1
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
2
|
Vascular endothelial cells mediate mechanical stimulation-induced enhancement of endothelin hyperalgesia via activation of P2X2/3 receptors on nociceptors. J Neurosci 2013; 33:2849-59. [PMID: 23407944 DOI: 10.1523/jneurosci.3229-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endothelin-1 (ET-1) is unique among a broad range of hyperalgesic agents in that it induces hyperalgesia in rats that is markedly enhanced by repeated mechanical stimulation at the site of administration. Antagonists to the ET-1 receptors, ET(A) and ET(B), attenuated both initial as well as stimulation-induced enhancement of hyperalgesia (SIEH) by endothelin. However, administering antisense oligodeoxynucleotide to attenuate ET(A) receptor expression on nociceptors attenuated ET-1 hyperalgesia but had no effect on SIEH, suggesting that this is mediated via a non-neuronal cell. Because vascular endothelial cells are both stretch sensitive and express ET(A) and ET(B) receptors, we tested the hypothesis that SIEH is dependent on endothelial cells by impairing vascular endothelial function with octoxynol-9 administration; this procedure eliminated SIEH without attenuating ET-1 hyperalgesia. A role for protein kinase Cε (PKCε), a second messenger implicated in the induction and maintenance of chronic pain, was explored. Intrathecal antisense for PKCε did not inhibit either ET-1 hyperalgesia or SIEH, suggesting no role for neuronal PKCε; however, administration of a PKCε inhibitor at the site of testing selectively attenuated SIEH. Compatible with endothelial cells releasing ATP in response to mechanical stimulation, P2X(2/3) receptor antagonists eliminated SIEH. The endothelium also appears to contribute to hyperalgesia in two ergonomic pain models (eccentric exercise and hindlimb vibration) and in a model of endometriosis. We propose that SIEH is produced by an effect of ET-1 on vascular endothelial cells, sensitizing its release of ATP in response to mechanical stimulation; ATP in turn acts at the nociceptor P2X(2/3) receptor.
Collapse
|
3
|
Puri J, Vinothini P, Reuben J, Bellinger LL, Ailing L, Peng YB, Kramer PR. Reduced GABA(A) receptor α6 expression in the trigeminal ganglion alters inflammatory TMJ hypersensitivity. Neuroscience 2012; 213:179-90. [PMID: 22521829 DOI: 10.1016/j.neuroscience.2012.03.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022]
Abstract
Trigeminal ganglia neurons express the GABA(A) receptor subunit alpha 6 (Gabrα6) but the role of this particular subunit in orofacial hypersensitivity is unknown. In this report the function of Gabrα6 was tested by reducing its expression in the trigeminal ganglia and measuring the effect of this reduction on inflammatory temporomandibular joint (TMJ) hypersensitivity. Gabrα6 expression was reduced by infusing the trigeminal ganglia of male Sprague Dawley rats with small interfering RNA (siRNA) having homology to either the Gabrα6 gene (Gabrα6 siRNA) or no known gene (control siRNA). Sixty hours after siRNA infusion the rats received a bilateral TMJ injection of complete Freund's adjuvant to induce an inflammatory response. Hypersensitivity was then quantitated by measuring meal duration, which lengthens when hypersensitivity increases. Neuronal activity in the trigeminal ganglia was also measured by quantitating the amount of phosphorylated ERK. Rats in a different group that did not have TMJ inflammation had an electrode placed in the spinal cord at the level of C1 sixty hours after siRNA infusion to record extracellular electrical activity of neurons that responded to TMJ stimulation. Our results show that Gabrα6 was expressed in both neurons and satellite glia of the trigeminal ganglia and that Gabrα6 positive neurons within the trigeminal ganglia have afferents in the TMJ. Gabrα6 siRNA infusion reduced Gabrα6 gene expression by 30% and significantly lengthened meal duration in rats with TMJ inflammation. Gabrα6 siRNA infusion also significantly increased p-ERK expression in the trigeminal ganglia of rats with TMJ inflammation and increased electrical activity in the spinal cord of rats without TMJ inflammation. These results suggest that maintaining Gabrα6 expression was necessary to inhibit primary sensory afferents in the trigeminal pathway and reduce inflammatory orofacial nociception.
Collapse
Affiliation(s)
- J Puri
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Leis S, Meyer N, Bickel A, Schick CH, Krüger S, Schmelz M, Birklein F. Thoracoscopic Sympathectomy at the T2 or T3 Level Facilitates Bradykinin-Induced Protein Extravasation in Human Forearm Skin. PAIN MEDICINE 2010; 11:774-80. [DOI: 10.1111/j.1526-4637.2010.00820.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Moriyama K, Liu J, Jang Y, Chae YJ, Wang Y, Mitchell J, Grond S, Han X, Xing Y, Xie GX, Pierce Palmer P. Receptor mediation and nociceptin inhibition of bradykinin-induced plasma extravasation in the knee joint of the rat. Inflamm Res 2009; 58:873-80. [PMID: 19544046 PMCID: PMC2773362 DOI: 10.1007/s00011-009-0058-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 04/14/2009] [Accepted: 05/26/2009] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE AND DESIGN The aim was to investigate the signaling mechanisms and regulation of bradykinin (BK)-induced inflammation in rat knee joint. MATERIALS AND METHODS Knee joints of anesthetized rats were perfused with BK (0.1-1.0 microM), and synovial plasma extravasation (PE) was evaluated by spectrophotometrical measurement of Evans Blue leakage. To examine the signaling pathway, B1 antagonist [des-Arg10]-HOE140 (0.1-1.0 microM) and B2 antagonist HOE140 (0.05-1.0 microM), calcitonin gene-related peptide (CGRP) antagonist CGRP8-37 (0.5-1.0 microM), prostaglandin E2 antagonist AH-6809 (0.1-1.0 microM), and histamine H1 antagonist mepyramine (0.1-1.0 microM) were used. Nociceptin (0.0001-1.0 microM) and antagonist J-113397 were tested for modulation of BK-induced PE. The analyses were compared side-by-side with 5-hydroxytryptamine-induced PE. RESULTS BK perfusion dose-dependently induced PE, which was blocked by HOE140, CGRP8-37, AH-6809, and mepyramine. It was also inhibited by nociceptin, which could be reversed by antagonist J-113397. In contrast, 5-hydroxytryptamine-induced PE was biphasically regulated by nociceptin and was not antagonized by CGRP8-37. CONCLUSIONS BK-induced PE is mediated by B2 receptors and may involve CGRP, prostaglandin, and histamine pathways. BK-induced PE is inhibited by nociceptin through the activation of ORL1 receptors. There are differences between BK- and 5-hydroxytryptamine-induced inflammation in signaling and modulation.
Collapse
Affiliation(s)
- Kumi Moriyama
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 94143, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tashiro A, Okamoto K, Bereiter DA. Chronic inflammation and estradiol interact through MAPK activation to affect TMJ nociceptive processing by trigeminal caudalis neurons. Neuroscience 2009; 164:1813-20. [PMID: 19786077 DOI: 10.1016/j.neuroscience.2009.09.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/21/2009] [Accepted: 09/22/2009] [Indexed: 12/21/2022]
Abstract
The mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway plays a key role in mediating estrogen actions in the brain and neuronal sensitization during inflammation. Estrogen status is a risk factor in chronic temporomandibular muscle/joint (TMJ) disorders; however, the basis for this relationship is not known. The present study tested the hypothesis that estrogen status acts through the MAPK/ERK signaling pathway to alter TMJ nociceptive processing. Single TMJ-responsive neurons were recorded in laminae I-II at the spinomedullary (Vc/C(1-2)) junction in naïve ovariectomized (OvX) female rats treated for 2 days with high-dose (20 microg/day; HE2) or low-dose estradiol (2 microg/day; LE2) and after chronic inflammation of the TMJ region by complete Freund's adjuvant for 12-14 days. Intra-TMJ injection of ATP (1 mM) was used to activate Vc/C(1-2) neurons. The MAPK/ERK inhibitor (PD98059, 0.01-1 mM) was applied topically to the dorsal Vc/C(1-2) surface at the site of recording 10 min prior to each ATP stimulus. In naïve HE2 rats, low-dose PD98059 caused a maximal inhibition of ATP-evoked activity, whereas even high doses had only minor effects on units in LE2 rats. By contrast, after chronic TMJ inflammation, PD98059 produced a marked and similar dose-related inhibition of ATP-evoked activity in HE2 and LE2 rats. These results suggested that E2 status and chronic inflammation acted, at least in part, through a common MAPK/ERK-dependent signaling pathway to enhance TMJ nociceptive processing by laminae I-II neurons at the spinomedullary junction region.
Collapse
Affiliation(s)
- A Tashiro
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, 18214 Moos Tower, Minneapolis, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
7
|
Tashiro A, Okamoto K, Bereiter DA. Morphine modulation of temporomandibular joint-responsive units in superficial laminae at the spinomedullary junction in female rats depends on estrogen status. Eur J Neurosci 2009; 28:2065-74. [PMID: 19046387 DOI: 10.1111/j.1460-9568.2008.06488.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The influence of analgesic agents on neurons activated by stimulation of the temporomandibular joint (TMJ) region is not well defined. The spinomedullary junction [trigeminal subnucleus caudalis (Vc)/C(1-2)] is a major site of termination for TMJ sensory afferents. To determine whether estrogen status influences opioid-induced modulation of TMJ units, the classical opioid analgesic, morphine, was given to ovariectomized (OvX) rats and OvX rats treated for 2 days with low-dose (LE2) or high-dose (HE2) 17beta-estradiol-3-benzoate. Under thiopental anesthesia, TMJ units in superficial and deep laminae at the Vc/C(1-2) junction were activated by injection of ATP (1 mm) directly into the joint space. In superficial laminae, morphine inhibited evoked activity in units from OvX and LE2 rats in a dose-related and naloxone-reversible manner, whereas units from HE2 rats were not inhibited. By contrast, in deep laminae, morphine reduced TMJ-evoked unit activity similarly in all groups. Morphine reduced the background activity of units in superficial and deep laminae and resting arterial pressure similarly in all groups. Morphine applied to the dorsal surface of the Vc/C(1-2) junction inhibited all units independently of E2 treatment. Quantitative polymerase chain reaction and immunoblots revealed a similar level of expression for mu-opioid receptors at the Vc/C(1-2) junction in LE2 and HE2 rats. These results indicated that estrogen status differentially affected morphine modulation of TMJ unit activity in superficial, but not deep, laminae at the Vc/C(1-2) junction in female rats. The site(s) for estrogen influence on morphine-induced modulation of TMJ unit activity was probably outside the medullary dorsal horn.
Collapse
Affiliation(s)
- A Tashiro
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
8
|
Donaldson LF. Neurogenic Mechanisms in Arthritis. NEUROGENIC INFLAMMATION IN HEALTH AND DISEASE 2009. [DOI: 10.1016/s1567-7443(08)10410-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
10
|
Kim HW, Kang SY, Yoon SY, Roh DH, Kwon YB, Han HJ, Lee HJ, Beitz AJ, Lee JH. Low-frequency electroacupuncture suppresses zymosan-induced peripheral inflammation via activation of sympathetic post-ganglionic neurons. Brain Res 2007; 1148:69-75. [PMID: 17367766 DOI: 10.1016/j.brainres.2007.02.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/09/2007] [Accepted: 02/13/2007] [Indexed: 01/01/2023]
Abstract
Electroacupuncture (EA) is used to treat a variety of inflammatory diseases; however, the neurophysiological mechanisms underlying EA's anti-inflammatory effect remain unclear. Accumulating evidence suggests that the sympathetic nervous system regulates immunologic and inflammatory responses and thus we hypothesized that this system could be involved in EA's anti-inflammatory effect (EA-AI). The goal of the present study was to evaluate whether the sympathetic nervous system plays a critical role in EA-AI using a mouse air pouch inflammation model. We found that bilateral low-frequency (1 Hz) EA applied to the Zusanli acupoint significantly suppressed the number of zymosan-induced leukocytes migrating into the air pouch. Furthermore, double-labeling immunohistochemical experiments showed that EA stimulation increased Fos expression in choline acetyltransferase (ChAT)-positive sympathetic pre-ganglionic neurons in the intermediolateral region of thoracic spinal cord segments. Chemical sympathetic denervation by intraperitoneal injection of 6-hydroxydopamine (which spares sympathetic adrenal medullary innervation) significantly inhibited EA-AI. In contrast, adrenalectomy did not alter EA-AI. Finally, systemic propranolol administration significantly inhibited EA's anti-inflammatory effect, suggesting that beta-adrenoceptors are involved. Collectively, these results suggest that EA produces an anti-inflammatory effect in this mouse air pouch model by activating the sympathetic nervous system leading to the release of catecholamines from post-ganglionic nerve terminals, which act on beta-adrenoceptors on immune cells to inhibit their migration.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Veterinary Physiology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tanaka N, Nejime N, Kagota S, Kubota Y, Yudo K, Nakamura K, Kunitomo M, Takahashi K, Hashimoto M, Shinozuka K. ATP participates in the regulation of microvessel permeability. J Pharm Pharmacol 2006; 58:481-7. [PMID: 16597365 DOI: 10.1211/jpp.58.4.0007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We demonstrated previously that stimulation of the P2Y receptor enhanced the macromolecular permeability of cultured endothelial cell monolayers via the paracellular pathway. To determine whether the P2Y receptor participates in the regulation of permeability in intact microvessels, we have examined the effects of exogenous and endogenous ATP on the permeation of the surface tissue of perfused rat tail caudal artery using a fluorescein isothiocyanate-dextran (FD-4; MW 4400; 1.0 mg mL(-1)). The permeation of FD-4 was assessed by a confocal fluorescence imaging system. We found that 2-methylthioadenosine 5'-triphosphate, a P2Y receptor agonist, enhanced the fluorescence intensity of FD-4 in the surface of the rat caudal artery tissue and that it was inhibited by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist. Also, noradrenaline, a sympathetic neurotransmitter, and bradykinin, an inflammatory autacoid, enhanced the fluorescence intensity of FD-4 in the surface tissue of the rat caudal artery. The enhancement by noradrenaline was significantly inhibited by the P2 receptor antagonist. In addition, noradrenaline and bradykinin caused the release of ATP, ADP, AMP and adenosine from the endothelium of the rat caudal artery. These results indicated that the exogenous and endogenous ATP increased the macromolecular permeability of blood capillaries via the P2Y receptor. Such purinergic regulation of endothelial permeability may function in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Naoko Tanaka
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pietruck C, Grond S, Xie GX, Palmer PP. Local anesthetics differentially inhibit sympathetic neuron-mediated and C fiber-mediated synovial neurogenic plasma extravasation. Anesth Analg 2003; 96:1397-1402. [PMID: 12707141 DOI: 10.1213/01.ane.0000060454.34258.d3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Local anesthetics are used for local irrigation after many types of operations. However, recent evidence of toxic effects of local anesthetics at large concentrations during continuous administration suggests an advantage of using decreased local anesthetic concentrations for irrigation solutions. In this study, we determined whether smaller concentrations of local anesthetics may maintain an antiinflammatory and, therefore, analgesic effect without the risk of possible toxicity. Lidocaine and bupivacaine were studied for their ability to inhibit both components of neurogenic inflammation-C fiber-mediated and sympathetic postganglionic neuron (SPGN)-mediated inflammation-in the rat knee joint. Intraarticular lidocaine 0.02% reduced 5-hydroxytryptamine (5-HT)-induced (SPGN-mediated) plasma extravasation (PE) by 35%, and further decreases were obtained by perfusing larger concentrations of lidocaine. Intraarticular bupivacaine 0.025% inhibited 5-HT-induced PE by 60%, and a 95% inhibition was obtained with bupivacaine 0.05%. Larger local anesthetic concentrations were necessary to inhibit C fiber-mediated PE than those required to inhibit SPGN-mediated PE. Lidocaine 0.4% was required to reduce mustard oil-induced PE by 60%. Lidocaine 2% inhibited mustard oil-induced PE to baseline levels. Bupivacaine 0.1% was required for an 80% reduction of PE. Bupivacaine 0.25% inhibited mustard oil-induced PE to baseline levels. Our results demonstrate differential effects of local anesthetics on SPGN- and C fiber-mediated PE but confirm the concept of using smaller concentrations of local anesthetics to achieve inhibition of postoperative inflammation. IMPLICATIONS Local anesthetic wound irrigation is often used to treat postoperative surgical pain. Large concentrations of local anesthetics are usually used, and these concentrations may have possible neurotoxic and myotoxic effects. Our results demonstrate antiinflammatory effects of lidocaine and bupivacaine at concentrations smaller than used clinically.
Collapse
Affiliation(s)
- Christian Pietruck
- Department of Anesthesia and Perioperative Care, University of California-San Francisco, San Francisco, California
| | | | | | | |
Collapse
|
13
|
Abstract
The subject of neuroinflammation is reviewed. In response to psychological stress or certain physical stressors, an inflammatory process may occur by release of neuropeptides, especially Substance P (SP), or other inflammatory mediators, from sensory nerves and the activation of mast cells or other inflammatory cells. Central neuropeptides, particularly corticosteroid releasing factor (CRF), and perhaps SP as well, initiate a systemic stress response by activation of neuroendocrinological pathways such as the sympathetic nervous system, hypothalamic pituitary axis, and the renin angiotensin system, with the release of the stress hormones (i.e., catecholamines, corticosteroids, growth hormone, glucagons, and renin). These, together with cytokines induced by stress, initiate the acute phase response (APR) and the induction of acute phase proteins, essential mediators of inflammation. Central nervous system norepinephrine may also induce the APR perhaps by macrophage activation and cytokine release. The increase in lipids with stress may also be a factor in macrophage activation, as may lipopolysaccharide which, I postulate, induces cytokines from hepatic Kupffer cells, subsequent to an enhanced absorption from the gastrointestinal tract during psychologic stress. The brain may initiate or inhibit the inflammatory process. The inflammatory response is contained within the psychological stress response which evolved later. Moreover, the same neuropeptides (i.e., CRF and possibly SP as well) mediate both stress and inflammation. Cytokines evoked by either a stress or inflammatory response may utilize similar somatosensory pathways to signal the brain. Other instances whereby stress may induce inflammatory changes are reviewed. I postulate that repeated episodes of acute or chronic psychogenic stress may produce chronic inflammatory changes which may result in atherosclerosis in the arteries or chronic inflammatory changes in other organs as well.
Collapse
Affiliation(s)
- Paul H Black
- Department of Microbiology, Boston University School of Medicine, 715 Albany St., Room L-504, Boston, MA 02118, USA.
| |
Collapse
|
14
|
Green PG, Dahlqvist SR, Isenberg WM, Miao FJ, Levine JD. Role of adrenal medulla in development of sexual dimorphism in inflammation. Eur J Neurosci 2001; 14:1436-44. [PMID: 11722605 DOI: 10.1046/j.0953-816x.2001.01768.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many inflammatory diseases show a female predilection in adults, but not prepubertally. Because sex differences in the inflammatory response in the adult rat are mediated, in part, by sexual dimorphism in adrenal medullary function, we investigated the contribution of the adrenal medulla to the ontogeny of sexual dimorphism in inflammation. Whilst there was no sex difference in the magnitude of the plasma extravasation (PE) induced by the potent inflammatory mediator bradykinin (BK) in prepubertal rats, in adult rats BK-induced PE was markedly greater in males. Also, adult male rats, gonadectomized prior to puberty, had a lower magnitude of BK-induced PE than did adult male controls, whilst adult females gonadectomized prepubertally had higher BK-induced PE than did controls. In rats gonadectomized after puberty, the magnitude of BK-induced PE in adult males was not affected, whilst in females it resulted in significantly higher BK-induced PE, similar to the effect of prepubertal gonadectomy. When tested prepubertally, adrenal denervation increased the magnitude of BK-induced PE in females, but not in males. In contrast, in both males and females tested as adults, but castrated prepubertally, and in gonad-intact adult females, adrenal denervation significantly increased the magnitude of BK-induced PE. Adrenal denervation in prepubertal females given adult levels of 17beta-oestradiol produced a marked enhancement in the denervation-induced increase in magnitude of BK-induced PE compared to females not exposed prematurely to sex hormones. These studies suggest that an adrenal medulla-dependent inhibition of BK-induced PE is present in female but not male rats, and is enhanced by oestrogen but suppressed by testosterone.
Collapse
Affiliation(s)
- P G Green
- Department of Oral and Maxillofacial Surgery, Obstetrics Gynecology and Reproductive Sciences and Medicine, University of California San Francisco, San Francisco, California 94143-0440, USA.
| | | | | | | | | |
Collapse
|
15
|
Wong JK, Haas DA, Hu JW. Local anesthesia does not block mustard-oil-induced temporomandibular inflammation. Anesth Analg 2001; 92:1035-40. [PMID: 11273946 DOI: 10.1097/00000539-200104000-00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Temporomandibular joint (TMJ) disorders and rheumatoid arthritis are two conditions in which neurogenic mechanisms may play a critical role. We investigated the neurogenic contribution underlying acute TMJ inflammation by evaluating effects of local anesthetic blockade of afferent innervation on the development of mustard oil (MO)-induced edema in the rat TMJ area. Groups of eight adult male Sprague-Dawley rats were anesthetized by intraperitoneal alpha-chloralose and urethane. A saline injection into the right TMJ followed by MO (1% to 60%) 6 min later elicited dose-dependent edema development (P < 0.05, repeated measures analysis of variance). Lidocaine (5%) or bupivacaine (0.5%) followed by MO (1% or 40%) did not produce edema development different from saline controls (P > 0.05, repeated measures analysis of variance). The failure of local anesthetic blockade to prevent MO-induced edema is not consistent with MO acting through a neurogenic mechanism, as traditionally perceived. IMPLICATIONS Inflammation found in temporomandibular disorders and rheumatoid arthritis may result from mediators released by pain-sensing neurons. Local anesthesia failed to block simulated neurogenic temporomandibular inflammation in a rat model, suggesting that functional neuronal input may not be necessary for the promotion of inflammation.
Collapse
Affiliation(s)
- J K Wong
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
16
|
Grond S, Gabriel A, Pietruck C, Yu LC, Xie GX, Pierce Palmer P. Bi-directional modulation of 5-hydroxytryptamine-induced plasma extravasation in the rat knee joint by nociceptin. Neuroscience 2001; 103:1085-92. [PMID: 11301215 DOI: 10.1016/s0306-4522(01)00040-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of nociceptin, the endogenous ligand for the opioid receptor-like (ORL1) receptor, in nociceptive processing is controversial. Most studies demonstrate hyperalgesia following supraspinal administration, analgesia following intrathecal and peripheral administration at higher doses, and hyperalgesia following intrathecal and peripheral application at lower doses. The present study investigates the effect of nociceptin on synovial plasma extravasation and its ability to modulate 5-hydroxytryptamine-induced synovial plasma extravasation using the rat knee joint model of inflammation. Nociceptin alone does not alter synovial plasma extravasation from baseline. Nociceptin at concentrations up to 1 nM enhances 5-hydroxytryptamine-induced synovial plasma extravasation (up to 50%) and nociceptin at concentrations above 100 nM inhibits 5-hydroxytryptamine-induced synovial plasma extravasation (down to 45%). The novel, selective ORL1 receptor antagonist J-113397 potently inhibits the pro-inflammatory effect of nociceptin, but only partly inhibits, at higher concentrations, the anti-inflammatory effects of nociceptin.These findings demonstrate a dose-dependent bi-directional effect of nociceptin on inflammatory processes and may indicate a target for novel therapeutics.
Collapse
Affiliation(s)
- S Grond
- Department of Anesthesia and Perioperative Medicine, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0464, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sex steroid regulation of the inflammatory response: sympathoadrenal dependence in the female rat. J Neurosci 1999. [PMID: 10234036 DOI: 10.1523/jneurosci.19-10-04082.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To investigate the role of sex steroids in sex differences in the response of rats to the potent inflammatory mediator bradykinin (BK), we evaluated the effect of sex steroid manipulation on the magnitude of BK-induced synovial plasma extravasation (PE). The magnitude of BK-induced PE is markedly less in females. Ovariectomy of female rats increased BK-induced PE, and administration of 17beta-estradiol to ovariectomized female rats reconstituted the female phenotype. Castration in male rats decreased BK-induced PE, and administration of testosterone or its nonmetabolizable analog dihydrotestosterone reconstituted the male phenotype. The results of these experiments strongly support the role of both male and female sex steroids in sex differences in the inflammatory response. Because the stress axes are sexually dimorphic and are important in the regulation of the inflammatory response, we evaluated the contribution of the hypothalamic-pituitary-adrenal and the sympathoadrenal axes to sex differences in BK-induced PE. Neither hypophysectomy nor inhibition of corticosteroid synthesis affected BK-induced PE in female or male rats. Adrenal denervation in females produced the same magnitude increase in BK-induced PE as adrenalectomy or ovariectomy, suggesting that the adrenal medullary factor(s) in females may account for the female sex steroid effect on BK-induced PE. Furthermore, we have demonstrated that in female but not male rats, estrogen receptor alpha immunoreactivity is present on medullary but not cortical cells in the adrenal gland. These data suggest that regulation of the inflammatory response by female sex steroids is strongly dependent on the sympathoadrenal axis, possibly by its action on estrogen receptors on adrenal medullary cells.
Collapse
|
18
|
Abstract
Retrograde tracing with Fluoro-Gold (FG) was used to identify the complete population of knee joint sympathetic postganglionic efferents in the lumbar sympathetic chain of adult female Wistar rats. In 6 rats, the total number and distribution of FG-labelled neurons in the lumbar sympathetic chain was determined. The rat knee joint is supplied by an average of 187+/-57 sympathetic afferents with the majority at the L3 and L4 levels. Immunohistochemistry using antibodies specific for tyrosine hydroxylase (TH), somatostatin (SS) or vasoactive intestinal polypeptide (VIP) revealed that 33 % of knee joint sympathetic afferents contained TH, 42 % contained VIP, and none contained somatostatin. Retrograde tracing with FG provided accurate and reproducible labelling of the joint-innervating subpopulation of sympathetic efferent neurons. This model lends itself to the further study of the molecular responses of this neuronal population in the various disorders and conditions affecting joints.
Collapse
Affiliation(s)
- MEL G.
CATRE
- Department of Surgery, University of Toronto, Canada
| | - PAUL T.
SALO
- McCaig Centre for Joint Injury and Arthritis Research, Department of Surgery, University of Calgary, Canada
- Correspondence to Dr P. T. Salo, Heritage Medical Research Building, 3330 Hospital Drive N. W., Calgary, Alberta T2N 4N1, Canada. Fax: +001 403 270-0617; e-mail:
| |
Collapse
|
19
|
Abbracchio MP, Burnstock G. Purinergic signalling: pathophysiological roles. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 78:113-45. [PMID: 9829617 DOI: 10.1254/jjp.78.113] [Citation(s) in RCA: 321] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review, after a summary of the history and current status of the receptors involved in purinergic signalling, we focus on the distribution and physiological roles of purines and pyrimidines in both short-term events such as neurotransmission, exocrine and endocrine secretion and regulation of immune cell function, and long-term events such as cell growth, differentiation and proliferation in development and regeneration. Finally, the protective roles of nucleosides and nucleotides in events such as cancer, ischemia, wound healing, drug toxicity, inflammation and pain are explored and some suggestions made for future developments in this rapidly expanding field, with particular emphasis on the involvement of selective agonists and antagonists for purinergic receptor subtypes in therapeutic strategies.
Collapse
Affiliation(s)
- M P Abbracchio
- Institute of Pharmacological Sciences, University of Milan, Italy
| | | |
Collapse
|
20
|
Abstract
The nervous system and peripheral tissues in mammals contain a large number of biologically active peptides and proteases that function as neurotransmitters or neuromodulators in the nervous system, as hormones or cellular mediators in peripheral tissue, and play a role in human neurological diseases. The existence and possible functional relevance of bradykinin and kallidin (the peptides), kallikreins (the proteolytic enzymes), and kininases (the peptidases) in neurophysiology and neuropathological states are discussed in this review. Tissue kallikrein, the major cellular kinin-generating enzyme, has been localised in various areas of the mammalian brain. Functionally, it may assist also in the normal turnover of brain proteins and the processing of peptide-hormones, neurotransmitters, and some of the nerve growth factors that are essential for normal neuronal function and synaptic transmission. A specific class of kininases, peptidases responsible for the rapid degradation of kinins, is considered to be identical to enkephalinase A. Additionally, kinins are known to mediate inflammation, a cardinal feature of which is pain, and the clearest evidence for a primary neuronal role exists so far in the activation by kinins of peripherally located nociceptive receptors on C-fibre terminals that transmit and modulate pain perception. Kinins are also important in vascular homeostasis, the release of excitatory amino acid neurotransmitters, and the modulation of cerebral cellular immunity. The two kinin receptors, B2 and B1, that modulate the cellular actions of kinins have been demonstrated in animal neural tissue, neural cells in culture, and various areas of the human brain. Their localisation in glial tissue and neural centres, important in the regulation of cardiovascular homeostasis and nociception, suggests that the kinin system may play a functional role in the nervous system.
Collapse
Affiliation(s)
- D M Raidoo
- Department of Physiology, Faculty of Medicine, University of Natal, Durban, South Africa
| | | |
Collapse
|
21
|
Misiewicz B, Poltorak M, Raybourne RB, Gomez M, Listwak S, Sternberg EM. Intracerebroventricular transplantation of embryonic neuronal tissue from inflammatory resistant into inflammatory susceptible rats suppresses specific components of inflammation. Exp Neurol 1997; 146:305-14. [PMID: 9270039 DOI: 10.1006/exnr.1997.6446] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To more directly define the role of central nervous system factors in susceptibility to peripheral inflammatory disease, we examined the effect of intracerebroventricular transplantation of neuronal tissue from inflammatory resistant into inflammatory susceptible rats on subcutaneous carrageenan-induced inflammation (a measure of innate immunity), and on the relative percentage of naive and memory T helper cells in peripheral blood (a measure of the anamnestic immune response). Female inflammatory disease susceptible Lewis (LEW/N) rats transplanted with hypothalamic tissue from inflammatory resistant Fischer (F344/N) rats exhibited > 85% decrease in carrageenan inflammation compared to naive LEW/N rats, LEW/N rats transplanted with F344/N spinal cord, or sham-operated animals. LEW/N rats transplanted with LEW/N hypothalamic tissue exhibited > 50% decrease in carrageenan inflammation. In contrast, intracerebroventricular transplantation of neuronal tissue did not affect the characteristically twofold higher percentage of naive versus memory T helper cells in LEW/N rats, suggesting that the central nervous system (CNS) and hypothalamus play a greater role in the innate inflammatory response than in the acquired immune processes. Grafted tissue survived well and did not show extensive gliosis or inflammation. Compared to naive LEW/N rats, LEW/N rats transplanted with F344/N or LEW/N hypothalamic tissue expressed significantly greater hypothalamic corticotropin releasing hormone mRNA. LEW/N rats transplanted with F344/N hypothalamic tissue also showed significant increases in plasma corticosterone responses to lipopolysaccharide. These data indicate that intracerebroventricular transplantation of fetal hypothalamic tissue from inflammatory resistant into inflammatory susceptible rats suppresses peripheral inflammation partially through hypothalamic factors. These findings have implications for understanding the contribution of specific neuronal tissue in regulation of components of the immune/inflammatory response and in susceptibility to inflammatory disease. Furthermore, this model could be used in the development of potential new treatments for inflammatory/autoimmune diseases aimed specifically at sites within the CNS.
Collapse
Affiliation(s)
- B Misiewicz
- Clinical Neuroendocrinology Branch, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
22
|
Negative feedback neuroendocrine control of inflammatory response in the rat is dependent on the sympathetic postganglionic neuron. J Neurosci 1997. [PMID: 9157197 DOI: 10.1523/jneurosci.17-09-03234.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Negative feedback control of inflammation is mediated by activation of nociceptive afferents that in turn activates the hypothalamic-pituitary-adrenal axis to release corticosteroids. Plasma extravasation (PE) produced by the potent inflammatory mediator, bradykinin (BK), but not that induced by another potent inflammatory mediator, platelet-activating factor (PAF), is inhibited by released corticosterone. Because bradykinin, but not PAF, produces PE by a mechanism that is, in part, dependent on the sympathetic postganglionic neuron (SPGN) terminal, we tested the hypothesis that the negative feedback control of inflammation is dependent on the SPGN terminal in the inflamed tissue. In sympathectomized rats, the residual (i.e., SPGN-independent) PE in the knee joint produced by BK was not inhibited by noxious electrical stimulation. Furthermore, intravenous administration of corticosterone potently inhibited, with a similar time-course, the SPGN-dependent, but not the SPGN-independent, component of BK-induced PE. Neither electrical stimulation nor corticosterone inhibited PAF-induced PE. Finally, corticosterone's actions do not appear to be mediated by release of norepinephrine from the SPGN terminal, because neither the alpha-adrenergic receptor antagonist phentolamine nor the beta2-adrenergic receptor antagonist ICI 118, 551 antagonized the inhibition of BK-induced PE by corticosterone. We conclude that in the rat knee joint, negative feedback control of the inflammatory response is dependent on the presence of the SPGN terminal. Further, our data suggest that a significant component of corticosteroid-induced inhibition of PE produced by inflammatory mediators is SPGN-dependent.
Collapse
|
23
|
Miao FJ, Benowitz NL, Heller PH, Levine JD. Contribution of adrenal hormones to nicotine-induced inhibition of synovial plasma extravasation in the rat. Br J Pharmacol 1997; 120:298-304. [PMID: 9117123 PMCID: PMC1564364 DOI: 10.1038/sj.bjp.0700884] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. In this study, we examined the mechanism(s) by which s.c. nicotine inhibits synovial plasma extravasation. We found that nicotine dose-dependently inhibited bradykinin (BK)- and platelet activating factor (PAF)-induced plasma extravasation. 2. The effect of nicotine on both BK- and PAF-induced plasma extravasation was attenuated by adrenal medullectomy. ICI-118,551 (a selective beta 2-adrenoceptor blocker) (30 micrograms ml-1, intra-articularly) significantly attenuated the inhibitory action of high-dose (1 mg kg-1) nicotine on BK-induced plasma extravasation without affecting the inhibition by low- (0.01 microgram kg-1) dose nicotine or that on PAF-induced plasma extravasation by nicotine at any dose. This suggested that beta 2-adrenoceptors mediate the inhibitory actions of high-dose, but not low-dose, nicotine. We also found that systemic naloxone (an opioid receptor antagonist) (two hourly injections of 1 mg kg-1, i.p.) attenuated the inhibitory action produced by all doses of nicotine on BK- or PAF-induced plasma extravasation, suggesting the contribution of endogenous opioids. 3. RU-38,486 (a glucocorticoid receptor antagonist) (30 mg kg-1, s.c.), and metyrapone (a glucocorticoid synthesis inhibitor) (two hourly injections of 100 mg kg-1, i.p.) both attenuated the action of high-dose nicotine without affecting that of low-dose nicotine. 4. Spinal mecamylamine (a nicotinic receptor antagonist) (0.025 mg kg-1, intrathecally, i.t.) attenuated the action of high-dose, but not low-dose, nicotine, suggesting that part of the action of high-dose nicotine is mediated by spinal nicotinic receptors. 5. Combined treatment with ICI-118,551, naloxone and RU-38,486 attenuated the action of low-dose nicotine by an amount similar to that produced by naloxone alone but produced significantly greater attenuation of the effect of high-dose nicotine when compared to the action of any of the three antagonists alone.
Collapse
Affiliation(s)
- F J Miao
- Department of Medicine, University of California, San Francisco School of Medicine 94143-0452, USA
| | | | | | | |
Collapse
|
24
|
Cambridge H, Ajuebor MN, Brain SD. Investigation of 6-hydroxydopamine-induced plasma extravasation in rat skin. Eur J Pharmacol 1996; 301:151-7. [PMID: 8773459 DOI: 10.1016/0014-2999(96)00062-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Perfusion of 6-hydroxydopamine into the rat knee and trachea induces plasma extravasation, possibly by tissue-specific mechanisms involving sympathetic and sensory nerves respectively, and we aimed to identify the mediators which contribute to this response in skin. 6-Hydroxydopamine (both hydrobromide and hydrochloride salts), dose dependently increased plasma extravasation into rat dorsal skin, however, when compared to bradykinin or the tachykinin NK1 receptor agonist GR73632, high concentrations of 6-hydroxydopamine (1-10 mumol/site) were required. The response to 6-hydroxydopamine was not inhibited in chemically sympathectomised rats (6-hydroxydopamine, 300 mg/kg i.p. over 7 days) but was significantly reduced by co-administration with the histamine (H1) and the 5-HT receptor antagonists mepyramine and methysergide and in skin sites pre-injected with compound 48/80 (4 micrograms, -18 h) to degranulate dermal mast cells. The response was not inhibited by co-injection of the tachykinin NK1 receptor antagonist SRI40333 or by the cyclo-oxygenase inhibitor indomethacin (5 mg kg-1 i.p., -30 min) except at the lowest dose of 6-hydroxydopamine (1 mumol/site). We conclude that 6-hydroxydopamine is not a potent or selective mediator of increased vascular permeability in rat skin but, at high concentrations, may induce oedema formation via release of vasoactive amines from mast cells, augmented by generation of prostaglandins.
Collapse
Affiliation(s)
- H Cambridge
- Pharmacology Group, King's College, London, UK
| | | | | |
Collapse
|
25
|
Misiewicz B, Poltorak M, Gomez M, Glowa JR, Gold PW, Sternberg EM. Intracerebroventricularly Transplanted Embryonic Neuronal Tissue from Inflammatory-Resistant F344/N Rats Decreases Acoustic Startle Responses in Inflammatory-Susceptible Lew/N Rats. Cell Transplant 1996; 5:287-91. [PMID: 8689039 DOI: 10.1177/096368979600500217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, we have shown that intracerebral transplantation of fetal F344/N hypothalamic tissue into LEW/N rats converts the LEW/N inflammatory-susceptible phenotype into an inflammatory-resistant phenotype in LEW/N hosts. Because LEW/N rats also exhibit relatively high acoustic startle responses (ASRs) compared to F344/N rats, in the present study we examined the effects on ASR of transplantation of F344/N hypothalamic tissue into the third ventricle of LEW/N rats. Dissected neuronal tissue from F344/N rats (Day E15-16) was implanted into the third ventricle of LEW/N rats. After 4 wk of postoperative survival, the animals' responses to acoustic startle stimuli were tested. Compared to naive and sham-operated animals, LEW/N rats transplanted with hypothalamic tissue exhibited significant decreases in ASR amplitudes. A similar decrease in ASR amplitude was observed in the group of LEW/N rats transplanted with embryonic striatal tissue. Our results indicate that the third ventricular neuronal grafts may modulate behavioral responses in the LEW/N rats. Although the mechanism of this effect is unknown, these studies suggest that intracerebral neuronal transplantation is a viable method with which to explore mechanisms of behavioral, neuroendocrine, and inflammatory response associations.
Collapse
Affiliation(s)
- B Misiewicz
- Clinical Neuroendocrinology Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
1. We have investigated the mechanism of bradykinin (BK)-induced plasma extravasation into the knee joint of the anaesthetized rat. Accumulation of [125I]-human serum albumin within the synovial cavity was used as a marker of increased vascular permeability. 2. Perfusion with BK (1 microM) produced significant plasma extravasation into the knee which was inhibited by co-perfusion of the selective bradykinin B2 receptor antagonist D-Arg-[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin (Hoe 140, 200 nM). 3. The bradykinin B1 receptor agonist, [des-Arg9]-BK (up to 100 mM), did not induce plasma extravasation into the knee joint, over this time period. 4. Chemical sympathectomy by chronically administered 6-hydroxydopamine (6-OHDA) did not inhibit bradykinin-induced plasma extravasation. Acute intra-articular perfusion with 6-OHDA (to stimulate transmitter release from sympathetic nerve terminals) at concentrations up to 50 mM did not induce significant plasma extravasation. Intra-articular perfusion of 100 mM 6-OHDA induced significant plasma extravasation but produced severe systemic toxicity. 5. The selective neurokinin1 (NK1) receptor antagonist, RP67580 (230 nmol kg-1), or receptor antagonists for the mast cell products histamine and 5-hydroxytryptamine did not significantly inhibit BK-induced plasma extravasation. 6. Co-perfusion of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (1 mM) did not significantly inhibit the response to BK. 133Xe clearance from L-NAME (1 mM)-injected joints was significantly (P < 0.05) reduced compared to D-NAME injected joints, suggesting a reduction in blood flow as a result of decreased basal NO production. Systemic administration of L-NAME at doses sufficient to produce significant and sustained elevation of blood pressure (5 or 30 mg kg-1, i.v. 15 min prior to BK perfusion) also failed to significantly inhibit the BK-induced response.7 We conclude that, in normal joints, BK induces plasma extravasation by acting on bradykinin B2 receptors and that this response is not dependent on secondary release of mediators from sympathetic nerve terminals, sensory nerves, mast cells or on generation of NO.
Collapse
|
27
|
Abstract
The sympathetic nervous system serves not only to regulate involuntary functions, but also appears to play an important part in modulating sensory processing. While studies in animal models of neuropathic pain and clinical observations point to a role of the sympathetic nervous system in certain chronic pain states, the function of the sympathetics in postoperative pain and inflammation is debatable. Behavioural studies in rats point to a contribution of the sympathetic postganglionic terminal in the hyperalgesia of cutaneous inflammation and the severity of arthritis. An indirect effect of noradrenaline and inflammatory mediators via the release of prostaglandins has been postulated. Neurophysiological studies of nociceptors in rats and psychophysical studies in humans have failed to provide confirmatory evidence for the role of the sympathetic efferents in inflammatory pain and hyperalgesia. The clinical significance of the potential interaction of the sympathetic nervous system and the somatic afferent system needs further investigation.
Collapse
Affiliation(s)
- S N Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21281-5354, USA
| |
Collapse
|
28
|
Abstract
Kinins, including bradykinin and kallidin, are peptides that are produced and act at the site of tissue injury or inflammation. They induce a variety of effects via the activation of specific B1 or B2 receptors that are coupled to a number of biochemical transduction mechanisms. In the periphery the actions of kinins include vasodilatation, increased vascular permeability and the stimulation of immune cells and peptide-containing sensory neurones to induce pain and a number of neuropeptide-induced reflexes. Mechanisms for kinin synthesis are also present in the CNS where kinins are likely to initiate a similar cascade of events, including an increase in blood flow and plasma leakage. Kinins are potent stimulators of neural and neuroglial tissues to induce the synthesis and release of other pro-inflammatory mediators such as prostanoids and cytotoxins (cytokines, free radicals, nitric oxide). These events lead to neural tissue damage as well as long lasting disturbances in blood-brain barrier function. Animal models for CNS trauma and ischaemia show that increases in kinin activity can be reversed either by kinin receptor antagonists or by the inhibition of kinin production. A number of other central actions have been attributed to kinins including an effect on pain signalling, both within the brain (which may be related to vascular headache) and within the spinal dorsal horn where primary afferent nociceptors can be stimulated. Kinins also appear to play a role in cardiovascular regulation especially during chronic spontaneous hypertension. Presently, however, direct evidence is lacking for the release of kinins in pathophysiological conditions of the CNS and it is not known whether spinal or central neurones, other than afferent nerve terminals, are sensitive to kinins. A more detailed examination of the effects of kinins and their central pharmacology is necessary. It is also important to determine whether the inhibition of kinin activity will alleviate CNS inflammation and whether kinin receptor antagonists are useful in pathological conditions of the CNS.
Collapse
Affiliation(s)
- K Walker
- Sandoz Institute for Medical Research, London, U.K
| | | | | |
Collapse
|
29
|
Davis AJ, Perkins MN. The involvement of bradykinin B1 and B2 receptor mechanisms in cytokine-induced mechanical hyperalgesia in the rat. Br J Pharmacol 1994; 113:63-8. [PMID: 7812634 PMCID: PMC1510052 DOI: 10.1111/j.1476-5381.1994.tb16174.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Interleukin-1 beta (IL-1 beta), IL-2 and IL-8 induced a mechanical hyperalgesia following intra-articular (i.artic.) injection into rat knee joints, whereas IL-6 and tumour necrosis factor alpha (TNF-alpha) were without effect. 2. Co-administration of IL-1 receptor antagonist (0.1 micrograms) with IL-1 beta (1 mu), IL-2 (10 mu) or IL-8 (0.1 mu) prevented the subsequent development of the hyperalgesia. 3. Co-administration of desArg9Leu8BK (0.5-5 nmol) with IL-1 beta (1 mu), IL-2 (10 mu) or IL-8 (0.1 mu) reduced the level of hyperalgesia at 1, 4 and 6 h post administration, whereas Hoe 140 (5 pmol) antagonized the hyperalgesia only at the 1 h time point. 4. Intravenous administration of desArg9Leu8BK (10 nmol kg-1) or Hoe 140 (100 pmol kg-1) following IL-1 beta (1 mu), IL-2 (10 mu), or IL-8 (0.1 mu) reversed the subsequent hyperalgesia. 5. Administration of desArg9BK into joints 24 h after pre-treatment with IL-1 beta (1 mu) produced analegsia at low doses (50 pmol) and hyperalgesia at a higher dose (0.5 nmol). Both these effects were blocked by desArg9Leu8BK (0.5 nmol). 6. Administration of desArg9BK (0.5 nmol i.artic.) to animals 24 h after pre-treatment with IL-2 (1-100 mu) or IL-8 (0.1-10 mu) had no effect on the load tolerated by the treated joint. 7. Administration of indomethacin (1 mg kg-1, s.c.) prior to IL-1 beta (1 mu i.artic.) prevented the development of hyperalgesia. Administration of desArg9BK (5 pmol-0.5 nmol, i.artic.) to animals 24 h after indomethacin and IL-1 beta pretreatment had no effect on the load tolerated by the treated joint. 7. Administration of indomethacin (1 mg kg-1, s.c.) prior to IL-1beta (1 u i.artic.) prevented the development of hyperalgesia. Administration of desArg9BK (5 pmol-0.5 nmol, i.artic.) to animals 24 h after indomethacin and IL-1 beta pretreatment had no effect on the load tolerated by the treated joint.8. These data suggest that both bradykinin B1 and B2 receptors are involved in the induction and maintenance of cytokine-induced hyperalgesia. They also show that the induction of B1 receptor-mediated hyperalgesia requires both cyclo-oxygenase products and IL-1 in vivo.
Collapse
Affiliation(s)
- A J Davis
- Sandoz Institute for Medical Research, London
| | | |
Collapse
|
30
|
Green PG, Luo J, Heller PH, Levine JD. Effect of E-type prostaglandins on bradykinin-induced plasma extravasation in the knee joint of the rat. Eur J Pharmacol 1994; 252:127-32. [PMID: 8157052 DOI: 10.1016/0014-2999(94)90587-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We studied the effect of different E-type prostaglandins on an experimental model of inflammation in the rat. Plasma extravasation was induced in the knee joint of the rat by continuous perfusion of two potent inflammatory mediators, bradykinin (160 nM) or platelet activating factor. Both prostaglandin E1 and prostaglandin E2 (0.5-500 ng ml-1), when perfused with bradykinin, produced a similar dose-dependent enhancement of plasma extravasation. Prostaglandin E2 (0.5-500 ng ml-1) also dose dependently enhanced plasma extravasation induced by platelet activating factor, while prostaglandin E1 significantly enhanced platelet activating factor-induced plasma extravasation only at concentrations above 5 ng ml-1. In contrast, co-perfusion of bradykinin or platelet activating factor with the prostaglandin E1 analogues, enisoprost and misoprostol (0.5-500 ng ml-1) did not enhance plasma extravasation. In fact, misoprostol attenuated plasma extravasation induced by bradykinin. These results demonstrate that in the rat knee joint, misoprostol and enisoprost have different pharmacological actions compared to their parent compound, prostaglandin E1 and to prostaglandin E2.
Collapse
Affiliation(s)
- P G Green
- Department of Oral Surgery, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
31
|
Green PG, Luo J, Hammond ER, Levine JD. Trypsin enhances sympathetic neuron-dependent plasma extravasation in the rat knee joint. Neurosci Lett 1993; 158:117-9. [PMID: 8233065 DOI: 10.1016/0304-3940(93)90626-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Perfusion of 6-hydroxydopamine through the rat knee joint causes an increase in plasma extravasation by activation of sympathetic neuron terminals. Similarly, the increase in plasma extravasation in the rat knee joint produced by the inflammatory mediator bradykinin is dependent on the sympathetic post-ganglion neuron. There is evidence that both 6-hydroxydopamine and bradykinin release a number of mediators, some of which appear to enhance plasma extravasation and some which inhibit it. We attempted to determine the nature of inhibitory factor(s) by co-infusing trypsin (which rapidly cleaves peptides) with 6-hydroxydopamine. We observed a marked enhancement of 6-hydroxydopamine-induced plasma extravasation by trypsin. This effect appeared to be specific to neurogenic plasma extravasation since trypsin alone had little effect on plasma extravasation and trypsin did not affect non-neurogenic plasma extravasation (that produced by platelet activating factor). Taken together, the data suggests that 6-hydroxydopamine not only releases mediators from the sympathetic neuron that produce plasma extravasation, but also an inhibitor(s) of plasma extravasation that is peptide in nature.
Collapse
Affiliation(s)
- P G Green
- Department of Anatomy, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
32
|
Green PG, Luo J, Heller PH, Levine JD. Further substantiation of a significant role for the sympathetic nervous system in inflammation. Neuroscience 1993; 55:1037-43. [PMID: 8232896 DOI: 10.1016/0306-4522(93)90317-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study provides significant new evidence substantiating a role of the postganglionic sympathetic neuron in plasma extravasation in the knee-joint of the rat. Increased plasma extravasation produced by the potent inflammatory mediator bradykinin was mimicked by 6-hydroxydopamine, a selective stimulator of sympathetic fibers. Various treatments (chemical sympathectomy, co-perfusion with the local anesthetic lidocaine, or co-perfusion with depolarizing concentrations of potassium) similarly modulated plasma extravasation induced by both bradykinin and 6-hydroxydopamine, but not that produced by platelet activating factor. We also showed that bradykinin is able to release norepinephrine in the knee-joint, indicating action on the sympathetic postganglionic neuron. In summary, these experiments provide substantial additional evidence supporting a significant contribution of the sympathetic post-ganglionic neuron terminal to inflammatory plasma extravasation.
Collapse
Affiliation(s)
- P G Green
- Department of Medicine, University of California, San Francisco 94143
| | | | | | | |
Collapse
|