1
|
Ballaz SJ, Bourin M. Cholecystokinin-Mediated Neuromodulation of Anxiety and Schizophrenia: A "Dimmer-Switch" Hypothesis. Curr Neuropharmacol 2021; 19:925-938. [PMID: 33185164 PMCID: PMC8686311 DOI: 10.2174/1570159x18666201113145143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin (CCK), the most abundant brain neuropeptide, is involved in relevant behavioral functions like memory, cognition, and reward through its interactions with the opioid and dopaminergic systems in the limbic system. CCK excites neurons by binding two receptors, CCK1 and CCK2, expressed at low and high levels in the brain, respectively. Historically, CCK2 receptors have been related to the induction of panic attacks in humans. Disturbances in brain CCK expression also underlie the physiopathology of schizophrenia, which is attributed to the modulation by CCK1 receptors of the dopamine flux in the basal striatum. Despite this evidence, neither CCK2 receptor antagonists ameliorate human anxiety nor CCK agonists have consistently shown neuroleptic effects in clinical trials. A neglected aspect of the function of brain CCK is its neuromodulatory role in mental disorders. Interestingly, CCK is expressed in pivotal inhibitory interneurons that sculpt cortical dynamics and the flux of nerve impulses across corticolimbic areas and the excitatory projections to mesolimbic pathways. At the basal striatum, CCK modulates the excitability of glutamate, the release of inhibitory GABA, and the discharge of dopamine. Here we focus on how CCK may reduce rather than trigger anxiety by regulating its cognitive component. Adequate levels of CCK release in the basal striatum may control the interplay between cognition and reward circuitry, which is critical in schizophrenia. Hence, it is proposed that disturbances in the excitatory/ inhibitory interplay modulated by CCK may contribute to the imbalanced interaction between corticolimbic and mesolimbic neural activity found in anxiety and schizophrenia.
Collapse
Affiliation(s)
- Santiago J. Ballaz
- Address correspondence to this author at the School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador; Tel: 593 (06) 299 9100, ext. 2626; E-mail:
| | | |
Collapse
|
2
|
Xu L, Nan J, Lan Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front Neural Circuits 2020; 14:37. [PMID: 32694984 PMCID: PMC7338554 DOI: 10.3389/fncir.2020.00037] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
The comorbidity of depression and addiction has become a serious public health issue, and the relationship between these two disorders and their potential mechanisms has attracted extensive attention. Numerous studies have suggested that depression and addiction share common mechanisms and anatomical pathways. The nucleus accumbens (NAc) has long been considered a key brain region for regulating many behaviors, especially those related to depression and addiction. In this review article, we focus on the association between addiction and depression, highlighting the potential mediating role of the NAc in this comorbidity via the regulation of changes in the neural circuits and molecular signaling. To clarify the mechanisms underlying this association, we summarize evidence from overlapping reward neurocircuitry, the resemblance of cellular and molecular mechanisms, and common treatments. Understanding the interplay between these disorders should help guide clinical comorbidity prevention and the search for a new target for comorbidity treatment.
Collapse
Affiliation(s)
- Le Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| |
Collapse
|
3
|
Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neurosci Biobehav Rev 2017; 83:356-372. [DOI: 10.1016/j.neubiorev.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/25/2022]
|
4
|
Tomioka R, Sakimura K, Yanagawa Y. Corticofugal GABAergic projection neurons in the mouse frontal cortex. Front Neuroanat 2015; 9:133. [PMID: 26578895 PMCID: PMC4623159 DOI: 10.3389/fnana.2015.00133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023] Open
Abstract
Cortical projection neurons are classified by hodology in corticocortical, commissural and corticofugal subtypes. Although cortical projection neurons had been regarded as only glutamatergic neurons, recently corticocortical GABAergic projection neurons has been also reported in several species. Here, we demonstrate corticofugal GABAergic projection neurons in the mouse frontal cortex. We employed viral-vector-mediated anterograde tracing, classical retrograde tracing, and immunohistochemistry to characterize neocortical GABAergic projection neurons. Injections of the Cre-dependent adeno-associated virus into glutamate decarboxylase 67 (GAD67)-Cre knock-in mice revealed neocortical GABAergic projections widely to the forebrain, including the cerebral cortices, caudate putamen (CPu), ventral pallidum (VP), lateral globus pallidus (LGP), nucleus accumbens, and olfactory tubercle (Tu). Minor GABAergic projections were also found in the mediodorsal thalamic nucleus, diagonal band of Broca, medial globus pallidus, substantial nigra, and dorsal raphe nucleus. Retrograde tracing studies also demonstrated corticofugal GABAergic projection neurons in the mouse frontal cortex. Further immunohistochemical screening with neurochemical markers revealed the majority of corticostriatal GABAergic projection neurons were positive for somatostatin (SS)-immunoreactivity. In contrast, corticothalamic GABAergic projection neurons were not identified by representative neurochemical markers for GABAergic neurons. These findings suggest that corticofugal GABAergic projection neurons are heterogeneous in terms of their neurochemical properties and target nuclei, and provide axonal innervations mainly to the nuclei in the basal ganglia.
Collapse
Affiliation(s)
- Ryohei Tomioka
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University Kumamoto, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine Maebashi, Japan
| |
Collapse
|
5
|
Varga C, Tamas G, Barzo P, Olah S, Somogyi P. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex. Cereb Cortex 2015; 25:4430-49. [PMID: 25787832 PMCID: PMC4768361 DOI: 10.1093/cercor/bhv045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells.
Collapse
Affiliation(s)
- Csaba Varga
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Current address: Szentágothai Research Centre, Department of Physiology, University of Pécs, Pécs, Hungary
| | - Gabor Tamas
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Szabolcs Olah
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Peter Somogyi
- MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Salgado S, Kaplitt MG. The Nucleus Accumbens: A Comprehensive Review. Stereotact Funct Neurosurg 2015; 93:75-93. [PMID: 25720819 DOI: 10.1159/000368279] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Affiliation(s)
- Sanjay Salgado
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
7
|
Zwanzger P, Domschke K, Bradwejn J. Neuronal network of panic disorder: the role of the neuropeptide cholecystokinin. Depress Anxiety 2012; 29:762-74. [PMID: 22553078 DOI: 10.1002/da.21919] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/09/2012] [Accepted: 01/13/2012] [Indexed: 11/08/2022] Open
Abstract
Panic disorder (PD) is characterized by panic attacks, anticipatory anxiety and avoidance behavior. Its pathogenesis is complex and includes both neurobiological and psychological factors. With regard to neurobiological underpinnings, anxiety in humans seems to be mediated through a neuronal network, which involves several distinct brain regions, neuronal circuits and projections as well as neurotransmitters. A large body of evidence suggests that the neuropeptide cholecystokinin (CCK) might be an important modulator of this neuronal network. Key regions of the fear network, such as amygdala, hypothalamus, peraqueductal grey, or cortical regions seem to be connected by CCKergic pathways. CCK interacts with several anxiety-relevant neurotransmitters such as the serotonergic, GABA-ergic and noradrenergic system as well as with endocannabinoids, NPY and NPS. In humans, administration of CCK-4 reliably provokes panic attacks, which can be blocked by antipanic medication. Also, there is some support for a role of the CCK system in the genetic pathomechanism of PD with particularly strong evidence for the CCK gene itself and the CCK-2R (CCKBR) gene. Thus, it is hypothesized that genetic variants in the CCK system might contribute to the biological basis for the postulated CCK dysfunction in the fear network underlying PD. Taken together, a large body of evidence suggests a possible role for the neuropeptide CCK in PD with regard to neuroanatomical circuits, neurotransmitters and genetic factors. This review article proposes an extended hypothetical model for human PD, which integrates preclinical and clinical findings on CCK in addition to existing theories of the pathogenesis of PD.
Collapse
Affiliation(s)
- P Zwanzger
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany.
| | | | | |
Collapse
|
8
|
van Kuyck K, Gabriëls L, Cosyns P, Arckens L, Sturm V, Rasmussen S, Nuttin B. Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:375-91. [PMID: 17691326 DOI: 10.1007/978-3-211-33081-4_43] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrical stimulation (ES) in the brain is becoming a new treatment option in patients with treatment-resistant obsessive-compulsive disorder (OCD). A possible brain target might be the nucleus accumbens (NACC). This review aims to summarise the behavioural and physiological effects of ES in the NACC in humans and in animals and to discuss these findings with regard to neuroanatomical, electrophysiological and behavioural insights. The results clearly demonstrate that ES in the NACC has an effect on reward, activity, fight-or-flight, exploratory behaviour and food intake, with evidence for only moderate physiological effects. Seizures were rarely observed. Finally, the results of ES studies in patients with treatment-resistant OCD and in animal models for OCD are promising.
Collapse
Affiliation(s)
- K van Kuyck
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neuroscience and Psychiatry, Leuven Provisorium, Belgium
| | | | | | | | | | | | | |
Collapse
|
9
|
Mitchell JM, Bergren LJ, Chen KS, Fields HL. Cholecystokinin is necessary for the expression of morphine conditioned place preference. Pharmacol Biochem Behav 2006; 85:787-95. [PMID: 17196636 DOI: 10.1016/j.pbb.2006.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/08/2006] [Accepted: 11/20/2006] [Indexed: 11/16/2022]
Abstract
There is evidence that the neuropeptide cholecystokinin (CCK) is important for the rewarding effects of drugs of abuse. However, less is known regarding the role of CCK in drug seeking and craving. The present study investigated whether the CCK(B) antagonist L-365, 260 could block morphine-induced drug seeking using the conditioned place preference paradigm and whether the dopaminergic reward pathway contributes to the effect of L-365, 260 on expression of morphine place preference. We found that systemic administration of the CCK(B) antagonist L-365, 260 attenuates the expression of morphine-induced drug seeking as assessed using conditioned place preference (CPP) and shows that this effect is mediated by CCK(B) receptors in the anterior nucleus accumbens (NAcc). Additionally, we demonstrate that this effect is dependent on D(2) receptor activation in the anterior nucleus accumbens (NAcc). These results indicate that endogenous CCK modulates the incentive-salience of morphine-associated cues and suggest that CCK antagonists may be useful in the treatment of drug craving.
Collapse
Affiliation(s)
- Jennifer M Mitchell
- Department of Neurology, Box 0114, University of California at San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
10
|
Radu D, Tomkinson B, Zachrisson O, Weber G, de Belleroche J, Hirsch S, Lindefors N. Overlapping regional distribution of CCK and TPPII mRNAs in Cynomolgus monkey brain and correlated levels in human cerebral cortex (BA 10). Brain Res 2006; 1104:175-82. [PMID: 16822484 DOI: 10.1016/j.brainres.2006.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/09/2006] [Accepted: 05/19/2006] [Indexed: 11/21/2022]
Abstract
UNLABELLED Tripeptidyl peptidase II (TPPII) is a high molecular weight exopeptidase important in inactivating extracellular cholecystokinin (CCK). Our aims were to study the anatomical localization of TPPII and CCK mRNA in the Cynomolgus monkey brain as a basis for a possible functional anatomical connection between enzyme (TPPII) and substrate (CCK) and examine if indications of changes in substrate availability in the human brain might be reflected in changes of levels of TPPII mRNA. METHODS mRNA in situ hybridization on postmortem brain from patients having had a schizophrenia diagnosis as compared to controls and on monkey and rat brain slices. RESULTS overlapping distribution patterns of mRNAs for TPPII and CCK in rat and monkey. High amounts of TPPII mRNA are seen in the neocortex, especially in the frontal region and the hippocampus. TPPII mRNA is also present in the basal ganglia and cerebellum where CCK immunoreactivity and/or CCK B receptors have been found in earlier studies, suggesting presence of CCK-ergic afferents from other brain regions. Levels of mRNAs for CCK and TPPII show a positive correlation in postmortem human cerebral cortex Brodmann area (BA) 10. TPPII mRNA might be affected following schizophrenia. DISCUSSION overall TPPII and CCK mRNA show a similar distribution in rat and monkey brain, confirming and extending earlier studies in rodents. In addition, correlated levels of TPPII and CCK mRNA in human BA 10 corroborate a functional link between CCK and TPPII in the human brain.
Collapse
Affiliation(s)
- Diana Radu
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
11
|
Cain BM, Connolly K, Blum A, Vishnuvardhan D, Marchand JE, Beinfeld MC, Vishnuvardham D. Distribution and colocalization of cholecystokinin with the prohormone convertase enzymes PC1, PC2, and PC5 in rat brain. J Comp Neurol 2004; 467:307-25. [PMID: 14608596 DOI: 10.1002/cne.10924] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During posttranslational processing to generate CCK 8, pro-cholecystokinin (CCK) undergoes endoproteolytic cleavage at three sites. Several studies using endocrine and neuronal tumor cells in culture and recombinant enzymes and synthetic substrates in vitro have pointed to the subtilisin/kexin-like enzymes prohormone convertase (PC) 1, PC2, and PC5 as potential candidates for these endoproteolytic cleavages. In these experimental models, they all appear to be able to cleave pro-CCK to make the correct products. One rodent model has provided information about the role of PC2. PC2 knockout mouse brains had less CCK 8 than wild-type, although a substantial amount of CCK was still present. The degree to which CCK levels were reduced in these mice was regionally specific. These data indicated that PC2 is important for normal production of CCK but that it is not the only endoprotease that is involved in CCK processing. To evaluate whether PC1 and PC5 are possible candidates for the other enzymes involved in CCK processing, the distribution of PC1, PC2, and PC5 mRNA was studied in rat brain. Their colocalization with CCK mRNA was examined using double-label in situ hybridization. PC2 was the most abundant of these enzymes in terms of the intensity and number of cells labeled. It was widely colocalized with CCK. PC1 and PC5 mRNA-positive cells were less abundant, but they were also widely distributed and strongly colocalized with CCK in the cerebral cortex, hippocampus, amygdala, ventral tegmental area, and substantia nigra zona compacta. The degree of colocalization of the enzymes with CCK was regionally specific. It is clear that PC1 and PC5 are extensively colocalized with CCK and could be participating in CCK processing in the rat brain and may be able to substitute for PC2 in its absence. These three enzymes may represent a redundant system to ensure production of biologically active CCK.
Collapse
Affiliation(s)
- Brian M Cain
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Crosson B, Benefield H, Cato MA, Sadek JR, Moore AB, Wierenga CE, Gopinath K, Soltysik D, Bauer RM, Auerbach EJ, Gökçay D, Leonard CM, Briggs RW. Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes. J Int Neuropsychol Soc 2003; 9:1061-77. [PMID: 14738287 DOI: 10.1017/s135561770397010x] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 04/14/2003] [Indexed: 11/06/2022]
Abstract
fMRI was used to determine the frontal, basal ganglia, and thalamic structures engaged by three facets of language generation: lexical status of generated items, the use of semantic vs. phonological information during language generation, and rate of generation. During fMRI, 21 neurologically normal subjects performed four tasks: generation of nonsense syllables given beginning and ending consonant blends, generation of words given a rhyming word, generation of words given a semantic category at a fast rate (matched to the rate of nonsense syllable generation), and generation of words given a semantic category at a slow rate (matched to the rate of generating of rhyming words). Components of a left pre-SMA-dorsal caudate nucleus-ventral anterior thalamic loop were active during word generation from rhyming or category cues but not during nonsense syllable generation. Findings indicate that this loop is involved in retrieving words from pre-existing lexical stores. Relatively diffuse activity in the right basal ganglia (caudate nucleus and putamen) also was found during word-generation tasks but not during nonsense syllable generation. Given the relative absence of right frontal activity during the word generation tasks, we suggest that the right basal ganglia activity serves to suppress right frontal activity, preventing right frontal structures from interfering with language production. Current findings establish roles for the left and the right basal ganglia in word generation. Hypotheses are discussed for future research to help refine our understanding of basal ganglia functions in language generation.
Collapse
Affiliation(s)
- Bruce Crosson
- McKnight Brain Institute, University of Florida, Gainsville, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Beinfeld MC. What we know and what we need to know about the role of endogenous CCK in psychostimulant sensitization. Life Sci 2003; 73:643-54. [PMID: 12801586 DOI: 10.1016/s0024-3205(03)00384-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The unique distribution of CCK and its receptors and its co-localization with dopamine makes it ideally situated to pay a role in dopamine-mediated reward and psychostimulant sensitization. A number of studies support the hypothesis that CCK acting through the CCK 1 and CCK 2 receptors is an endogenous modulator of dopamine neurotransmission. Behavioral studies with CCK antagonists and CCK 1 receptor mutant rats support a role for endogenous CCK in behavioral sensitization to psychostimulants. CCK microdialysis studies in the nucleus accumbens (NAC) have demonstrated that extracellular CCK is increased in the NAC by psychostimulants, providing neurochemical evidence that CCK could be involved in the behavioral response to psychostimulants. A model for how CCK may be acting in multiple brain regions to foster sensitization is presented and the gaps in our knowledge about the role of CCK in psychostimulant sensitization are described.
Collapse
Affiliation(s)
- Margery C Beinfeld
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
| |
Collapse
|
14
|
Hökfelt T, Blacker D, Broberger C, Herrera-Marschitz M, Snyder G, Fisone G, Cortés R, Morino P, You ZB, Ogren SO. Some aspects on the anatomy and function of central cholecystokinin systems. PHARMACOLOGY & TOXICOLOGY 2002; 91:382-6. [PMID: 12688383 DOI: 10.1034/j.1600-0773.2002.910617.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The distribution of some cholecystokinin (CCK) systems in the rat brain is reviewed focusing on mesencephalic dopamine neurones which coexpress CCK and, in particular, on cortico-striatal CCK neurones which probably have glutamate as their co-transmitter. Functional studies based on the effect of several CCK(B) antagonists on phencyclidine-induced motility suggest that CCK is involved in locomotor behaviour causing inhibition in phencyclidine-treated habituated rats. In contrast, in unhabituated rats CCK stimulates exploratory behaviour. These effects may be related to the cortico-striatal CCK/glutamatergic pathway. Moreover, these studies provide evidence for endogenous release of a neuropeptide with behavioural consequences.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wilms K, Vierig G, Davidowa H. Interactive effects of cholecystokinin-8S and various serotonin receptor agonists on the firing activity of neostriatal neuronesin rats. Neuropeptides 2001; 35:257-70. [PMID: 12030810 DOI: 10.1054/npep.2001.0875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In rats anaesthetized with urethane single unit activity was extracellularly recorded in the neostriatum, and several drugs were microiontophoretically ejected. Separate administration of the sulfated octapeptide cholecystokinin (CCK-8S), serotonin (5-HT) or 8-OH-DPAT (a 5-HT(1A/7) receptor agonist) predominantly induced increases in the neuronal discharge rates (Wilcoxon test significant P<0.05), whereas the 5-HT(2A/2C) receptor agonist DOI affected only a few neurones and mainly reduced firing. After coadministration of CCK-8S and serotonin, activating effects also predominated (Wt P<0.05), but the neuronal responsiveness was significantly reduced (Chi2P<0.01). Similarly, concomitant application of CCK-8S and 8-OH-DPAT led to significant activation accompanied with a reduction of inhibitory effects. The block of serotonin- or 8-OH-DPAT-effects through specific 5-HT(1A) receptor antagonists implies the involvement of this receptor subtype within the striatum. In conclusion, concomitant action of CCK-8S and serotonin induces a mean level of neuronal activation that might promote normal function.
Collapse
Affiliation(s)
- K Wilms
- Johannes-Mueller-Institute of Physiology, Charité, Humboldt University, Berlin, Germany
| | | | | |
Collapse
|
16
|
Lodge DJ, Lawrence AJ. Comparative analysis of the central CCK system in Fawn Hooded and Wistar Kyoto rats: extended localisation of CCK-A receptors throughout the rat brain using a novel radioligand. REGULATORY PEPTIDES 2001; 99:191-201. [PMID: 11384782 DOI: 10.1016/s0167-0115(01)00256-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuropeptide cholecystokinin has been implicated in the actions of a number of central processes including anxiety and reward. For this reason, the aim of the present study was to compare the density of CCK-A and -B receptors and the mRNA encoding preproCCK throughout the brains of an alcohol-preferring (Fawn Hooded) rat strain with that of a non-alcohol-preferring (Wistar Kyoto) strain of rat. Our study revealed significant differences with regard to the central CCK system of the FH compared to the WKY rat, including differences in CCK-A receptor binding throughout the dorsal medulla, and altered CCK-B binding density throughout the cerebral cortex and reticular nucleus of the thalamus. The most striking result, given the altered behavioural phenotype of the FH rat, was the 33% lower density of CCKmRNA measured throughout the ventral tegmental area of the FH rat when compared to the WKY. This study also reports on a protocol to utilise a novel radioligand, [125I]-D-Tyr-Gly-A-71378, for autoradiographic detection of CCK-A receptors throughout the rat brain. As previously reported, CCK-A receptors were located throughout the area postrema, interpeduncular nucleus and nucleus tractus solitarii; however, binding to CCK-A receptors was also visualised throughout the medial pre-optic area, the arcuate nucleus and the circumventricular regions of the ventral hypothalamus, regions known to contain CCK-A receptors but which were previously undetectable using autoradiography in rat brain.
Collapse
Affiliation(s)
- D J Lodge
- Department of Pharmacology, Monash University, Box 13E, Victoria 3800, Clayton, Australia.
| | | |
Collapse
|
17
|
Wise RA. Interactions between medial prefrontal cortex and meso-limbic components of brain reward circuitry. PROGRESS IN BRAIN RESEARCH 2001; 126:255-62. [PMID: 11105651 DOI: 10.1016/s0079-6123(00)26018-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- R A Wise
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
18
|
Schade R, Henklein P, Harms C, Jonas L, Lautenschlager M, Schöneberg T, de Weerth A, Hlinak A, Hörtnagl H. New aspects of cholecystokinin processing and visualisation in the rat brain by using antibodies raised in chickens and rabbits. Altern Lab Anim 2000; 28:575-601. [PMID: 25144929 DOI: 10.1177/026119290002800406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- R Schade
- Institute of Pharmacology and Toxicology, Medical Faculty, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lodge DJ, Short JL, Mercer LD, Beart PM, Lawrence AJ. CCK/dopamine interactions in Fawn-Hooded and Wistar-Kyoto rat brain. Peptides 2000; 21:379-86. [PMID: 10793220 DOI: 10.1016/s0196-9781(00)00159-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to compare the actions of CCK neuropeptides within the nucleus accumbens (N.Acc) of alcohol preferring (Fawn-Hooded, FH) and alcohol nonpreferring (Wistar-Kyoto, WKY) rats. CCK-8S (30-300 nM) facilitated the K(+) stimulated release of [(3)H]dopamine (DA) from N.Acc prisms in both rat strains, whereas CCK-4 (30 nM-1 microM) caused a significant decrease of evoked [(3)H]DA in the FH rat only. A scattered distribution of CCK-A and -B receptor immunopositive varicose fibers were visualized throughout the N.Acc of both rat strains along with a topographic distribution of CCK receptor positive cells throughout the ventral mesencephalon.
Collapse
Affiliation(s)
- D J Lodge
- Department of Pharmacology, Monash University, Wellington Road, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
20
|
Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. J Neurosci 1998. [PMID: 9698337 DOI: 10.1523/jneurosci.18-16-06492.1998] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivo microdialysis, radioimmunoassay, and HPLC with electrochemical or fluorometric detection were used to investigate the release of cholecystokinin (CCK), glutamate (Glu), and dopamine (DA) in nucleus accumbens septi (NAS) as a function of ipsilateral electrical stimulation of medial prefrontal cortex (mPFC). CCK was progressively elevated by mPFC stimulation at 50-200 Hz. Stimulation-induced CCK release was intensity-dependent at 250-700 microA. NAS Glu and DA levels were each elevated by stimulation at 25-400 Hz; the dopamine metabolites DOPAC and homovanillic acid were increased by stimulation at 100-400 Hz. When rats were trained to lever press for mPFC stimulation, the stimulation induced similar elevations of each of the three transmitters to those seen with experimenter-administered stimulation. Perfusion of 1 mM kynurenic acid (Kyn) into either the ventral tegmental area (VTA) or NAS blocked lever pressing for mPFC stimulation. VTA, but not NAS, perfusion of Kyn significantly attenuated the increases in NAS DA levels induced by mPFC stimulation. Kyn did not affect NAS CCK or Glu levels when perfused into either the VTA or NAS. The present results are consistent with histochemical evidence and provide the first in vivo evidence for the existence of a releasable pool of CCK in the NAS originating from the mPFC. Although dopamine is the transmitter most closely linked to reward function, it was CCK that showed frequency-dependent differences in release corresponding most closely to rewarding efficacy of the stimulation. Although not essential for the reward signal itself, coreleased CCK may modulate the impact of the glutamatergic action in this behavior.
Collapse
|
21
|
White NM, Hiroi N. Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proc Natl Acad Sci U S A 1998; 95:6486-91. [PMID: 9600993 PMCID: PMC27819 DOI: 10.1073/pnas.95.11.6486] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1997] [Indexed: 02/07/2023] Open
Abstract
Histological sections of the mammalian striatum reveal a "matrix" that is histochemically distinguishable from patches, or "striosomes". The latter are cross sections of a compartment that consists primarily of tube-shaped structures radiating through the matrix. As a test of the hypothesis that the function of the striosome/patch compartment includes the mediation of behaviors related to reward, the present study examined electrical self-stimulation of the caudoputamen in rats with electrodes in either of the two compartments. Rats acquired and maintained bar-pressing responses that were contingent on stimulation through electrodes making contact with striosomes/patches more reliably than animals with electrodes terminating exclusively in the matrix. The results provide in vivo evidence that the striosome/patch compartment is functionally differentiated from the matrix compartment: Stimulation centered in or around the striosome/patch compartment but not in the matrix led to rapid acquisition of a new behavior.
Collapse
Affiliation(s)
- N M White
- Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec, Canada H3A 1B1.
| | | |
Collapse
|
22
|
Abstract
Behavioral and pharmacological evidence has shown a different and opposite role of the neuropeptide cholecystokinin (CCK) on the dopamine (DA) function in the caudal versus rostral part of the nucleus accumbens. Previous reports have speculated that the caudal region of the nucleus accumbens would receive CCKergic innervation from dopaminergic neurons of the mesencephalic ventral tegmental area, whereas the CCKergic input to the rostral accumbens would originate in non-dopaminergic neurons from extra-mesencephalic areas of the brain. In the present study, this issue was addressed using retrograde tracing techniques in conjunction with immunocytochemistry. Retrograde tracers were injected in the three compartments of the accumbens (i.e., rostral pole, core and septal shell). In summary, our results demonstrate that 1) the main CCKergic input of the accumbens originates in the ventral mesencephalon; 2) the rostral pole is equally innervated by CCK neurons projecting from both substantia nigra pars compacta and ventral tegmental area; 3) the primary source of CCK innervation of the accumbal core is the substantia nigra pars compacta; and 4) whereas the CCKergic input to the septal shell originates primarily in the ventral tegmental area. Additionally, our results also showed that most of the CCKergic neurons projecting to any of the accumbal compartments also produce dopamine. These data constitute the first neuroanatomical evidence for the differential effects of CCK on dopamine actions in the different regions of the nucleus accumbens.
Collapse
Affiliation(s)
- A J Lança
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Ladurelle N, Keller G, Blommaert A, Roques BP, Daugé V. The CCK-B agonist, BC264, increases dopamine in the nucleus accumbens and facilitates motivation and attention after intraperitoneal injection in rats. Eur J Neurosci 1997; 9:1804-14. [PMID: 9383203 DOI: 10.1111/j.1460-9568.1997.tb00747.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although it is known that panic attacks are triggered by the cholecystokinin fragment CCK4, the specific involvement of peripheral or central cholecystokinin CCK receptors in various adaptive processes such as emotion, memory and anxiety has yet to be demonstrated. With this aim, we have investigated the biochemical and pharmacological effects resulting from the administration of BC264, a highly potent and selective CCK-B agonist able to cross the blood-brain barrier. Very low doses of BC264 (microg/kg i.p.), increased the exploration of animals submitted to an unknown territory but were devoid of anxiogenic properties in the elevated plus maze. BC264 increased locomotion and rearings of rats newly placed in an open field and improved their spontaneous alternation in a Y-maze. The use of vagotomized animals showed that the increased alternation induced by BC264 did not require an intact vagus nerve, unlike the locomotor activation. These behavioural effects, prevented by the prior i.p. administration of the CCK-B antagonist L-365,260 but not by the CCK-A antagonist L-364,718, were shown to depend on dopaminergic systems, since they were blocked by D1 (SCH23390, 25 microg/kg i.p.) or D2 (sulpiride, 50 or 100 mg/kg i.p.) antagonists. In addition, bilateral perfusion in freely moving rats of BC264 at pharmacologically active doses, using a newly designed microdialysis system, was found to increase the extracellular levels of DA, DOPAC and HVA in the anterior part of the nucleus accumbens. These results show that activation of CCK-B receptors by BC264 does not produce anxiogenic-like effects but appears to improve motivation and attention, whereas other CCK-B agonists such as BocCCK4 induce anxiogenic responses. Several explanations, including the existence of different sub-sites of the CCK-B receptor, could account for these differential effects.
Collapse
Affiliation(s)
- N Ladurelle
- Département de Pharmacochimie Moléculaire et Structurale, U 266 INSERM, URA D 1500 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | |
Collapse
|
24
|
Mulder AB, Arts MP, Lopes da Silva FH. Short- and long-term plasticity of the hippocampus to nucleus accumbens and prefrontal cortex pathways in the rat, in vivo. Eur J Neurosci 1997; 9:1603-11. [PMID: 9283815 DOI: 10.1111/j.1460-9568.1997.tb01518.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pathways from the hippocampal formation to the nucleus accumbens and the prefrontal cortex are likely to play a role in several aspects of learning and memory. In the present study we addressed the question of how plastic changes in these structures may occur simultaneously. This question can be studied in an appropriate way in the hippocampal/fornix-fimbria to prefrontal cortex/nucleus accumbens system, since electrical stimulation of the fornix-fimbria fibre bundle evokes characteristic field potentials in the two target areas simultaneously. First, we examined the termination field in the nucleus accumbens (medial shell and core region with an extension into the ventro-medial caudate-putamen) and the prefrontal cortex (deeper layers of the ventral prelimbic and ventral infralimbic areas) by recording single unit activity evoked by stimulation of fornix-fimbria fibres in halothane anaesthetized rats. Second, we studied short-term plasticity, namely paired pulse facilitation, in these two areas upon stimulation of the fornix-fimbria fibres. In the nucleus accumbens, paired pulse facilitation was encountered for double pulse intervals between 25 and 500 ms, peaking around 100 ms. In the medial prefrontal cortex it was confined to intervals between 25 and 200 ms, with a peak around 75 ms. Third, we investigated whether LTP could be elicited simultaneously in the two target structures by a single tetanic stimulation (50 Hz, 2 s) of the fornix-fimbria fibres. LTP that was sustained for more than 90 min in the medial prefrontal cortex, reached levels of 130% of control values. In the nucleus accumbens, however, only a transient form of potentiation was found which lasted no more than 60 min. These data show that synaptic weights can be changed in several target structures of the hippocampal formation, simultaneously, in a distributed way.
Collapse
Affiliation(s)
- A B Mulder
- Graduate School for Neurosciences, Institute of Neurobiology, Faculty of Biology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
25
|
Mazurek MF, Garside S, Beal MF. Cortical peptide changes in Huntington's disease may be independent of striatal degeneration. Ann Neurol 1997; 41:540-7. [PMID: 9124812 DOI: 10.1002/ana.410410418] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Patients with Huntington's disease (HD) develop pathological changes in cerebral cortex as well as in striatum. We studied levels of neuropeptide immunoreactivity in 13 areas of postmortem cerebral cortex dissected from 24 cases of HD and 12 controls. Concentrations of immunoreactive cholecystokinin (CCK-LI) were consistently elevated 57 to 153% in HD cortex. Levels of vasoactive intestinal polypeptide (VIP-LI) and neuropeptide Y (NPY-LI) were significantly increased in 10 and 8 of the 13 cortical regions, respectively. Concentrations of somatostatin (SRIF-LI) were increased in only 3 areas, while substance P (SP-LI) was, for the most part, unchanged. Detailed analyses of the CCK-LI and VIP-LI data showed there to be no relationship between the increased cortical peptide levels and the degree of striatal atrophy. We studied the same cortical peptides in rats with long-standing striatal lesions and found no significant changes of CCK-LI, NPY-LI, VIP-LI, or SRIF-LI in any of the 8 cortical regions that were examined. These results indicate that there are widespread and differential changes in cortical neuropeptide systems in HD and that these changes occur independently of the striatal pathology that characterizes the illness.
Collapse
Affiliation(s)
- M F Mazurek
- Department of Medicine (Neurology), McMaster University Medical Centre, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
26
|
Meziane H, Devigne C, Tramu G, Soumireu-Mourat B. Distribution of cholecystokinin immunoreactivity in the BALB/c mouse forebrain: an immunocytochemical study. J Chem Neuroanat 1997; 12:191-209. [PMID: 9141651 DOI: 10.1016/s0891-0618(96)00211-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study describes cholecystokinin (CCK) immunoreactivity (CCK-IR) distribution in the brains of control and colchicine-treated mice. In the brains of control mice, the CCK-IR strongly revealed numerous axons and terminals. Perikarya exhibiting a faint to moderate immunoreactivity were also observed in areas such as cortices, hippocampus, amygdala, septum, and thalamus. The colchicine treatment did not seem to notably affect the brain CCK-IR innervation, but resulted in profound changes of the perikaryal staining. Indeed, the regions, which contained numerous moderately stained perikarya in the control animals, exhibited after colchicine treatment immunoreactive perikarya intensely stained but only in moderate number. This feature obviously appeared in the cortex in which, in addition to strongly stained perikarya, colchicine induced the appearance of numerous CCK-IR hillocks. In the lateral amygdala and thalamus of colchicine-treated animals, the somatic immunoreactivity was considerably decreased. The regions, such as paraventricular hypothalamic nucleus and bed nucleus of the stria terminalis, which in the control animals did not exhibit any stained perikaryon, showed a high number of strongly stained cell bodies after colchicine treatment. This study, mapping the mouse forebrain CCK-IR, demonstrated a wide distribution of this peptide. Moreover, CCK-IR is spontaneously visible in neurons of untreated mouse in some brain areas previously shown in the rat to exhibit CCK mRNA, but no clear perikaryal CCK-IR even after colchicine treatment.
Collapse
Affiliation(s)
- H Meziane
- Laboratoire de Neurobiologie des Comportements, URA-CNRS 372, Universite de Provence, IBHOP Traverse Charles Susini, Marseille, France.
| | | | | | | |
Collapse
|
27
|
Gorelova N, Yang CR. The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience 1997; 76:689-706. [PMID: 9135043 DOI: 10.1016/s0306-4522(96)00380-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Corticostriatal neurons linking the prefrontal cortex and the nucleus accumbens connect the terminal fields of the ascending mesotelencephalic dopamine neurons and may potentially mediate cortical dopaminergic modulation of subcortical dopamine transmission. In our attempt to develop a brain slice preparation that maximally preserves this prefrontal accumbens pathway for in vitro electrophysiological studies, knowledge of the complete course of its projection is critical. Microinjection of biotin-dextran amine as an anterograde tracer into the prefrontal cortex revealed the following in the coronal, sagittal and oblique planes of rat brain. (1) Axonal fibers from the rostral prelimbic cortex projected at an angle of approximately 60 degrees to the horizontal plane through the infralimbic region and mainly entered the rostromedial accumbens. Some also chose a ventral route to enter the "core" of the accumbens. (2) From the central ventral prelimbic regions, axons spread out diffusely and descended to the dorsal accumbens. They then entered throughout the rostral-caudal "shell" of the nucleus accumbens. (3) From the caudal prelimbic region of the prefrontal cortex, axonal fibers descended approximately 10 degrees to the coronal plane and entered the dorsal nucleus accumbens and the caudate nucleus. The denser caudate-projecting fibers gave rise to collaterals that entered the accumbens "core". These results suggest that brain slices that preserve the rostral prelimbic-medial accumbens pathway can be obtained by an oblique (approximately 60 degrees) cut, whereas preservation of the caudal prefrontal-accumbens neurons necessitates a 10 degrees cut. Finally, in whole-cell patch-clamp recordings of accumbens neurons in such slices, orthodromically evoked excitatory postsynaptic potentials to deep layer prefrontal cortical stimulation were observed, thus confirming the functional preservation of portions of this prefrontal cortex nucleus accumbens pathway.
Collapse
Affiliation(s)
- N Gorelova
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
28
|
Blacker D, Broberger C, Ogren SO, Hökfelt T. Cholecystokinin B receptor antagonists enhance the locomotor response to the N-methyl-D-aspartate antagonists phencyclidine and dizocilpine maleate. Neuroscience 1997; 76:1057-67. [PMID: 9027866 DOI: 10.1016/s0306-4522(96)00472-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cholecystokinin antagonists L-740,093, L-365,260, LY-288513 and CI988, which are all selective for the cholecystokininB receptor subtype, were examined for their ability to modulate locomotor activity induced by the non-competitive N-methyl-D-aspartate receptor antagonists phencyclidine and dizocilpine maleate (MK-801) in habituated rats. It was found that the locomotor effects (motility, locomotion) produced by subcutaneous administration of phencyclidine (2 mg/kg) were significantly potentiated by intraperitoneal (i.p.) administration of L-740,093 (1 mg/kg), L-365,260 (10 mg/kg), LY-288513 (10 mg/kg), but not CI-988 (10 mg/kg). Locomotor activity induced by subcutaneous administration of MK-801 (0.15 mg/kg) was potentiated by intraperitoneal L-740,093 (0.3, 1 and 3 mg/kg). L-740,093, L-365,260, LY-288513 and CI-988 administered alone did not alter spontaneous locomotor activity (motility) as compared to vehicle/saline controls. However, when these antagonists were administered to naive, unhabituated rats, L-365,260 and LY-288513 caused a significant reduction in motility compared to the vehicle control. These findings suggest that, although cholecystokinin may be involved in exploratory behaviour exhibited by rats in a novel environment (unhabituated rats), its role is negligible in rats subjected to a familiar environment (habituated rats). Furthermore, these results support the interpretation that cholecystokinin has a suppressant effect on locomotion elicited by phencyclidine and MK-801, and that this inhibitory action of cholecystokinin is mediated via the cholecystokininB receptor, since it can be eliminated by administration of cholecystokininB antagonists. It is suggested that the site of action of the cholecystokininB receptors involves mainly the cholecystokinin/glutamate projection from the cortex to the anterior nucleus accumbens and/or striatum. Finally, the present study provides two examples of endogenous release of a neuropeptide resulting in behavioural consequences.
Collapse
Affiliation(s)
- D Blacker
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
29
|
Wu T, Wang HL. The excitatory effect of cholecystokinin on rat neostriatal neurons: ionic and molecular mechanisms. Eur J Pharmacol 1996; 307:125-32. [PMID: 8832213 DOI: 10.1016/0014-2999(96)00213-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whole-cell patch-clamp recordings were performed to study ionic and molecular mechanisms by which cholecystokinin (CCK) peptides modulate the membrane excitability of acutely dissociated rat neostriatal neurons. Immunohistochemical staining studies indicated that about 95% of acutely isolated neostriatal neurons were GABA(gamma-aminobutyric acid)ergic medium-sized cells. During current-clamp recordings, sulfated cholecystokinin octapeptide (CCK-8) depolarized neostriatal neurons and evoked action potentials. During voltage-clamp recordings, CCK-8 induced inward currents at negative membrane potentials by increasing the voltage-insensitive and non-selective cationic conductance. Cholecystokinin tetrapeptide (CCK-4), a selective CCKB receptor agonist, also evoked cationic currents. The CCK-8-induced cation currents were antagonized by PD135,158 (4-{[2-[[3-(1H-indol-3yl)-2-mehtyl-1-oxo-2-[[[1.7.7.-trimeth yl-bicyclo [2.2.1]hept-2-yl)oxy]carbonyl]amino]propyl]amino]-1-phenylethyl]amino-4- oxo- [1S-1 alpha, 2 beta [S*(S*)]4 alpha]}-butanoate N-methyl-D-glucamine), a highly specific and potent CCKB receptor antagonist. The CCK-8-evoked inward currents were blocked by the internal perfusion of 1 mM GDP-beta-S. In neostriatal neurons dialyzed with 0.5 mM GTP-gamma-S, the cationic currents produced by CCK-8 became irreversible. Pretreating neostriatal neurons with 500 ng/ml pertussis toxin did not prevent CCK-8 from evoking cationic currents. Internal administration of heparin (2 mg/ml), an inositol 1,4,5-trisphosphate (IP3) receptor antagonist, and buffering of intracellular calcium with the Ca(2+)-chelator, BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, 10 mM), suppressed CCK-8-evoked cationic currents. These findings suggest that, by activating CCKB receptors, CCK-8 excites rat neostriatal neurons through enhancing a non-selective cationic conductance and that pertussis toxin-insensitive G-proteins mediate CCK-8 enhancement of the cationic conductance. The coupling mechanism via G-proteins is likely to involve the production of IP3, and the subsequent IP3-evoked Ca2+ release leads to the opening of non-selective cation channels.
Collapse
Affiliation(s)
- T Wu
- Department of Neurology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC
| | | |
Collapse
|
30
|
Vargo JM, Marshall JF. Time-dependent changes in dopamine agonist-induced striatal Fos immunoreactivity are related to sensory neglect and its recovery after unilateral prefrontal cortex injury. Synapse 1995; 20:305-15. [PMID: 7482290 DOI: 10.1002/syn.890200404] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study examined interactions between the corticostriatal glutamatergic system and the nigrostriatal dopaminergic system via immunocytochemical examination of dopamine (DA) agonist induction of the striatal immediate early gene product Fos following cortical injury. After unilateral aspiration of the medial agranular cortex (AGm) region of prefrontal cortex, rats were tested for orientation to visual, tactile, and auditory stimuli. Fos immunoreactivity induced by d-amphetamine (5 mg/kg) or apomorphine (5 mg/kg) was quantified in dorsolateral and ventrolateral regions of caudate-putamen (CPu) in rats still demonstrating sensory neglect (5 days postsurgery) and in rats recovered from sensory neglect produced by AGm ablation (29+ days postsurgery). The pattern of immunoreactivity of rats still demonstrating neglect differed from that of unlesioned rats or recovered AGm-ablated rats. In rats demonstrating sensory neglect, d-amphetamine or apomorphine induction of Fos in the ipsilateral CPu was reduced by about 40% compared to the contralateral CPu or to comparable readings in unlesioned controls. These asymmetries were restricted to dorsolateral CPu, the region receiving the densest input from AGm. In contrast, recovered AGm-ablated rats had DA agonist-induced striatal Fos immunoreactivity that was symmetrical between the two hemispheres and comparable to control values. These findings indicate that adaptations involving the striatal medium spiny neuron, a site of convergence of cortical glutamatergic and nigral dopaminergic afferents, may contribute to recovery from behavioral deficits resulting from neocortical injury.
Collapse
Affiliation(s)
- J M Vargo
- Department of Psychobiology, University of California, Irvine 92717-4550, USA
| | | |
Collapse
|
31
|
Daugé V, Roques BP. Opioid and CCK Systems in Anxiety and Reward. NEUROSCIENCE INTELLIGENCE UNIT 1995. [DOI: 10.1007/978-3-662-21705-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Morino P, Herrera-Marschitz M, Castel MN, Ungerstedt U, Varro A, Dockray G, Hökfelt T. Cholecystokinin in cortico-striatal neurons in the rat: immunohistochemical studies at the light and electron microscopical level. Eur J Neurosci 1994; 6:681-92. [PMID: 7915604 DOI: 10.1111/j.1460-9568.1994.tb00980.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using immunohistochemical techniques we have analysed the occurrence of cholecystokinin-like immunoreactivity (CCK-LI) in the cortex and striatum of the rat. In the cortex few CCK-immunoreactive cell bodies, mainly interneurons, could be visualized in normal brains, and a moderately dense network of CCK fibres was also observed. Injections of colchicine into the striatum led to an accumulation, in the surrounding cortex, of CCK-LI in the initial segment of the axon of numerous cells. In addition, with an antibody to pro-CCK several cell bodies, many of which with pyramidal shape, could be visualized. Furthermore, retrograde staining of cortical cells after unilateral injection of wheat germ agglutinin into the striatum revealed bilaterally in the cortex a number of labelled cells that also contained pro-CCK-LI. In the striatum CCK-LI was diffusely distributed in fine fibres as well as in patches of fibres located in the medial aspects. After decortication followed by callosotomy these patches disappeared on the side ipsilateral to the lesion, while the pattern of immunoreactivity of several other peptides in the striatum was unaffected. No change was observed on the contralateral side. Decortication or callosotomy alone did not affect the pattern of CCK-LI. At the ultrastructural level several CCK-immunoreactive terminals could be observed, mostly with clear, densely packed vesicles and straight asymmetric synaptic contacts with small spines, characteristic for terminals of cortical origin. The results are consistent with the presence of a major, partly crossed, CCK-containing cortico-striatal pathway.
Collapse
Affiliation(s)
- P Morino
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|