PNA), and local extracellular pH (ECF pH) within the rostral ventrolateral medulla (RVLM) in response to perfusions of the RVLM with CO2-enriched saline. Experiments were performed on cats anaesthetized with chloralose. The ventrolateral medullary surface was exposed, and a catheter was placed in the left vertebral artery from the axilla to allow perfusion of the RVLM. Baroreceptor and peripheral chemoreceptor denervations were performed by cutting the vagal, aortic and carotid sinus nerves. The activities of the renal and the phrenic nerve were recorded, in some experiments in parallel with the cardiac nerve. Recordings of the pH were done with ion-sensitive theta-microelectrodes. A linear relationship between the CO2 concentration of the perfusate and the evoked changes in ECF pH was found. The ECF pH did not change systematically in one or the other direction within depths between 1 and 3 mm below the surface of the medulla. The various patterns of interaction of ECF pH, SNA, and PNA are described in detail. Phrenic nerve response to perfusions was very variable; a more prolonged increase in amplitude of phasic discharges compared to the duration of changes in SNA and ECF pH was the most frequent finding, but non-phasic tonic activation and complete silence were also seen during perfusions. SNA could also deviate from ECF pH both with regard to its latency and to its time course in response to perfusions. Therefore, this study provides further evidence for deviations of cardiorespiratory adaptation from ECF pH, corroborating the notion that this parameter is not the decisive one for central chemoreception.
Collapse
Affiliation(s)
- S A König
- I. Physiologisches Institut, Universität Heidelberg, FRG
| | | | | | | |
Collapse
|
34
|
Abstract
Neurons in the ventrolateral medulla (VLM) are known to be involved in several cardiorespiratory reflexes and to provide tonic drive to sympathetic preganglionic neurons. Recent studies have suggested that VLM neurons modulate the respiratory responses to hypoxia and to hypercapnia. The purpose of the present study was to determine with electrophysiological techniques if the discharge of these neurons is altered by hypoxia and/or by hypercapnia both in vivo and in vitro. Extracellular single-unit activity of VLM neurons (n = 39) was recorded during inhalation of a hypoxic gas (10% O2) and during inhalation of a hypercapnic gas (5% CO2) in anesthetized, spontaneously breathing rats (n = 16). Hypoxia elicited an increase in the discharge frequency in 64% of the VLM neurons studied; hypercapnia stimulated 42% of the neurons. Fifty-two percent of the neurons were stimulated by both hypoxia and hypercapnia. Signal averaging revealed that 76% of the hypoxia-stimulated neurons had a resting discharge related to the cardiac and/or respiratory cycle. Similar percentages of VLM neurons (35/54) were stimulated by hypoxia in a second group of animals (n = 14) that were studied after sinoaortic denervation. A rat brain slice preparation was then used to determine if hypoxia exerts a direct effect upon neurons in the VLM. Perfusing a hypoxic gas over the surface of medullary slices evoked an increase in the discharge frequency in the majority (39/49) of VLM neurons studied; responses were graded in relation to the magnitude of the hypoxic stimulus. Similar responses to hypoxia were observed in VLM neurons studied during perfusion with a synaptic blockade medium. Retrograde labeling of VLM neurons with rhodamine tagged microspheres injected into the thoracic intermediolateral cell column demonstrated that the hypoxia sensitive neurons were located in a region of the VLM that projects to the thoracic spinal cord. These results demonstrate that neurons in the ventrolateral medulla are excited by a direct effect of hypoxia; these neurons may play a critical role in the cardiorespiratory responses to hypoxia.
Collapse
Affiliation(s)
- P C Nolan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois, Urbana 61801
| | | |
Collapse
|
35
|
Abstract
Results from previous studies have suggested that the hypothalamus modulates cardiorespiratory responses to hypoxia and/or hypercapnia. Many neurons in the caudal hypothalamus are stimulated by hypercapnia and hypoxia in vivo; however, it is not known if these responses are dependent upon input from other areas. Whole-cell patch and extracellular recordings from a brain slice preparation were used in the present study to determine the direct effects of hypoxia (5% CO2/95% N2 or 10% O2/5% CO2/85% N2) and hypercapnia (7% CO2/93% O2) on caudal hypothalamic neurons in vitro. Coronal sections (400-500 microns) were obtained from young Sprague-Dawley rats and placed in a recording chamber that was perfused with nutrient media equilibrated with 95% O2/5% CO2. Extracellular recordings demonstrated that hypoxia stimulated over 80% of the neurons tested; the magnitude of the response was dependent upon the degree of hypoxia. In addition, over 80% of cells that were excited by hypoxia retained this response during synaptic blockade. Hypercapnia increased the discharge frequency of 22% of the caudal hypothalamic neurons that were studied. A second set of caudal hypothalamic neurons were studied with whole-cell patch recordings; the mean resting membrane potential of these neurons was -51.8 +/- 1.0 mV with an average input resistance of 399 +/- 49 M omega. Hypoxia produced a depolarization in 76% of these neurons; a poststimulus hyperpolarization often occurred. A depolarization and/or increase in discharge rate during hypercapnia was observed in 35% of the neurons tested. Only 10% of all neurons studied were excited by both hypoxia and hypercapnia. These findings suggest that separate subpopulations of caudal hypothalamic neurons are sensitive to hypoxia and hypercapnia. Thus, this hypothalamic area may be a site of central hypoxic and hypercapnic chemoreception.
Collapse
Affiliation(s)
- G H Dillon
- Department of Physiology and Biophysics, University of Illinois, Urbana 61801
| | | |
Collapse
|