1
|
Benítez-Temiño B, Davis-López de Carrizosa MA, Morcuende S, Matarredona ER, de la Cruz RR, Pastor AM. Functional Diversity of Neurotrophin Actions on the Oculomotor System. Int J Mol Sci 2016; 17:E2016. [PMID: 27916956 PMCID: PMC5187816 DOI: 10.3390/ijms17122016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022] Open
Abstract
Neurotrophins play a principal role in neuronal survival and differentiation during development, but also in the maintenance of appropriate adult neuronal circuits and phenotypes. In the oculomotor system, we have demonstrated that neurotrophins are key regulators of developing and adult neuronal properties, but with peculiarities depending on each neurotrophin. For instance, the administration of NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor) or NT-3 (neurotrophin-3) protects neonatal extraocular motoneurons from cell death after axotomy, but only NGF and BDNF prevent the downregulation in ChAT (choline acetyltransferase). In the adult, in vivo recordings of axotomized extraocular motoneurons have demonstrated that the delivery of NGF, BDNF or NT-3 recovers different components of the firing discharge activity of these cells, with some particularities in the case of NGF. All neurotrophins have also synaptotrophic activity, although to different degrees. Accordingly, neurotrophins can restore the axotomy-induced alterations acting selectively on different properties of the motoneuron. In this review, we summarize these evidences and discuss them in the context of other motor systems.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | | | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Esperanza R Matarredona
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
2
|
Morcuende S, Matarredona ER, Benítez-Temiño B, Muñoz-Hernández R, Pastor AM, de la Cruz RR. Differential regulation of the expression of neurotrophin receptors in rat extraocular motoneurons after lesion. J Comp Neurol 2011; 519:2335-52. [PMID: 21456016 DOI: 10.1002/cne.22630] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurotrophins acting through high-affinity tyrosine kinase receptors (trkA, trkB, and trkC) play a crucial role in regulating survival and maintenance of specific neuronal functions after injury. Adult motoneurons supplying extraocular muscles survive after disconnection from the target, but suffer dramatic changes in morphological and physiological properties, due in part to the loss of their trophic support from the muscle. To investigate the dependence of the adult rat extraocular motoneurons on neurotrophins, we examined trkA, trkB, and trkC mRNA expression after axotomy by in situ hybridization. trkA mRNA expression was detectable at low levels in unlesioned motoneurons, and its expression was downregulated 1 and 3 days after injury. Expression of trkB and trkC mRNAs was stronger, and after axotomy a simultaneous, but inverse regulation of both receptors was observed. Thus, whereas a considerable increase in trkB expression was seen about 2 weeks after axotomy, the expression of trkC mRNA had decreased at the same post-lesion period. Injured extraocular motoneurons also experienced an initial induction in expression of calcitonin gene-related peptide and a transient downregulation of cholinergic characteristics, indicating a switch in the phenotype from a transmitter-specific to a regenerative state. These results suggest that specific neurotrophins may contribute differentially to the survival and regenerative responses of extraocular motoneurons after lesion.
Collapse
Affiliation(s)
- Sara Morcuende
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
3
|
Complementary actions of BDNF and neurotrophin-3 on the firing patterns and synaptic composition of motoneurons. J Neurosci 2009; 29:575-87. [PMID: 19144857 DOI: 10.1523/jneurosci.5312-08.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins, as target-derived factors, are essential for neuronal survival during development, but during adulthood, their scope of actions widens to become also mediators of synaptic and morphological plasticity. Target disconnection by axotomy produces an initial synaptic stripping ensued by synaptic rearrangement upon target reinnervation. Using abducens motoneurons of the oculomotor system as a model for axotomy, we report that trophic support by brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) or a mixture of both, delivered to the stump of severed axons, results in either the prevention of synaptic stripping when administered immediately after lesion or in a promotion of reinnervation of afferents to abducens motoneurons once synaptic stripping had occurred, in concert with the recovery of synaptic potentials evoked from the vestibular nerve. Synaptotrophic effects, however, were larger when both neurotrophins were applied together. The axotomy-induced reduction in firing sensitivities related to eye movements were also restored to normal values when BDNF and NT-3 were administered, but discharge characteristics recovered in a complementary manner when only one neurotrophin was used. This is the first report to show selective retrograde trophic dependence of circuit-driven firing properties in vivo indicating that NT-3 restored the phasic firing, whereas BDNF supported the tonic firing of motoneurons during eye movement performance. Therefore, our data report a link between the synaptotrophic actions of neurotrophins, retrogradely delivered, and the alterations of neuronal firing patterns during motor behaviors. These trophic actions could be responsible, in part, for synaptic rearrangements that alter circuit stability and synaptic balance during plastic events of the brain.
Collapse
|
4
|
de la Cruz RR, Pastor AM, Delgado-garcía JM. The Neurotoxic Effects ofRicinus communisAgglutinin-II. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549509089967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Davis-López de Carrizosa MA, Tena JJ, Benítez-Temiño B, Morado-Díaz CJ, Pastor AM, de la Cruz RR. A chronically implantable device for the controlled delivery of substances, and stimulation and recording of activity in severed nerves. J Neurosci Methods 2007; 167:302-9. [PMID: 17935791 DOI: 10.1016/j.jneumeth.2007.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 12/01/2022]
Abstract
We describe the use of an implantable device for peripheral nerves that allows chronic simultaneous delivery of small volumes of solution, recording of both field and multiunit potentials, and electrical stimulation. This custom-made multifunctional device was attached to the cut end of the abducens (VIth) nerve for stimulation, recording and injection purposes. Our device consists of a polyethylene chamber with two electrodes that can be used for stimulation and recording and two Teflon tubes that serve as inlet and outlet for administering chemicals to the nerve fitted inside. Since the device is implanted in a retro-orbital position, we herein will refer to it as an intraorbitary device (IOD). The applicability of the IOD is demonstrated with an electrophysiological and anatomical account of the properties of the abducens nerve. Furthermore, it is shown that certain neuronal discharge properties can be inferred from the nerve recordings. The IOD can also be efficiently used for the delivery of small volume of pharmacological substances or conventional retrograde markers.
Collapse
|
6
|
Morcuende S, Benítez-Temiño B, Pecero ML, Pastor AM, de la Cruz RR. Abducens internuclear neurons depend on their target motoneurons for survival during early postnatal development. Exp Neurol 2005; 195:244-56. [PMID: 15935346 DOI: 10.1016/j.expneurol.2005.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 04/07/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
The highly specific projection of abducens internuclear neurons onto medial rectus motoneurons in the oculomotor nucleus is a good model to evaluate the dependence on target cells for survival during development and in the adult. Thus, the procedure we chose to selectively deprive abducens internuclear neurons of their natural target was the enucleation of postnatal day 1 rats to induce the death of medial rectus motoneurons. Two months later, we evaluated both the extent of reduction in target size, by immunocytochemistry against choline acetyltransferase (ChAT) and Nissl counting, and the percentage of abducens internuclear neurons surviving target loss, by calretinin immunostaining and horseradish peroxidase (HRP) retrograde tracing. Firstly, axotomized oculomotor motoneurons died in a high percentage ( approximately 80%) as visualized 2 months after lesion. In addition, we showed a transient (1 month) and reversible down-regulation of ChAT expression in extraocular motoneurons induced by injury. Secondly, 2 months after enucleation, 61.6% and 60.5% of the population of abducens internuclear neurons appeared stained by retrograde tracing and calretinin immunoreaction, respectively, indicating a significant extent of cell death after target loss (38.4% or 39.5%). By contrast, in the adult rat, neither extraocular motoneurons died in response to axotomy nor abducens internuclear neurons died due to the loss of their target motoneurons induced by the retrograde transport of toxic ricin injected in the medial rectus muscle. These results indicate that, during development, abducens internuclear neurons depend on their target motoneurons for survival, and that they lose this dependence with maturation.
Collapse
Affiliation(s)
- Sara Morcuende
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012-Sevilla, Spain
| | | | | | | | | |
Collapse
|
7
|
González-Forero D, Morcuende S, Alvarez FJ, de la Cruz RR, Pastor AM. Transynaptic effects of tetanus neurotoxin in the oculomotor system. ACTA ACUST UNITED AC 2005; 128:2175-88. [PMID: 15987757 DOI: 10.1093/brain/awh580] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The question whether general tetanus arises from the independent sum of multiple local tetani or results from the actions of the transynaptic tetanus neurotoxin (TeNT) in higher brain centres remains unresolved. Despite the blood-borne dissemination of TeNT from an infected wound, the access to the central nervous system is probably prevented by the blood-brain barrier. However, several long-term sequelae (e.g. autonomic dysfunction, seizures, myoclonus, and sleep disturbances) present after the subsidence of muscle spasms might be indicative of central actions that occur farther away from lower motoneurons. Subsequently, the obvious entry route is the peripheral neurons followed by the transynaptic passage to the brain. We aimed at describing the pathophysiological correlates of TeNT translocation using the oculomotor system as a comprehensive model of cell connectivity and neuronal firing properties. In this study, we report that injection of TeNT into the medial rectus muscle of one eye resulted in bilateral gaze palsy attributed to firing alterations found in the contralaterally projecting abducens internuclear neurons. Functional alterations in the abducens-to-oculomotor internuclear pathway resembled in part the classically described TeNT disinhibition. We confirmed the transynaptic targeted action of TeNT by analysing vesicle-associated membrane protein2 (VAMP2) immunoreactivity (the SNARE protein cleaved by TeNT). VAMP2 immunoreactivity decreased by 94.4% in the oculomotor nucleus (the first synaptic relay) and by 62.1% presynaptic to abducens neurons (the second synaptic relay). These results are the first demonstration of physiological changes in chains of connected neurons that are best explained by the transynaptic action of TeNT on premotor neurons as shown with VAMP2 immunoreactivity which serves as an indicator of TeNT activity.
Collapse
|
8
|
Benítez-Temiño B, de la Cruz RR, Tena JJ, Pastor AM. Cerebellar grafting in the oculomotor system as a model to study target influence on adult neurons. ACTA ACUST UNITED AC 2004; 49:317-29. [PMID: 16111559 DOI: 10.1016/j.brainresrev.2004.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 08/31/2004] [Accepted: 09/15/2004] [Indexed: 11/19/2022]
Abstract
In the last decades, there have been many efforts directed to gain a better understanding on adult neuron-target cell relationships. Embryonic grafts have been used for the study of neural circuit rewiring. Thus, using several donor neuronal tissues, such as cerebellum or striatum, developing grafted cells have been shown to have the capability of substituting neural cell populations and establishing reciprocal connections with the host. In addition, different lesion paradigms have also led to a better understanding of target dependence in neuronal cells. Thus, for example, axotomy induces profound morphofunctional changes in adult neurons, including the loss of synaptic inputs and discharge alterations. These alterations are probably due to trophic factor loss in response to target disconnection. In this review, we summarize the different strategies performed to disconnect neurons from their targets, and the effects of target substitution, performed by tissue grafting, upon neural properties. Using the oculomotor system-and more precisely the abducens internuclear neurons-as a model, we describe herein the effects of disconnecting a population of central neurons from its natural target (i.e., the medial rectus motoneurons at the mesencephalic oculomotor nucleus). We also analyze target-derived influences in the structure and physiology of these neurons by using cerebellar embryonic grafts as a new target for the axotomized abducens internuclear neurons.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Dept. Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes, 6 41012 Sevilla, E-41012, Spain
| | | | | | | |
Collapse
|
9
|
Benítez-Temiño B, Morcuende S, Mentis GZ, de la Cruz RR, Pastor AM. Expression of Trk receptors in the oculomotor system of the adult cat. J Comp Neurol 2004; 473:538-52. [PMID: 15116389 DOI: 10.1002/cne.20095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We examined the expression of the three Trk receptors for neurotrophins (TrkA, TrkB, and TrkC) in the extraocular motor nuclei of the adult cat by using antibodies directed against the full-Trk proteins in combination with horseradish peroxidase retrograde tracing. The three receptors were present in all neuronal populations investigated, including abducens motoneurons and internuclear neurons, medial rectus motoneurons of the oculomotor nucleus, and trochlear motoneurons. They were also present in the vestibular and prepositus hypoglossi nuclei. TrkA, TrkB, and TrkC immunopositive cells were found in similar percentages in the oculomotor and in the trochlear nuclei. In the abducens nucleus, however, a significantly higher percentage of cells expressed TrkB than the other two receptors, among both motoneurons (81.8%) and internuclear neurons (88.4%). The percentages obtained for the three Trk receptors in identified neuronal populations pointed to the colocalization of two or three receptors in a large number of cells. We used confocal microscopy to elucidate the subcellular location of Trk receptors. In this case, abducens motoneurons and internuclear neurons were identified with antibodies against choline acetyltransferase and calretinin, respectively. We found a different pattern of staining for each neurotrophin receptor, suggesting the possibility that each receptor and its cognate ligand may use a different route for cellular signaling. Therefore, the expression of Trk receptors in oculomotor, trochlear, and abducens motoneurons, as well as abducens internuclear neurons, suggests that their associated neurotrophins may exert an influence on the normal operation of the oculomotor circuitry. The presence of multiple Trk receptors on individual cells indicates that they likely act in concert with each other to regulate distinct functions.
Collapse
|
10
|
Pastor AM, Gonzalez-Forero D. Recruitment order of cat abducens motoneurons and internuclear neurons. J Neurophysiol 2003; 90:2240-52. [PMID: 12801900 DOI: 10.1152/jn.00402.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abducens neurons undergo a dose-dependent synaptic blockade (either disinhibition or complete blockade) when tetanus neurotoxin (TeNT) is injected into the lateral rectus muscle at either a low (0.5) or a high dose (5 ng/kg). We studied the firing pattern and recruitment order in abducens neurons both in control and after TeNT injection. The eye position threshold for recruitment of control abducens neurons was exponentially related to the eye position and velocity sensitivities. We also found a constancy of recruitment threshold for different eye movement modalities (spontaneous, optokinetic, and vestibular). Exponential relationships were found, as well, for eye velocity sensitivity during saccades and for position and velocity sensitivities during the vestibulo-ocular reflex. Likewise, inverse relationships were found between recruitment threshold or position sensitivity with the antidromic latency in control abducens neurons. These relationships, however, did not apply following TeNT treatment. Neuronal firing after TeNT appeared either disinhibited (low dose) or depressed (high dose), but the relationships between neuronal sensitivities and recruitment still applied. However, the pattern of recruitment shifted toward the treated side as more inputs were blocked by the low- and high-dose treatments, respectively. Nonetheless, although the recruitment-to-sensitivity relationships persisted under the TeNT synaptic blockade, we conclude that synaptic inputs are determinant for establishing the recruitment threshold and recruitment spacing of abducens motoneurons and internuclear neurons.
Collapse
Affiliation(s)
- Angel M Pastor
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.
| | | |
Collapse
|
11
|
Abstract
Although only recently applied to the study of nociception, 'molecular neurosurgery', producing highly selective neural lesions using targeted cytotoxins, has proven a valuable tool for analysis of nociceptive systems and promises to yield much more information on the role of specific types of neurons in pain perception and possibly new pain therapies. Neuropeptide-toxin conjugates, particularly, substance P-saporin, have proven useful research tools and may find clinical applications. Targeting non-lethal moieties (enzymes, genes, viruses) also may prove useful for research and therapeutic purposes.
Collapse
Affiliation(s)
- Ronald G Wiley
- Department of Neurology, Vanderbilt University, Nashville, TN 37212, USA.
| | | |
Collapse
|
12
|
Benítez-Temiño B, de la Cruz RR, Pastor AM. Grafting of a new target prevents synapse loss in abducens internuclear neurons induced by axotomy. Neuroscience 2003; 118:611-26. [PMID: 12710971 DOI: 10.1016/s0306-4522(03)00003-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The loss of afferent synaptic boutons is a prominent alteration induced by axotomy on adult central neurons. In this work we attempted to prove whether synapse loss could be reverted by reconnection with a new target. We severed the medial longitudinal fascicle of adult cats and then transplanted embryonic cerebellar primordia at the lesion site immediately after lesion. As previously shown, the transected axons from abducens internuclear neurons penetrate and reinnervate the graft [J Comp Neurol 444 (2002) 324]. By immunocytochemistry and electron microscopy we studied the synaptology of abducens internuclear neurons under three conditions: control, axotomy and transplant (2 months of survival time). Semithin sections of the abducens nucleus were immunostained against calretinin, to identify abducens internuclear neurons, and either synaptophysin (SF), to label synaptic terminals, or glial fibrillary acidic protein (GFAP) to detect the astrocytic reaction. Optical and linear density of SF and GFAP immunostaining were measured. Data revealed a significant decrease in the density of SF-labeled terminals with a parallel increase in GFAP-immunoreactive elements after axotomy. On the contrary, in the transplant group, the density of SF-labeled terminals was found similar to control, and the astrocytic reaction induced by lesion was significantly reduced. At the ultrastructural level, synaptic coverage and linear density of boutons were measured around the somata of abducens internuclear neurons. Whereas a significant reduction in both parameters was found after axotomy, cells of the transplant group received a normal density of synaptic endings. The ratio between F- and S-type boutons was found similar in the three groups. Therefore, these findings indicate that the grafting of a new target can prevent the loss of afferent synaptic boutons produced by the axotomy.
Collapse
Affiliation(s)
- B Benítez-Temiño
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | | | | |
Collapse
|
13
|
de la Cruz RR, Benítez-Temiño B, Pastor AM. Intrinsic determinants of synaptic phenotype: an experimental study of abducens internuclear neurons connecting with anomalous targets. Neuroscience 2002; 112:759-71. [PMID: 12088736 DOI: 10.1016/s0306-4522(02)00133-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present experiments investigate the role of postsynaptic neurons in the morphological differentiation of presynaptic terminals that are formed de novo in the adult CNS. Abducens internuclear neurons in the adult cat were chosen as the experimental model. These neurons project onto the contralateral medial rectus motoneurons of the oculomotor nucleus. Abducens internuclear axon terminals were identified by their anterograde labeling with biocytin and analyzed at the electron microscopic level. To promote the formation of new synapses, two different experimental approaches were used. First, after the selective ablation of medial rectus motoneurons with ricin, abducens internuclear neurons reinnervated the neighboring oculomotor internuclear neurons. Second, after axotomy followed by embryonic cerebellar grafting, abducens internuclear axons invaded the implanted tissue and established synaptic connections in both the molecular and granule cell layer. Boutons contacting the oculomotor internuclear neurons developed ultrastructural characteristics that resembled the control synapses on medial rectus motoneurons. In the grafted cerebellar tissue, abducens internuclear axons and terminals did not resemble climbing or mossy fibers but showed similarities with control boutons. However, labeled boutons analyzed in the granule cell layer established a higher number of synaptic contacts than controls. This could reflect a trend towards the mossy fiber phenotype, although labeled boutons significantly differed in every measured parameter with the mossy fiber rosettes found in the graft. We conclude that at least for the abducens internuclear neurons, the ultrastructural differentiation of axon terminals reinnervating novel targets in the adult brain seems to be mainly under intrinsic control, with little influence by postsynaptic cells.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia y Comportamiento, Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Spain.
| | | | | |
Collapse
|
14
|
Benítez-Temiño B, De La Cruz RR, Pastor AM. Firing properties of axotomized central nervous system neurons recover after graft reinnervation. J Comp Neurol 2002; 444:324-44. [PMID: 11891646 DOI: 10.1002/cne.10147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Axotomy produces changes in the electrical properties of neurons and in their synaptic inputs, leading to alterations in firing pattern. We have considered the possibility that these changes occur as a result of the target deprivation induced by the lesion. Thus, we have provided a novel target to axotomized central neurons by grafting embryonic tissue at the lesion site to study the target dependence of discharge characteristics. The extracellular single-unit electrical activity of abducens internuclear neurons was recorded in the alert behaving cat in control, after axotomy, and after axotomy plus the implantation of cerebellar primordium. As recently characterized (de la Cruz et al. [2000] J. Comp. Neurol. 427:391-404), firing alterations induced by axotomy included an overall decrease in firing rate and a loss of eye-related signals, i.e., eye position and velocity neuronal sensitivities, that do not resume to normality with time. The grafting of a novel target to the injured abducens internuclear neurons restored the normal firing and sensitivities as recorded in the majority of units. To study the reinnervation of the implant, we performed anterograde labeling with biocytin combined with electron microscopy visualization. Axons of abducens internuclear neurons grew into the transplant sprouting into granule cell and molecular layers, as characterized by the immunostaining for gamma-aminobutyric acid and calbindin D-28k. Ultrastructural examination of labeled axons and boutons revealed the establishment of synaptic contacts, mainly axodendritic, with different cell types of the grafted cerebellar cortex. Therefore, these data indicate that axotomized central neurons resume to normal firing after the reinnervation of a novel target.
Collapse
Affiliation(s)
- Beatriz Benítez-Temiño
- Departamento de Fisiología y Biología Animal, Universidad de Sevilla, 41012-Seville, Spain
| | | | | |
Collapse
|
15
|
|
16
|
González-Forero D, De La Cruz RR, Delgado-García JM, Pastor AM. Reversible deafferentation of abducens motoneurons and internuclear neurons with tetanus neurotoxin. Neuroreport 2001; 12:753-6. [PMID: 11277578 DOI: 10.1097/00001756-200103260-00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tetanus neurotoxin (TeNT) is a blocker of synaptic vesicle exocytosis in central synapses with preferential affinity for inhibitory neurotransmission. Following its intramuscular injection, TeNT is retrogradely and trans-synaptically transported towards the premotor terminals. Therefore, we have used TeNT as a tool to study the consequences of functional deafferentation on motoneurons following its peripheral administration. For this, we injected the toxin into the lateral rectus muscle at doses of 5 or 0.5 ng/kg and recorded the discharge activity of abducens motoneurons and internuclear neurons in the alert cat. Our results showed that: (i) TeNT blocked selectively the afferent inhibitory signals on abducens neurons only when used at a low dose, whereas both excitatory and inhibitory synaptic drive was lost after the high dose treatment; (ii) all effects were reversible within one month; and (iii) strikingly, the internuclear neurons of the abducens nucleus showed similar discharge alterations to the motoneurons, suggesting a TeNT action on shared common afferences.
Collapse
Affiliation(s)
- D González-Forero
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
17
|
Pastor AM, Delgado-García JM, Martínez-Guijarro FJ, López-García C, de La Cruz RR. Response of abducens internuclear neurons to axotomy in the adult cat. J Comp Neurol 2000; 427:370-90. [PMID: 11054700 DOI: 10.1002/1096-9861(20001120)427:3<370::aid-cne5>3.0.co;2-m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly specific projection of abducens internuclear neurons on the medial rectus motoneurons of the oculomotor nucleus constitutes an optimal model for investigating the effects of axotomy in the central nervous system. We have analyzed the morphological changes induced by this lesion on both the cell bodies and the transected axons of abducens internuclear neurons in the adult cat. Axotomy was performed by the transection of the medial longitudinal fascicle. Cell counts of Nissl-stained material and calretinin-immunostained abducens internuclear neurons revealed no cell death by 3 months postaxotomy. Ultrastructural examination of these cells at 6, 14, 24, and 90 days postaxotomy showed normal cytological features. However, the surface membrane of axotomized neurons appeared contacted by very few synaptic boutons compared to controls. This change was quantified by measuring the percentage of synaptic coverage of the cell bodies and the linear density of boutons. Both parameters decreased significantly after axotomy, with the lowest values at 90 days postlesion ( approximately 70% reduction). We also explored axonal regrowth and the possibility of reinnervation of a new target by means of anterograde labeling with biocytin. At all time intervals analyzed, labeled axons were observed to be interrupted at the caudal limit of the lesion; in no case did they cross the scar tissue to reach the distal part of the tract. Nonetheless, a conspicuous axonal sprouting was present at the caudal aspect of the lesion site. Structures suggestive of axonal growth were found, such as large terminal clubs, from which short filopodium-like branches frequently emerged. Similar findings were obtained after parvalbumin and calretinin immunostaining. At the electron microscopy level, biocytin-labeled boutons originating from the sprouts appeared surrounded by either extracellular space, which was extremely dilated at the lesion site, or by glial processes. The great majority of labeled boutons examined were, thus, devoid of neuronal contact, indicating absence of reinnervation of a new target. Altogether, these data indicate that abducens internuclear neurons survive axotomy in the adult cat and show some form of axonal regrowth, even in the absence of target connection.
Collapse
Affiliation(s)
- A M Pastor
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, 41012-Sevilla, Spain
| | | | | | | | | |
Collapse
|
18
|
de La Cruz RR, Delgado-García JM, Pastor AM. Discharge characteristics of axotomized abducens internuclear neurons in the adult cat. J Comp Neurol 2000; 427:391-404. [PMID: 11054701 DOI: 10.1002/1096-9861(20001120)427:3<391::aid-cne6>3.0.co;2-e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of the present work was to characterize the axotomy-induced changes in the discharge properties of central nervous system neurons recorded in the alert behaving animal. The abducens internuclear neurons of the adult cat were the chosen model. The axons of these neurons course through the contralateral medial longitudinal fascicle and contact the medial rectus motoneurons of the oculomotor nucleus. Axotomy was carried out by the unilateral transection of this fascicle (right side) and produced immediate oculomotor deficits, mainly the incapacity of the right eye to adduct across the midline. Extracellular single-unit recording of abducens neurons was carried out simultaneously with eye movements. The main alteration observed in the firing of these axotomized neurons was the overall decrease in firing rate. During eye fixations, the tonic signal was reduced, and, on occasion, a progressive decay in firing rate was observed. On-directed saccades were not accompanied by the high-frequency spike burst typical of controls; instead, there was a moderate increase in firing. Similarly, during the vestibular nystagmus, neurons hardly modulated during both the slow and the fast phases. Linear regression analysis between firing rate and eye movement parameters showed a significant reduction in eye position and velocity sensitivities with respect to controls, during both spontaneous and vestibularly induced eye movements. These firing alterations were observed during the 3 month period of study after lesion, with no sign of recovery. Conversely, abducens motoneurons showed no significant alteration in their firing pattern. Therefore, axotomy produced long-lasting changes in the discharge characteristics of abducens internuclear neurons that presumably reflected the loss of afferent oculomotor signals. These alterations might be due to the absence of trophic influences derived from the target.
Collapse
Affiliation(s)
- R R de La Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, 41012-Sevilla, Spain.
| | | | | |
Collapse
|
19
|
Abstract
Axonally transported toxins can be used to make selective lesions of the nervous system. Collectively, these techniques are termed 'molecular neurosurgery' because they exploit the surface molecular identity of neurons to selectively destroy specific types of neurons. Suicide transport, is anatomically selective but not type-selective. The most widely used suicide transport agents are the toxic lectins (ricin, volkensin) and the immunotoxin, OX7-saporin. The toxic lectins and saporin are ribosome inactivating proteins that irreversibly inhibit protein synthesis. The toxic lectins have binding subunits but saporin requires a targeting vector to gain entrance into cells. Immunolesioning uses monoclonal anti-neuronal antibodies to deliver saporin selectively into neurons that express a particular target surface antigen. Neuropeptide-saporin conjugates selectively destroy neurons expressing the appropriate peptide receptors. Notable experimental uses of these agents include analysis of the function of the cholinergic basal forebrain (192-saporin) and pain research (anti-DBH-saporin, substance P-saporin). It is likely that more immunolesioning and neuropeptide-toxin conjugates will be developed in the near future.
Collapse
Affiliation(s)
- R G Wiley
- Departments of Neurology and Pharmacology, Vanderbilt University, VAMC Nashville, TN 37212-2637, USA.
| | | |
Collapse
|
20
|
Gudiño-Cabrera G, Pastor AM, de la Cruz RR, Delgado-García JM, Nieto-Sampedro M. Limits to the capacity of transplants of olfactory glia to promote axonal regrowth in the CNS. Neuroreport 2000; 11:467-71. [PMID: 10718296 DOI: 10.1097/00001756-200002280-00008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Olfactory bulb ensheathing cell (OBEC) transplants promoted axonal regeneration in the spinal cord dorsal root entry zone and in the corticospinal tract. However, OBECs failed to promote abducens internuclear neuron axon regeneration when transplanted at the site of nerve fibre transection. In experiments performed in both cats and rats, OBECs survived for up to 2 months, lining themselves up along the portion of the regrowing axons proximal to the interneuron cell body. However, OBECs migrated preferentially towards abducens somata, in the direction opposite to the oculomotor nucleus target. OBECs seem to promote nerve fibre regeneration only where preferred direction of glial migration coincides with the direction of axonal growth towards its target.
Collapse
Affiliation(s)
- G Gudiño-Cabrera
- Departamento de Plasticidad Neural, Instituto Cajal, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Monnet E, Orton EC, Child G, Getzy D, Jacobs G, Metelman L. Neuromuscular function of the latissimus dorsi muscle in goats after dynamic cardiomyoplasty. Pacing Clin Electrophysiol 1999; 22:1625-33. [PMID: 10598966 DOI: 10.1111/j.1540-8159.1999.tb00382.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Skeletal muscle deterioration is emerging as a limitation to long-term cardiac assist by dynamic cardiomyoplasty. Chronic electrical stimulation of in situ skeletal muscle showed that ischemia, decreased muscle preload, muscle overuse, and chronic electrical stimulation are factors for muscle deterioration. Transposition around the heart has been associated with signs of muscle denervation after chronic electrical stimulation. To evaluate latissimus dorsi muscle neuromuscular function after longterm dynamic cardiomyoplasty, we performed neuromuscular functional analysis and histology on the latissimus dorsi muscle and thoracodorsal nerve of six normal goats and six goats after 6 months of dynamic cardiomyoplasty. Electromyographic analysis showed positive sharp waves and fibrillation potentials in the latissimus dorsi of three goats from the dynamic cardiomyoplasty group. Conduction velocity of the thoracodorsal nerve of goats from the dynamic cardiomyoplasty group (58.32+/-9.80 m/s) was reduced compared to the goats from the control group (71.48+/-5.71 m/s, P = 0.02). Histologic changes in skeletal muscle were compatible with denervation. Loss of myelin sheaths, collapse of endoneurial connective tissue, and solitary foci of axonophagia and myelinophagia further documented severe injury to the thoracodorsal nerve in goats from the dynamic cardiomyoplasty group. The latissimus dorsi muscle wrap was denervated after long-term dynamic cardiomyoplasty. Traction on the neurovascular pedicle at each contraction of the transposed muscle may induce afferent axonal injury of the thoracodorsal nerve resulting in diminished muscular function.
Collapse
Affiliation(s)
- E Monnet
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Delgado-García JM. Output-to-input approach to neural plasticity in vestibular pathways. Otolaryngol Head Neck Surg 1998; 119:221-30. [PMID: 9743078 DOI: 10.1016/s0194-5998(98)70057-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some thoughts on current interpretations of available data regarding vestibular compensation at functional, network, and neural levels are presented. Basic concepts related to neural plasticity (or elasticity) underlying motor learning and regeneration also are discussed briefly. Modifiability in vestibular pathways, at both the functional and structural levels, after peripheral and central axotomy, and subsequent to transient or permanent chemical target removal, is presented as an experimental ground to explain similarities and differences between regenerative, compensatory, and adaptive mechanisms in the mammal central nervous system.
Collapse
Affiliation(s)
- J M Delgado-García
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
23
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3%3c377::aid-cne6%3e3.0.co;2-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
24
|
de la Cruz RR, Pastor AM, Martińez-Guijarro FJ, López-García C, Delgado-García JM. Localization of parvalbumin, calretinin, and calbindin D-28k in identified extraocular motoneurons and internuclear neurons of the cat. J Comp Neurol 1998; 390:377-91. [PMID: 9455899 DOI: 10.1002/(sici)1096-9861(19980119)390:3<377::aid-cne6>3.0.co;2-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcium-binding proteins have been shown to be excellent markers of specific neuronal populations. We aimed to characterize the expression of calcium-binding proteins in identified populations of the cat extraocular motor nuclei by means of immunohistochemistry against parvalbumin, calretinin, and calbindin D-28k. Abducens, medial rectus, and trochlear motoneurons were retrogradely labeled with horseradish peroxidase from their corresponding muscles. Oculomotor and abducens internuclear neurons were retrogradely labeled after horseradish peroxidase injection into either the abducens or the oculomotor nucleus, respectively. Parvalbumin staining produced the highest density of immunoreactive terminals in all extraocular motor nuclei and was distributed uniformly. Around 15-20% of the motoneurons were moderately stained with antibody against parvalbumin, but their axons were heavily stained, indicating an intracellular segregation of parvalbumin. Colchicine administration increased the number of parvalbumin-immunoreactive motoneurons to approximately 85%. Except for a few calbindin-immunoreactive trochlear motoneurons (1%), parvalbumin was the only marker of extraocular motoneurons. Oculomotor internuclear neurons identified from the abducens nucleus constituted a nonuniform population, because low percentages of the three types of immunostaining were observed, calbindin being the most abundant (28.5%). Other interneurons located within the boundaries of the oculomotor nucleus were mainly calbindin-immunoreactive. The medial longitudinal fascicle contained numerous parvalbumin- and calretinin-immunoreactive but few calbindin-immunoreactive axons. The majority of abducens internuclear neurons projecting to the oculomotor nucleus (80.7%) contained calretinin. Moreover, the distribution of calretinin-immunoreactive terminals in the oculomotor nucleus overlapped that of the medial rectus motoneurons and matched the anterogradely labeled terminal field of the abducens internuclear neurons. Parvalbumin immunostained 42% of the abducens internuclear neurons. Colocalization of parvalbumin and calretinin was demonstrated in adjacent semithin sections, although single-labeled neurons were also observed. Therefore, calretinin is proven to be a good marker of abducens internuclear neurons. From all of these data, it is concluded that parvalbumin, calretinin, and calbindin D-28k selectively delineate certain neuronal populations in the oculomotor system and constitute valuable tools for further analysis of oculomotor function under normal and experimental conditions.
Collapse
Affiliation(s)
- R R de la Cruz
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | | | |
Collapse
|
25
|
Moreno-López B, de la Cruz RR, Pastor AM, Delgado-García JM. Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: alterations of the discharge pattern. Neuroscience 1997; 81:437-55. [PMID: 9300433 DOI: 10.1016/s0306-4522(97)00199-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The discharge characteristics that abducens motoneurons exhibit after paralysis of the lateral rectus muscle with botulinum neurotoxin type A were studied in the alert cat. Antidromically identified motoneurons were recorded during both spontaneous and vestibularly induced eye movements. A single injection of 0.3 ng/kg produced a complete paralysis of the lateral rectus muscle lasting for about 12-15 days, whereas after 3 ng/kg the paralysis was still complete at the longest time checked, three months. Motoneurons recorded under the effect of the low dose showed differences in their sensitivities to both eye position and velocity according to the direction of the previous and ongoing movements, respectively. These directional differences could be explained by post-saccadic adaptation of the non-injected eye in the appropriate direction for reducing ocular misalignment. Thus, backward and forward post-saccadic drifts accompanied on- and off-directed saccades, respectively. The magnitude of the drift was similar to the magnitude of changes in eye position sensitivity. The discharge of the high-dose-treated motoneurons could be described in a three-stage sequence. During the initial 10-12 days, motoneuronal discharge resembled the effects of axotomy, particularly in the loss of tonic signals and the presence of exponential-like decay of firing after saccades. In this stage, the conduction velocity of abducens motoneurons was reduced by 21.4%. The second stage was characterized by an overall reduction in firing rate towards a tonic firing at 15-70 spikes/s. Motoneurons remained almost unmodulated for all types of eye movement and thus eye position and velocity sensitivities were significantly reduced. Tonic firing ceased only when the animal became drowsy, but was restored by alerting stimuli. In addition, the inhibition of firing for off-directed saccades was more affected than the burst excitation during on-directed saccades, since in many cells pauses were almost negligible. These alterations could not be explained by adaptational changes in the movement of the non-injected eye. Finally, after 60 days the initial stages of recovery were observed. The present results indicate that the high dose of botulinum neurotoxin produces effects on the motoneuron not attributable to the functional disconnection alone, but to a direct effect of the neurotoxin in the motoneuron and/or its synaptic inputs.
Collapse
Affiliation(s)
- B Moreno-López
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
26
|
Pastor AM, Moreno-López B, De La Cruz RR, Delgado-García JM. Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: ultrastructural and synaptic alterations. Neuroscience 1997; 81:457-78. [PMID: 9300434 DOI: 10.1016/s0306-4522(97)00200-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The synaptic alterations induced in abducens motoneurons by the injection of 3 ng/kg of botulinum neurotoxin type A into the lateral rectus muscle were studied using ultrastructural and electrophysiological techniques. Motoneurons identified by the retrograde transport of horseradish peroxidase showed a progressive synaptic stripping already noticeable by four days post-injection which increased over the study period. By 35 days post-injection, the normal coverage of motoneurons by synaptic boutons (66.4 +/- 4.0%) significantly decreased to 27.2 +/- 4.0%. Synaptic boutons detached by a widening of the subsynaptic space but remained apposed by synaptic contacts and desmosomes to the motoneuron. Detachment did not affect equally flat and round vesicle-containing boutons. The control motoneuron had almost equal numbers of both types of boutons, but after 35 days post-injection the ratio of round to flat vesicle-containing boutons was 1.20 +/- 0.01. Synaptic boutons impinging on motoneurons showed signs of alterations in membrane turnover, as indicated by an increase in the number of synaptic vesicles and a decrease in the number of coated vesicles and synaptic vesicles near the active zone. Abducens motoneurons had a transient increase in soma size by 15 days that returned to normal at 35 days, but no signs of chromatolysis or organelle degeneration were seen. Accompanying the swelling of motoneurons, a 15-fold increase in the number of spines, very infrequent in controls, was observed. Spines located in the soma and proximal dendritic trunk received synaptic contacts from both flat and round vesicle-containing boutons that could be either partly detached or completely attached to the motoneuron. An increased turnover of the plasmatic membrane of the motoneuron was observed, as indicated by a four-fold increase in the number of somatic coated vesicles. Animals were implanted with bipolar electrodes in the ampulla of both horizontal semicircular canals for evoking contralateral excitatory and ipsilateral inhibitory postsynaptic potentials. Motoneurons were antidromically identified from the lateral rectus muscle. Synaptic potentials of vestibular origin were recorded in abducens motoneurons. In the period between two and six days post-injection, a complete abolition of inhibitory synaptic potentials was observed. By contrast, excitatory synaptic potentials remained, but were reduced by 82%. The imbalance between excitatory and inhibitory inputs to motoneurons induced a progressive increase of firing frequency within a few stimuli applied to the contralateral canal. Between 7 and 15 days post-injection, both excitatory and inhibitory postsynaptic potentials were virtually abolished and remained so up to the longest time checked (105 days). Some motoneurons recorded beyond 60 days post-injection showed signs of recovery of excitatory postsynaptic potentials. During the whole time-span studied, presynaptic wavelets were present, indicating no affecting of the conduction of afferent volleys to the abducens nucleus. Taken together, these data indicate that botulinum neurotoxin at high doses causes profound synaptic alterations in motoneurons responsible for the effects seen in the behavior of motoneurons recorded in alert animals.
Collapse
Affiliation(s)
- A M Pastor
- Laboratorio de Neurociencia, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
27
|
de la Cruz RR, Pastor AM, Delgado-García JM. Influence of the postsynaptic target on the functional properties of neurons in the adult mammalian central nervous system. Rev Neurosci 1996; 7:115-49. [PMID: 8819206 DOI: 10.1515/revneuro.1996.7.2.115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review we have attempted to summarize present knowledge concerning the regulatory role of target cells on the expression and maintenance of the neuronal phenotype during adulthood. It is well known that in early developmental stages the survival of neurons is maintained by specific neurotrophic factors derived from their target tissues. Neuronal survival is not the only phenotype that is regulated by target-derived neurotrophic factors since the expression of electrophysiological and cytochemical properties of neurons is also affected. However, a good deal of evidence indicates that the survival of neurons becomes less dependent on their targets in the adult stage. The question is to what extent are target cells still required for the maintenance of the pre-existing or programmed state of the neuron; i.e., what is the functional significance of target-derived factors during maturity? Studies addressing this question comprise a variety of neuronal systems and technical approaches and they indicate that trophic interactions, although less apparent, persist in maturity and are most easily revealed by experimental manipulation. In this respect, research has been directed to analyzing the consequences of disconnecting a group of neurons from their target-by either axotomy or selective target removal using different neurotoxins-and followed (or not) by the implant of a novel target, usually a piece of embryonic tissue. Numerous alterations have been described as taking place in neurons following axotomy, affecting their morphology, physiology and metabolism. All these neuronal properties return to normal values when regeneration is successful and reinnervation of the target is achieved. Nevertheless, most of the changes persist if reinnervation is prevented by any procedure. Although axotomy may represent, besides target disconnection, a cellular lesion, alternative approaches (e.g., blockade of either the axoplasmic transport or the conduction of action potentials) have been used yielding similar results. Moreover, in the adult mammalian central nervous system, neurotoxins have been used to eliminate a particular target selectively and to study the consequences on the intact but target-deprived presynaptic neurons. Target depletion performed by excitotoxic lesions is not followed by retrograde cell death, but targetless neurons exhibit several modifications such as reduction in soma size and in the staining intensity for neurotransmitter-synthesizing enzymes. Recently, the oculomotor system has been used as an experimental model for evaluating the functional effects of target removal on the premotor abducens internuclear neurons whose motoneuronal target is destroyed following the injection of toxic ricin into the extraocular medial rectus muscle. The functional characteristics of these abducens neurons recorded under alert conditions simultaneously with eye movements show noticeable changes after target loss, such as a general reduction in firing frequency and a loss of the discharge signals related to eye position and velocity. Nevertheless, the firing pattern of these targetless abducens internuclear neurons recovers in parallel with the establishment of synaptic contacts on a presumptive new target: the small oculomotor internuclear neurons located in proximity to the disappeared target motoneurons. The possibility that a new target may restore neuronal properties towards a normal state has been observed in other systems after axotomy and is also evident from experiments of transplantation of immature neurons into the lesioned central nervous system of adult mammals. It can be concluded that although target-derived factors may not control neuronal survival in the adult nervous system, they are required for the maintenance of the functional state of neurons, regulating numerous aspects of neuronal structure, chemistry and electro-physiology.(ABSTRUCT TRUNCATED)
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
28
|
Angelov DN, Gunkel A, Stennert E, Neiss WF. Phagocytic microglia during delayed neuronal loss in the facial nucleus of the rat: time course of the neuronofugal migration of brain macrophages. Glia 1995; 13:113-29. [PMID: 7649615 DOI: 10.1002/glia.440130205] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The injection of Fluoro-Gold (FG) into the whisker pad of rats yields a stable fluorescent labeling of the motoneurons in the lateral facial subnucleus. Following resection of 8-10 mm of the facial nerve, the microglia phagocytose the FG-preloaded neurons and assume the label. Employing this vital labeling of microglia in situ we studied the fate of same after completion of phagocytic activity. Starting at 56 days post resection (DPR) the FG-labeled microglia spread out from the lateral facial subdivision and invaded the entire facial nucleus. The quantitative analysis of this redistribution of the fluorescent marker revealed a prolonged increase in the number of labeled microglia strictly proportional to the delayed loss of neurons. The differentiation between microglia and shrunken neurons was performed with the new method of immunoquenching: the staining of vibratome sections with anti-rat neuron-specific enolase (NSE) combined with an ABC-HRP kit and DAB as detector totally extinguished (quenched) all fluorescence from the pre-labeled facial motoneurons. The fluorescent microglia were additionally stained with GSA I-B4 and OX-42, which should completely quench all fluorescence in the section. However, a few small round cells, always closely opposed to neuronal perikarya, still fluoresced. These NSE-negative, GSA I-B4 and OX-42 negative, but fluorescent cells may represent a new, immunologically uncharacterized microglial cell type, that participates in neuronophagia.
Collapse
Affiliation(s)
- D N Angelov
- Institut I für Anatomie, Universität zu Köln, Germany
| | | | | | | |
Collapse
|
29
|
de la Cruz RR, Pastor AM, Delgado-García JM. Effects of target depletion on adult mammalian central neurons: morphological correlates. Neuroscience 1994; 58:59-79. [PMID: 7512703 DOI: 10.1016/0306-4522(94)90156-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The morphological sequelae induced by target removal were studied on adult cat abducens internuclear neurons at both the somata and terminal axon arborization levels. The neuronal target--the medial rectus motoneurons of the oculomotor nucleus--was selectively destroyed by the injection of toxic ricin into the medial rectus muscle. Retrograde labeling with horseradish peroxidase demonstrated the survival of the entire population of abducens internuclear neurons up to one year after target removal. However, soma size was reduced by about 20% three months postlesion and maintained for one year. At the ultrastructural level, a considerable deafferentation of abducens internuclear neurons was observed at short intervals (i.e. 10 days after lesion). Large regions of the plasmalemma appeared devoid of presynaptic boutons but were covered instead by glial processes. The detachment of synaptic endings was selective on abducens internuclear neurons since nearby motoneurons always showed a normal synaptic coverage. By one month, abducens internuclear neurons recovered a normal density of receiving axosomatic synapses. Anterogradely biocytin-labeled axon terminals of abducens internuclear neurons remained in place after the lesion of medial rectus motoneurons, although with a progressive decrease in density. Ultrastructural examination of the oculomotor nucleus 10 days after the lesion revealed numerous empty spaces left by the dead motoneurons. Targetless boutons were observed surrounded by large extracellular gaps, still apposed to remnants of the postsynaptic membrane or, finally, ensheathed by glial processes. At longer intervals (> one month), the ultrastructure of the oculomotor nucleus was re-established and labeled boutons were observed contacting either unidentified dendrites within the neuropil or the soma and proximal dendrites of the oculomotor internuclear neurons, that project to the abducens nucleus. Labeled boutons were never found contacting with the oculomotor internuclear neurons either in control tissue or at short periods after ricin injection. These results indicate that the availability of undamaged neurons close to the lost target motoneurons might support the long-term survival of abducens internuclear neurons. Specifically, the oculomotor internuclear neurons, which likely suffer a partial deafferentation after medial rectus motoneuron loss, constitute a potential new target for the abducens internuclear neurons. The reinnervation of a new target might explain the recovery of synaptic and firing properties of abducens internuclear neurons after medial rectus motoneuron lesion, which occurred with a similar time course, as described in the accompanying paper [de la Cruz R. R. et al. (1994) Neuroscience 58, 81-97.].
Collapse
Affiliation(s)
- R R de la Cruz
- Departamento de Fisiología y Biología Animal, Facultad de Biología, Universidad de Sevilla, Spain
| | | | | |
Collapse
|