1
|
Yamanaka K, Suzuki M, Pham LT, Tomita K, Van Nguyen T, Takagishi M, Tsukioka K, Gouraud S, Waki H. Involvement of D1 dopamine receptor in the nucleus of the solitary tract of rats in stress-induced hypertension and exercise. J Hypertens 2024; 42:1795-1804. [PMID: 38973449 DOI: 10.1097/hjh.0000000000003809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
OBJECTIVE Chronic stress can cause hypertension, whereas daily exercise promotes healthy well being through destressing. Although the nucleus of the solitary tract (NTS) is involved in the development of hypertension, the molecular and physiological mechanisms of stress and exercise remain unclear. In this study, we tested whether gene expression in the NTS is altered by stress and daily exercise and whether this is involved in cardiovascular regulation. METHODS We have performed RT 2 Profiler PCR arrays targeting a panel of neurotransmitter receptor genes in the NTS of Wistar rats subjected to chronic restraint stress (1 h a day over 3 weeks) with or without voluntary wheel exercise. We also performed immunohistochemistry to determine whether the identified molecules were expressed at the protein level. Additionally, microinjection studies in anesthetized rats were performed to examine whether validated molecules exhibit physiological roles in cardiovascular regulation of the NTS. RESULTS We observed that blood pressure was significantly increased by stress and the increase was suppressed by exercise. Using PCR analysis, we determined that the expression levels of four genes in the NTS, including the dopamine receptor D1 gene ( Drd1 ), were significantly affected by stress and suppressed by exercise. We also examined dopamine D1 receptor (D1R) expression in NTS neurons and found significantly greater expression in the stressed than nonstressed animals. Furthermore, the microinjection of a D1R agonist into the NTS in anesthetized rats induced hypotensive effects. CONCLUSION These results suggest that NTS D1R plays a role in the counteracting processes of stress-induced hypertension.
Collapse
Affiliation(s)
- Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Makoto Suzuki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Linh Thuy Pham
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Keisuke Tomita
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Thu Van Nguyen
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Miwa Takagishi
- Department of Therapeutic Health Promotion, Kansai University of Health Sciences, Osaka
| | - Kei Tsukioka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
| | - Sabine Gouraud
- Department of Natural Science, College of Liberal Arts, International Christian University, Tokyo
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
2
|
Su D, Zhang X, Su Y, Chan P, Xu E. Effects of different levodopa doses on blood pressure in older patients with early and middle stages of Parkinson's disease. Heliyon 2023; 9:e17876. [PMID: 37483692 PMCID: PMC10362309 DOI: 10.1016/j.heliyon.2023.e17876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Objective Levodopa is the first-line treatment for patients with Parkinson's disease (PD). However, only a few studies have focused on the tolerance of this drug in older patients with PD in the early and middle stages. Therefore, this study aimed to explore the effects of different levodopa doses on blood pressure (BP) in this subpopulation. Methods This cohort analysis enrolled 83 patients. The levodopa challenge test was used to evaluate drug responsiveness. After at least 12 h following anti-PD drug discontinuation, patients' BPs were measured in a lying position, after 1 min standing, and after 3 min standing, in "off state" and best "on state." Results BP in the 250 mg and 375 mg levodopa/benserazide groups decreased significantly in the lying and standing positions. The 3-min standing-position systolic BP was significantly influenced by the dose of levodopa/benserazide. However, no statistical change was observed in the 125 mg group. The postural-mediated systolic BP disparity was significant at 3 min in the upright position. Nineteen (incidence, 22.9%) and Twenty-five patients (incidence, 30.1%) developed complications of orthostatic hypotension (OH) in the "off state" and best "on state," respectively. Mild cognitive impairment was a risk factor for OH occurrence in the "off state." The OH occurrence in the best "on state" was associated with OH in the "off state" and urinary incontinence. Conclusion Our findings suggest that 250 mg or more of levodopa/benserazide could significantly reduce BP and orthostatic effect in older patients with PD in the early and middle stages. Therefore, they should routinely monitor their BP. Trial registration number ChiCTR2200055707.
Collapse
Affiliation(s)
- Dan Su
- Department of Geriatrics, Liangxiang Hospital of Beijing Fangshan District, Beijing 102400, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xiaojun Zhang
- Department of Geriatrics, Occupational Disease Prevention and Control Institute of Chemical Industry, Beijing 100093, China
| | - Yanling Su
- Department of Geriatrics, Liangxiang Hospital of Beijing Fangshan District, Beijing 102400, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Clinical Center for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China
| | - Erhe Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| |
Collapse
|
3
|
Bueschbell B, Manga P, Schiedel AC. The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Front Mol Biosci 2022; 9:873777. [PMID: 35495622 PMCID: PMC9039016 DOI: 10.3389/fmolb.2022.873777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York City, NY, United States
| | - Anke C. Schiedel
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- *Correspondence: Anke C. Schiedel,
| |
Collapse
|
4
|
Kasahara Y, Masukawa D, Nakamura Y, Murata K, Hashimoto T, Takizawa K, Koga M, Nakamura F, Fukazawa Y, Funakoshi K, Goshima Y. Distribution of mRNA for GPR143, a receptor of 3,4-L-dihydroxyphenylalanine, and of immunoreactivities for nicotinic acetylcholine receptors in the nigrostriatal and mesolimbic regions. Neurosci Res 2020; 170:370-375. [PMID: 32896531 DOI: 10.1016/j.neures.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/15/2022]
Abstract
Nicotine exerts its reinforcing actions by activating nicotinic acetylcholine receptors (nAChRs), but the detailed mechanisms remain unclear. Nicotine releases 3, 4-dihydroxyphenylalanine (DOPA), a neurotransmitter candidate in the central nervous system. Here, we investigated the distribution of GPR143, a receptor of DOPA, and nAChR subunits in the nigrostriatal and mesolimbic regions. We found GPR143 mRNA-positive cells in the striatum and nucleus accumbens. Some of them were surrounded by tyrosine hydroxylase (TH)-immunoreactive fibers. There were some GPR143 mRNA-positive cells coexpressing TH, and nAChR subunit α4 or α7 in the substantia nigra and ventral tegmental area. These findings suggest that DOPA-GPR143 signaling may be involved in the nicotine action in the nigrostriatal and mesolimbic dopaminergic systems.
Collapse
Affiliation(s)
- Yuka Kasahara
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshie Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan; Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, 910-1193, Japan
| | - Tatsuo Hashimoto
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Critical Care Medicine and Dentistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Kanagawa, Japan
| | - Kohtaro Takizawa
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Motokazu Koga
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Biochemistry, School of Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan; Life Science Innovation Center, Faculty of Medical Science, University of Fukui, Fukui, 910-1193, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
5
|
Goshima Y, Masukawa D, Kasahara Y, Hashimoto T, Aladeokin AC. l-DOPA and Its Receptor GPR143: Implications for Pathogenesis and Therapy in Parkinson's Disease. Front Pharmacol 2019; 10:1119. [PMID: 31632270 PMCID: PMC6785630 DOI: 10.3389/fphar.2019.01119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/30/2019] [Indexed: 01/26/2023] Open
Abstract
l-3,4-Dihydroxyphenylalanine (l-DOPA) is the most effective therapeutic agent for Parkinson's disease (PD). l-DOPA is traditionally believed to be an inert amino acid that exerts actions and effectiveness in PD through its conversion to dopamine. In contrast to this generally accepted idea, l-DOPA is proposed to be a neurotransmitter. Recently, GPR143 (OA1), the gene product of ocular albinism 1 was identified as a receptor candidate for l-DOPA. GPR143 is widely expressed in the central and peripheral nervous system. GPR143 immunoreactivity was colocalized with phosphorylated α-synuclein in Lewy bodies in PD brains. GPR143 may contribute to the therapeutic effectiveness of l-DOPA and might be related to pathogenesis of PD.
Collapse
Affiliation(s)
- Yoshio Goshima
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuka Kasahara
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tatsuo Hashimoto
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Aderemi Caleb Aladeokin
- Department of Molecular Pharmacology & Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
6
|
Masukawa D, Koga M, Sezaki A, Nakao Y, Kamikubo Y, Hashimoto T, Okuyama-Oki Y, Aladeokin AC, Nakamura F, Yokoyama U, Wakui H, Ichinose H, Sakurai T, Umemura S, Tamura K, Ishikawa Y, Goshima Y. L-DOPA sensitizes vasomotor tone by modulating the vascular alpha1-adrenergic receptor. JCI Insight 2017; 2:90903. [PMID: 28931752 DOI: 10.1172/jci.insight.90903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 08/15/2017] [Indexed: 11/17/2022] Open
Abstract
Blood pressure is regulated by extrinsic factors including noradrenaline, the sympathetic neurotransmitter that controls cardiovascular functions through adrenergic receptors. However, the fine-tuning system of noradrenaline signaling is relatively unknown. We here show that l-3,4-dihydroxyphenylalanine (L-DOPA), a precursor of catecholamines, sensitizes the vascular adrenergic receptor alpha1 (ADRA1) through activation of L-DOPA receptor GPR143. In WT mice, intravenous infusion of the ADRA1 agonist phenylephrine induced a transient elevation of blood pressure. This response was attenuated in Gpr143 gene-deficient (Gpr143-/y) mice. Specific knockout of Gpr143 in vascular smooth muscle cells (VSMCs) also showed a similar phenotype, indicating that L-DOPA directly modulates ADRA1 signaling in the VSMCs. L-DOPA at nanomolar concentrations alone produced no effect on the VSMCs, but it enhanced phenylephrine-induced vasoconstriction and intracellular Ca2+ responses. Phenylephrine also augmented the phosphorylation of extracellular signal-regulated kinases in cultured VSMCs from WT but not Gpr143-/y mice. In WT mice, blood pressure increased during the transition from light-rest to dark-active phases. This elevation was not observed in Gpr143-/y mice. Taken together, our findings provide evidence for L-DOPA/GPR143 signaling that exerts precursor control of sympathetic neurotransmission through sensitizing vascular ADRA1.
Collapse
Affiliation(s)
- Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Motokazu Koga
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Anna Sezaki
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuka Nakao
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuo Hashimoto
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Medical Science and Cardiorenal Medicine, and
| | | | - Aderemi Caleb Aladeokin
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Hiroshi Ichinose
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
7
|
L-DOPA inhibits excitatory synaptic transmission in the rat nucleus tractus solitarius through release of dopamine. Neuroscience 2017; 360:18-27. [PMID: 28757247 DOI: 10.1016/j.neuroscience.2017.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/29/2022]
Abstract
The mode of action of L-DOPA on excitatory synaptic transmission in second-order neurons of the nucleus tractus solitarius (NTS) was studied using the rat brainstem slices. Superfusion of L-DOPA (10μM) reduced the frequency of miniature excitatory postsynaptic currents (mEPSCs) without any effect on the amplitude. A low concentration (1μM) was ineffective on the mEPSCs, and the highest concentration (100μM) exerted a stronger inhibitory effect. L-DOPA (10μM) decreased the amplitude of EPSCs (eEPSCs) evoked by electrical stimulation of the tractus solitarius and increased the paired-pulse ratio. The inhibitory effects of L-DOPA on mEPSCs and eEPSCs were similar to those of dopamine (100μM). The effects of L-DOPA were blocked by a competitive antagonist, L-DOPA methyl ester (100μM) and also by a D2 receptor antagonist, sulpiride (10μM), while those of dopamine were blocked by the latter but not by the former. In reserpine (5mg/kg, s.c.)-treated rats, the effects of L-DOPA on both mEPSCs and eEPSCs were completely abolished, but those of dopamine remained unchanged. The present results suggest a possibility that L-DOPA may induce the release of dopamine from the axon terminals in the NTS and the released dopamine suppresses the glutamatergic transmission through activation of the presynaptic D2 receptors.
Collapse
|
8
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
9
|
Hiroshima Y, Miyamoto H, Nakamura F, Masukawa D, Yamamoto T, Muraoka H, Kamiya M, Yamashita N, Suzuki T, Matsuzaki S, Endo I, Goshima Y. The protein Ocular albinism 1 is the orphan GPCR GPR143 and mediates depressor and bradycardic responses to DOPA in the nucleus tractus solitarii. Br J Pharmacol 2014; 171:403-14. [PMID: 24117106 DOI: 10.1111/bph.12459] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/12/2013] [Accepted: 09/30/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE L-DOPA is generally considered to alleviate the symptoms of Parkinson's disease by its conversion to dopamine. We have proposed that DOPA is itself a neurotransmitter in the CNS. However, specific receptors for DOPA have not been identified. Recently, the gene product of ocular albinism 1 (OA1) was found to exhibit DOPA-binding activity. Here, we have investigated whether OA1 is a functional receptor of DOPA in the nucleus tractus solitarii (NTS). EXPERIMENTAL APPROACH We examined immunohistochemical expression of OA1 in the NTS, and the effects of DOPA microinjected into the depressor sites of NTS on blood pressure and heart rate in anaesthetized rats, with or without prior knock-down of OA1 in the NTS, using shRNA against OA1. KEY RESULTS Using a specific OA1 antibody, OA1-positive cells and nerve fibres were found in the depressor sites of the NTS. OA1 expression in the NTS was markedly suppressed by microinjection into the NTS of adenovirus vectors carrying the relevant shRNA sequences against OA1. In animals treated with OA1 shRNA, depressor and bradycardic responses to DOPA, but not those to glutamate, microinjected into the NTS were blocked. Bilateral injections into the NTS of DOPA cyclohexyl ester, a competitive antagonist against OA1, suppressed phenylephrine-induced bradycardic responses without affecting blood pressure responses. CONCLUSION AND IMPLICATIONS OA1 acted as a functional receptor for DOPA in the NTS, mediating depressor and bradycardic responses. Our results add to the evidence for a central neurotransmitter role for DOPA, without conversion to dopamine.
Collapse
Affiliation(s)
- Y Hiroshima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Masukawa D, Nakamura F, Koga M, Kamiya M, Chen S, Yamashita N, Arai N, Goshima Y. Localization of ocular albinism-1 gene product GPR143 in the rat central nervous system. Neurosci Res 2014; 88:49-57. [PMID: 25108060 DOI: 10.1016/j.neures.2014.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/07/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022]
Abstract
L-3,4-Dihydroxyphenylalanine (DOPA) has been believed to be a precursor of dopamine, and itself being an inert amino acid. Previously, we have proposed DOPA as a neurotransmitter candidate in the central nervous system (CNS). Recent findings have suggested DOPA as an endogenous agonist of a G-protein coupled receptor, ocular albinism 1 gene product (OA1), which is highly expressed in the retinal pigmental epithelium. However, whether OA1 functions as a receptor for DOPA in vivo, and whether this receptor-ligand interaction is responsible for a wide variety of DOPA actions have not been determined yet. To gain insight into the functional implication of OA1, we perform immunohistochemical examination with anti-OA1 antibody to localize OA1 in the adult rat brain. We observed OA1 immunoreactive cells in the hippocampus, cerebral cortex, cerebellum cortex, striatum, substantia nigra, hypothalamic median eminence and supraoptic nucleus, nucleus tractus solitarii and caudal ventrolateral medulla and rostral ventrolateral medulla, medial habenular nucleus and olfactory bulb. This study reveals, for the first time, the unique distribution pattern of OA1-immunoreactive neurons and/or cells in the rat CNS.
Collapse
Affiliation(s)
- Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Fumio Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Motokazu Koga
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Marina Kamiya
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Sandy Chen
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Sciences, Tokyo 156-8506, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University, Graduate School of Medicine, Yokohama 236-0004, Japan.
| |
Collapse
|
11
|
Goshima Y, Nakamura F, Masukawa D, Chen S, Koga M. The Cardiovascular Actions of DOPA Mediated by the Gene Product of ocular albinism 1. J Pharmacol Sci 2014; 126:14-20. [DOI: 10.1254/jphs.14r03cr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
12
|
In vivo antagonism of the behavioral responses to L-3-,4-dihydroxyphenylalanine by L-3-,4-dihydroxyphenylalanine cyclohexyl ester in conscious rats. Eur J Pharmacol 2009; 605:109-13. [DOI: 10.1016/j.ejphar.2008.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 12/14/2008] [Accepted: 12/23/2008] [Indexed: 11/18/2022]
|
13
|
Murota Y, Fujii M, Sugiyama Y, Funabashi T, Yagami T, Takahashi T, Goshima Y. DOPA cyclohexyl ester, a DOPA antagonist, blocks the depressor responses elicited by microinjections of nicotine into the nucleus tractus solitarii of rats. Neurosci Lett 2008; 442:114-7. [PMID: 18620021 DOI: 10.1016/j.neulet.2008.06.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/07/2008] [Accepted: 06/29/2008] [Indexed: 11/28/2022]
Abstract
Nicotinic cholinergic receptors play a role in cardiovascular regulation in the lower brain stem. Herein, we present evidence that l-3,4-dihydroxyphenylalanine (DOPA), a putative neurotransmitter in the central nervous system, is involved in the depressor response to microinjection of nicotine into the nucleus tractus solitarii (NTS). Microinjection of nicotine into the medial area of the NTS led to decreases in arterial blood pressure and heart rate in anesthetized rats. Mecamylamine, a nicotinic receptor antagonist, microinjected into NTS, blocked the depressor and bradycardic responses to nicotine. Nicotine-induced depressor and bradycardic responses were blocked by DOPA cyclohexyl ester (DOPA CHE), an antagonist for DOPA. DOPA CHE did not modify the action of carbachol on excitatory postsynaptic potential in rat cortical slices. These results suggest that endogenous DOPA is involved in nicotine-induced depressor responses in the NTS of anesthetized rats.
Collapse
Affiliation(s)
- Y Murota
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Shimamura M, Shimizu M, Yagami T, Funabashi T, Kimura F, Kuroiwa Y, Misu Y, Goshima Y. L-3,4-dihydroxyphenylalanine-induced c-Fos expression in the CNS under inhibition of central aromatic L-amino acid decarboxylase. Neuropharmacology 2006; 50:909-16. [PMID: 16504219 DOI: 10.1016/j.neuropharm.2006.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 12/16/2005] [Accepted: 01/04/2006] [Indexed: 12/01/2022]
Abstract
L-3,4-dihydroxyphenylalanine (DOPA) is a neurotransmitter candidate. To map the DOPAergic system functionally, DOPA-induced c-Fos expression was detected under inhibition of central aromatic L-amino acid decarboxylase (AADC). In rats treated with a central AADC inhibitor, DOPA significantly increased the number of c-Fos-positive nuclei in the paraventricular nuclei (PVN) and the nucleus tractus solitarii (NTS), and showed a tendency to increase in the supraoptic nuclei (SON), but not in the striatum. On the other hand, DOPA with a peripheral AADC inhibitor elevated the level of c-Fos-positive nuclei in the four regions, suggesting that DOPA itself induces c-Fos expression in the SON, PVN and NTS. In rats treated with 6-hydroxydopamine (6-OHDA) to lesion the nigrostriatal dopamine (DA) pathway, DOPA significantly induced c-Fos expression in the four regions under the inhibition of peripheral AADC. However, under the inhibition of central AADC, DOPA did not significantly increase the number of c-Fos-positive nuclei in the four regions, suggesting that DOPA at least in part induces c-Fos expression through its conversion to DA. It was likely that the 6-OHDA lesion enhanced the response to DA, but attenuated that to DOPA itself. In conclusion, we proposed that the SON, PVN and NTS include target sites for DOPA itself.
Collapse
Affiliation(s)
- M Shimamura
- Department of Neurology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hashimoto M, Miyamae T, Yamamoto I, Goshima Y. DOPA cyclohexyl ester potently inhibits aglycemia-induced release of glutamate in rat striatal slices. Neurosci Res 2003; 45:335-44. [PMID: 12631469 DOI: 10.1016/s0168-0102(02)00237-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Brain ischemic insult causes glutamate release and resultant neuronal cell death. We here show that L-3,4-dihydroxyphenylalanine (DOPA) is a positive regulatory factor for glutamate release elicited by a mild brain insult using in vitro superfused rat striatal slices as a model system. Glucose deprivation for 18 min elicited release of glutamate, DOPA and dopamine (DA). Either tetrodotoxin (TTX) (1 microM) or alpha-methyl-p-tyrosine (alpha-MPT) (1 mM), a tyrosine hydroxylase inhibitor reduced markedly each of these releases. NSD-1015 (20 microM), an aromatic L-amino acid decarboxylase inhibitor restored the inhibition by alpha-MPT of glutamate and DOPA but not DA release. DOPA cyclohexyl ester (DOPA CHE) (0.3-1 microM), a competitive DOPA antagonist, concentration-dependently suppressed aglycemia-induced glutamate release, the effect which was mimicked neither by S-sulpiride nor SCH23390, a DA D(1) or D(2) receptor antagonist, respectively. Zonisamide (1-1000 microM), an anticonvulsant or YM872 (1 microM), an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) a receptor antagonist produced no effect on aglycemia-induced glutamate release. DOPA CHE thus showed a relatively potent inhibitory action on aglycemia-induced glutamate release among several neuroprotective agents tested.
Collapse
Affiliation(s)
- Mizuki Hashimoto
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University School of Medicine, 236-0004, Yokohama, Japan
| | | | | | | |
Collapse
|
16
|
Misu Y, Kitahama K, Goshima Y. L-3,4-Dihydroxyphenylalanine as a neurotransmitter candidate in the central nervous system. Pharmacol Ther 2003; 97:117-37. [PMID: 12559386 DOI: 10.1016/s0163-7258(02)00325-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Historically, 3,4-dihydroxyphenylalanine (DOPA) has been believed to be an inert amino acid that alleviates the symptoms of Parkinson's disease by its conversion to dopamine via the enzyme aromatic L-amino acid decarboxylase. In contrast to this generally accepted idea, we propose that DOPA itself is a neurotransmitter and/or neuromodulator, in addition to being a precursor of dopamine. Several criteria, such as synthesis, metabolism, active transport, existence, physiological release, competitive antagonism, and physiological or pharmacological responses, must be satisfied before a compound is accepted as a neurotransmitter. Recent evidence suggests that DOPA fulfills these criteria in its involvement mainly in baroreflex neurotransmission in the lower brainstem and in delayed neuronal death by transient ischemia in the striatum and the hippocampal CA1 region of rats.
Collapse
Affiliation(s)
- Yoshimi Misu
- Department of Pharmacology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | |
Collapse
|
17
|
Misu Y, Furukawa N, Arai N, Miyamae T, Goshima Y, Fujita K. DOPA causes glutamate release and delayed neuron death by brain ischemia in rats. Neurotoxicol Teratol 2002; 24:629-38. [PMID: 12200194 DOI: 10.1016/s0892-0362(02)00214-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DOPA seems to be a neuromodulator in striata and hippocampal CA1 and a neurotransmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii (NTS) and baroreflex pathways in the caudal ventrolateral medulla and rostral ventrolateral medulla in the brainstem of rats. DOPA recognition sites differ from dopamine (DA) D(1) and D(2) and ionotropic glutamate receptors. Via DOPA sites, DOPA stereoselectively releases by itself neuronal glutamate from in vitro and in vivo striata. In the cultured neurons, DOPA and DA cause neuron death via autoxidation. In addition, DOPA causes autoxidation-irrelevant neuron death via glutamate release. Furthermore, DOPA released by four-vessel occlusion seems to be an upstream causal factor for glutamate release and resultant delayed neuron death by brain ischemia in striata and hippocampal CA1. Glutamate has been regarded as a neurotransmitter of baroreflex pathways. Herein, we propose a new pathway that DOPA is a neurotransmitter of the primary aortic depressor nerve and glutamate is that of secondary neurons in neuronal microcircuits of depressor sites in the NTS. DOPA seems to release unmeasurable, but functioning, endogenous glutamate from the secondary neurons via DOPA sites. A common following pathway may be ionotropic glutamate receptors-nNOS activation-NO production-baroreflex neurotransmission and delayed neuron death. However, we are concerned that DOPA therapy may accelerate neuronal degeneration process especially at progressive stages of Parkinson's disease.
Collapse
Affiliation(s)
- Yoshimi Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Yamanashi K, Miyamae T, Sasaki Y, Maeda M, Hirano H, Misu Y, Goshima Y. Involvement of nitric oxide production via kynurenic acid-sensitive glutamate receptors in DOPA-induced depressor responses in the nucleus tractus solitarii of anesthetized rats. Neurosci Res 2002; 43:231-8. [PMID: 12103441 DOI: 10.1016/s0168-0102(02)00037-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have proposed the hypothesis that L-3,4-dihydroxyphenylalanine (DOPA) plays a role of neurotransmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii (NTS). In the present study, we tried to clarify whether glutamate receptors and/or nitric oxide (NO), important modulators for central cardiovascular regulation, are involved in the DOPA-induced cardiovascular responses in the nucleus. Male Wistar rats were anesthetized with urethane and artificially ventilated. Compounds or antisense oligos (17-mer) for neuronal NO synthase were microinjected into depressor sites of the unilateral nucleus. DOPA 30-300 pmol microinjected into the nucleus dose-dependently induced depressor and bradycardic responses. Prior injection of kynurenic acid (600 pmol) suppressed DOPA (300 pmol)-induced responses by approximately 80%. Prior injection of N(G)-monomethyl-L-arginine 100 nmol, a potent NO synthase inhibitor, reversibly attenuated by approximately 90% DOPA-induced responses, while the D-isomer 100 nmol produced no effect. Furthermore, prior injection of neuronal NO synthase antisense oligos (20 pmol) reversibly reduced by approximately 70% responses to DOPA. Sense or scrambled oligos produced no effect. A NO precursor L-arginine (30 nmol) induced depressor and bradycardic responses, but these responses were not affected by kynurenic acid. These results suggest important roles for glutamate receptors and NO in DOPA induced-depressor and bradycardic responses in the NTS.
Collapse
Affiliation(s)
- Kaori Yamanashi
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Historically, 3,4-dihydroxyphenylalanine (DOPA) has been considered to be an inert amino acid that alleviates the symptoms of Parkinson's disease by its conversion to dopamine via the enzyme aromatic L-amino acid decarboxylase. In contrast to this generally accepted idea, we propose that DOPA itself is a neurotransmitter and/or neuromodulator in addition to being a precursor of dopamine. Several criteria such as synthesis, metabolism, active transport, existence, physiological release, competitive antagonism and physiological or pharmacological responses must be satisfied before a compound is accepted as a neurotransmitter. Recent evidence suggests that DOPA fulfills these criteria in its involvement in baroreflex neurotransmission.
Collapse
Affiliation(s)
- Yoshimi Misu
- Yokohama City University, Shinobu Hospital, 31-1 Takahata, Ohmori, Fukushima 960-1101, Japan.
| | | | | |
Collapse
|
20
|
Sugaya Y, Sasaki Y, Goshima Y, Kitahama K, Kusakabe T, Miyamae T, Kato T, Misu Y. Autoradiographic studies using L-[(14)C]DOPA and L-DOPA reveal regional Na(+)-dependent uptake of the neurotransmitter candidate L-DOPA in the CNS. Neuroscience 2001; 104:1-14. [PMID: 11311526 DOI: 10.1016/s0306-4522(01)00008-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter in the CNS. Receptor and transporter molecules for L-DOPA, however, have not been determined. In the present study, in order to localize the uptake sites of L-DOPA in the CNS, we performed autoradiographic uptake studies using L-[14C]DOPA and L-[3H]DOPA in the uptake study on rat brain slice preparations, and further analyzed the properties of L-DOPA uptake. Image analysis of the L-[14C]DOPA autoradiogram showed a unique heterogeneous distribution of uptake sites in the brain. The intensity was relatively high in the cerebral cortex, the hypothalamus, the cerebellum and the hippocampus, while the density was moderate or even low in the striatum and the substantia nigra. L-DOPA and phenylalanine, but not dopamine (10mM) were able to almost completely inhibit the uptake of L-[14C]DOPA to basal levels. Microautoradiographic studies using L-[3H]DOPA revealed accumulation of dense grains in the median eminence, the supraoptic nucleus of the hypothalamus, the cerebral cortex (layer I) and the hippocampus. In the cerebellum, grains formed in clusters surrounding the Purkinje cells. This grain accumulation was concluded to be in Bergmann glial cells, since the morphological pattern of grain accumulation was similar to that of the immunoreactivity of the glutamate aspartate transporter, a marker protein for Bergmann glial cells. In the hippocampus, the grain density significantly decreased under Na(+)-free conditions. In addition, grain density also decreased in the absence of Cl(-). In contrast, grains in the choroid plexus and the ependymal cell layer, were not affected by the absence of Na(+). These findings indicated that the uptake of L-DOPA occurs via various types of large neutral amino acid transport mechanisms. It appears that neuronal and/or glial cells, which take up L-DOPA in a Na(+)-dependent manner, exist in the CNS. Our finding further supports the concept that L-DOPA itself may act as a neurotransmitter or neuromodulator.
Collapse
Affiliation(s)
- Y Sugaya
- Department of Pharmacology, Yokohama City University School of Medicine, 236-0004, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Arai N, Furukawa N, Miyamae T, Goshima Y, Sasaki Y, Ohshima E, Suzuki F, Fujita K, Misu Y. DOPA cyclohexyl ester, a competitive DOPA antagonist, protects glutamate release and resultant delayed neuron death by transient ischemia in hippocampus CA1 of conscious rats. Neurosci Lett 2001; 299:213-6. [PMID: 11165773 DOI: 10.1016/s0304-3940(01)01520-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In rat striata, DOPA released is a causal factor for glutamate release and resultant delayed neuron death by four-vessel occlusion. Nanomolar DOPA cyclohexyl ester (CHE), a potent and relatively stable competitive DOPA antagonist, protects these events. We tried to clarify whether DOPA CHE protects these events in hippocampal CA1 pyramidal cell layers most vulnerable against ischemia. Five to 10 min ischemia caused slight to mild glutamate release in 10 min samples during microdialysis and mild to severe neuron death 96 h after reperfusion. DOPA and dopamine were under assay limit in this design, but were basally detected by 20 min sampling and released by 20 min ischemia. In 10 min samples, intrahippocampal perfusion of 100 nM DOPA CHE 10 min before ischemia for 70 min did not inhibit glutamate release by 10 min ischemia, while it abolished glutamate release and protected delayed neuron death by 5 min ischemia. DOPA CHE is neuroprotective under a mild ischemic condition in rat hippocampus CA1.
Collapse
Affiliation(s)
- N Arai
- Department of Clinical Neuropathology, Tokyo Metropolitan Institute of Neuroscience, 183-8526, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nishiyama K, Yagita K, Yamaguchi S, Kitamura S, Matsuo T, Uno T, Tanaka M, Hisa Y, Ibata Y, Okamura H. Tyrosine Hydroxylase and NADPH-Diaphorase in the Rat Nodose Ganglion: Colocalization and Central Projection. Acta Histochem Cytochem 2001. [DOI: 10.1267/ahc.34.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Katsuhiko Nishiyama
- Departments of Cardiovascular and Thoracic Surgery, Kyoto Prefectural University of Medicine
| | - Kazuhiro Yagita
- Department of Anatomy and Brain Science, Kobe University School of Medicine
| | - Shun Yamaguchi
- Department of Anatomy and Brain Science, Kobe University School of Medicine
| | - Saori Kitamura
- Department of Anatomy and Brain Science, Kobe University School of Medicine
| | - Takuya Matsuo
- Department of Physics, Informatics and Biology, Yamaguchi University
| | - Toshiyuki Uno
- Departments of Otolaryngology,Kyoto Prefectural University of Medicine
| | - Masaki Tanaka
- Departments of Anatomy, Kyoto Prefectural University of Medicine
| | - Yasuo Hisa
- Departments of Otolaryngology,Kyoto Prefectural University of Medicine
| | - Yasuhiko Ibata
- Departments of Anatomy, Kyoto Prefectural University of Medicine
| | - Hitoshi Okamura
- Department of Anatomy and Brain Science, Kobe University School of Medicine
| |
Collapse
|
23
|
Ishiia H, Sasaki Y, Goshima Y, Kanai Y, Endou H, Ayusawa D, Ono H, Miyamae T, Misu Y. Involvement of rBAT in Na(+)-dependent and -independent transport of the neurotransmitter candidate L-DOPA in Xenopus laevis oocytes injected with rabbit small intestinal epithelium poly A(+) RNA. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:61-70. [PMID: 10825431 DOI: 10.1016/s0005-2736(00)00171-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although L-3,4-dihydroxyphenylalanine (L-DOPA) is claimed to be a neurotransmitter in the central nervous system (CNS), receptor or transporter molecules for L-DOPA have not been determined. In an attempt to identify a transporter for L-DOPA, we examined whether or not an active and high affinity L-DOPA transport system is expressed in Xenopus laevis oocytes injected with poly A(+) RNA prepared from several tissues. Among the poly A(+) RNAs tested, rabbit intestinal epithelium poly A(+) RNA gave the highest transport activity for L-[(14)C]DOPA in the oocytes. The uptake was approximately five times higher than that of water-injected oocytes, and was partially Na(+)-dependent. L-Tyrosine, L-phenylalanine, L-leucine and L-lysine inhibited this transport activity, whereas D-DOPA, dopamine, glutamate and L-DOPA cyclohexylester, an L-DOPA antagonist did not affect this transport. Coinjection of an antisense cRNA, as well as oligonucleotide complementary to rabbit rBAT (NBAT) cDNA almost completely inhibited the uptake of L-[(14)C]DOPA in the oocytes. On the other hand, an antisense cRNA of rabbit 4F2hc barely affected this L-[(14)C]DOPA uptake activity. rBAT was thus responsible for the L-[(14)C]DOPA uptake activity expressed in X. laevis oocytes injected with poly A(+) RNA from rabbit intestinal epithelium. As rBAT is localized at the target regions of L-DOPA in the CNS, rBAT might be one of the components involved in L-DOPAergic neurotransmission.
Collapse
Affiliation(s)
- H Ishiia
- Department of Pharmacology, Yokohama City University of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Furukawa N, Goshima Y, Miyamae T, Sugiyama Y, Shimizu M, Ohshima E, Suzuki F, Arai N, Fujita K, Misu Y. L-DOPA cyclohexyl ester is a novel potent and relatively stable competitive antagonist against L-DOPA among several L-DOPA ester compounds. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 82:40-7. [PMID: 10874587 DOI: 10.1254/jjp.82.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We explored L-DOPA esters with chemically bulky structures to find a potent stable competitive antagonist against L-DOPA, compared to DOPA methyl ester (DOPA ME). In anesthetized rats, DOPA cyclohexyl ester (DOPA CHE), DOPA cyclopentyl ester (DOPA CPE) and DOPA cyclopentyldimethyl ester (DOPA CPDME) at 1 microgram microinjected into depressor sites of the nucleus tractus solitarii elicited or tended to elicit more marked antagonism against depressor responses to 60 ng L-DOPA, compared to DOPA ME. At 100 ng, DOPA CHE elicited the most potent antagonism. At 1 microgram, duration of the antagonistic activity of DOPA CHE was approximately three times longer than that of DOPA ME. During microdialysis of the nucleus accumbens, conversion from DOPA CHE at 1 microM perfused via probes to extracellular L-DOPA was the lowest among these compounds and less than one half of that from DOPA ME. Binding studies showed that the recognition site for L-DOPA differs from ionotropic glutamatergic, dopaminergic D1 and D2 receptors. We recently found that L-DOPA evoked by transient ischemia may act as a DOPA CHE-sensitive causal factor for glutamate release and resultant neuronal cell death. DOPA CHE is the most potent, relatively stable competitive antagonist against L-DOPA and is a useful mother compound to develop neuroprotective drugs.
Collapse
Affiliation(s)
- N Furukawa
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nishihama M, Miyamae T, Goshima Y, Okumura F, Misu Y. An L-dopaergic relay from the posterior hypothalamic nucleus to the rostral ventrolateral medulla and its cardiovascular function in anesthetized rats. Neuroscience 1999; 92:123-35. [PMID: 10392836 DOI: 10.1016/s0306-4522(98)00720-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter in the central nervous system [Misu Y. et al. (1996) Prog. Neurobiol. 49, 415-454]. Herein, we attempt to clarify whether lesions in the posterior hypothalamic nucleus decrease the tissue content of L-DOPA in the rostral ventrolateral medulla. We also attempt to clarify whether or not endogenous L-DOPA is evoked by electrical stimulation of the posterior hypothalamic nucleus. It is possible that evoked L-DOPA functions as a transmitter candidate to activate pressor sites of the rostral ventrolateral medulla in anesthetized rats. Electrolytic lesions were made in the bilateral posterior hypothalamic nucleus by a monopolar direct current of 2 mA for 10 s, 10 days before measurements. The effect of the lesions was to selectively decrease the tissue content of L-DOPA by one-half in the right rostral ventrolateral medulla. Decreases in the amounts of dopamine, noradrenaline or adrenaline were not observed. Decreases were also not evident in the right caudal ventrolateral medulla. During microdialysis of the right rostral ventrolateral medulla, extracellular basal levels of L-DOPA and three types of catecholamine were consistently detectable by high-performance liquid chromatography with electrochemical detection. Tetrodotoxin (1 microM) perfused into the right rostral ventrolateral medulla gradually decreased basal levels of L-DOPA by 25%; it decreased basal levels of noradrenaline and adrenaline by 25-30% and dopamine levels by 40%. Intensive electrical stimulation of the ipsilateral posterior hypothalamic nucleus (50 Hz, 0.3 mA, 0.1 ms duration, twice for 5 min at an interval of 5 min) selectively caused the release of L-DOPA in a repetitive and constant manner. The stimulation was accompanied by hypertension and tachycardia. However, catecholamines were not released. Tetrodotoxin suppressed the release of L-DOPA, but partially inhibited hypertension with only a slight inhibition of tachycardia evoked by stimulation of the posterior hypothalamic nucleus. L-DOPA methyl ester, a competitive L-DOPA antagonist, was bilaterally microinjected into pressor sites of the rostral ventrolateral medulla at 1.5 microg x 2 and 3 microg x 2. The antagonist dose-dependently and consistently antagonized pressor and tachycardiac responses to mild transient stimulation of the unilateral posterior hypothalamic nucleus (33 Hz, 0.2 mA, 0.1 ms duration, for 10 s). In addition, the antagonist alone (3 microg x 2) elicited hypotension and bradycardia. These results show that an L-DOPAergic relay may project from the posterior hypothalamic nucleus directly to pressor sites of the rostral ventrolateral medulla and/or indirectly to certain neurons near pressor sites in microcircuits of the same region. When released, L-DOPA appears to function tonically to activate pressor sites; it also appears to be involved in the maintenance and regulation of blood pressure and heart rate.
Collapse
Affiliation(s)
- M Nishihama
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | |
Collapse
|
26
|
Miyamae T, Goshima Y, Yue JL, Misu Y. L-dopaergic components in the caudal ventrolateral medulla in baroreflex neurotransmission. Neuroscience 1999; 92:137-49. [PMID: 10392837 DOI: 10.1016/s0306-4522(98)00721-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) is probably a transmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii; L-DOPA functions tonically to activate depressor sites of the caudal ventrolateral medulla, which receives input from the nucleus tractus solitarii [Misu Y. et al. (1996) Prog. Neurobiol. 49, 415-454]. We have attempted to clarify whether or not L-DOPAergic components within the caudal ventrolateral medulla are involved in baroreflex neurotransmission in anesthetized rats. Electrolytic lesions of the right nucleus tractus solitarii (1 mA d.c. for 10 s, 10 days before measurement) selectively decreased by 45% the tissue content of L-DOPA in the dissected ipsilateral caudal ventrolateral medulla. Electrolytic lesions did not decrease dopamine, norepinephrine and epinephrine levels. During microdialysis of the right caudal ventrolateral medulla, extracellular levels of L-DOPA, norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid were consistently detectable using high-performance liquid chromatography with electrochemical detection. However, extracellular dopamine levels were lower than the assay limit. Baroreceptor activation by i.v. phenylephrine selectively evoked L-DOPA without increasing the levels of norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid. This L-DOPA release was suppressed by acute lesion in the ipsilateral nucleus tractus solitarii. Intermittent stimulation of the right aortic depressor nerve (20 Hz, 3 V, 0.3 ms duration, for 30 min) repetitively and constantly caused L-DOPA release, hypotension and bradycardia, without increases in levels of norepinephrine, epinephrine and 3,4-dihydroxyphenylacetic acid. Local inhibition of L-DOPA synthesis with alpha-methyl-p-tyrosine (30 microM) infused into the ipsilateral caudal ventrolateral medulla gradually decreased basal levels of L-DOPA and 3,4-dihydroxyphenylacetic acid without decreasing norepinephrine and epinephrine. The inhibition of L-DOPA synthesis interrupted L-DOPA release and decreased by 65% depressor responses elicited by aortic nerve stimulation; however, it produced no effect on bradycardic responses. CoCl2 (119 ng), a mainly presynaptic inhibitory transmission marker, and L-DOPA methyl ester (1 microg), a competitive L-DOPA antagonist, when microinjected into depressor sites of the right caudal ventrolateral medulla, reduced by 60% depressor responses to transient ipsilateral stimulation of the aortic nerve (20 Hz, 3 V, 0.1 ms duration, for 10 s). No changes in bradycardic responses were observed. There may exist an L-DOPAergic relay from the nucleus tractus solitarii to the caudal ventrolateral medulla. L-DOPAergic components in the caudal ventrolateral medulla are involved in baroreflex neurotransmission via a baroreceptor-aortic depressor nerve-nucleus tractus solitarii-caudal ventrolateral medulla relay in the rat.
Collapse
Affiliation(s)
- T Miyamae
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | |
Collapse
|
27
|
Miyamae T, Goshima Y, Shimizu M, Shibata T, Kawashima K, Ohshima E, Suzuki F, Misu Y. Some interactions of L-DOPA and its related compounds with glutamate receptors. Life Sci 1999; 64:1045-54. [PMID: 10210287 DOI: 10.1016/s0024-3205(99)00031-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-DOPA is probably a transmitter and/or modulator in the central nervous system (1). L-DOPA methyl ester (DOPA ME) is a competitive L-DOPA antagonist. However, it remains to be clarified whether there exist L-DOPAergic receptors. In Xenopus laevis oocytes injected with rat brain poly(A)+ RNA, L-DOPA induced small inward currents with ED50 of 2.2 mM at a holding potential of -70 mV. The currents were abolished by kynurenic acid or CNQX. Similar L-DOPA-currents were seen in oocytes co-injected with AMPA receptors, GluRs1,2,3 and 4. In brain membrane preparations, L-DOPA inhibited specific binding of [3H]-AMPA with IC50 of 260 microM. This inhibition was not modified by 200 microM ascorbic acid, an antioxidant. L-DOPA did not inhibit binding of [3H]-ligands of MK-801, kainate, DCKA and CGP39653. DOPA ME and L-DOPA cyclohexyl ester, a novel, potent and competitive antagonist (2), inhibited specific binding of [3H]-MK-801 with respective IC50 of 1 and 0.68 mM, but elicited no effect on that of the other [3H]-ligands. With low affinities, L-DOPA acts on AMPA receptors, while competitive antagonists act on NMDA ion channel domain. L-DOPAergic agonist and antagonist may not interact on ionotropic glutamate receptors. DOPA ME-sensitive L-DOPA recognition sites (1) seem to differ from glutamate receptors.
Collapse
Affiliation(s)
- T Miyamae
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Goshima Y, Honjo K, Miyamae T, Misu Y. The evidence for tonic GABAergic regulation of basal L-DOPA release via activation of inhibitory GABA(A) receptors in the nucleus tractus solitarii of anesthetized rats. Neurosci Lett 1999; 261:155-8. [PMID: 10081972 DOI: 10.1016/s0304-3940(99)00018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have proposed that DOPA is a neurotransmitter of the primary baroreceptor afferents terminating in the rat nucleus tractus solitarii (NTS). GABA is a putative inhibitory neuromodulator for baroreflex inputs in the NTS. Thus, GABA may inhibit DOPAergic transmission in the NTS. We tried to clarify whether basal DOPA release is inhibited by muscimol, a GABA(A) agonist, and facilitated by bicuculline, a GABA(A) antagonist, during microdialysis of the NTS in anesthetized rats. DOPA release was consistently detectable. Muscimol 10-100 microM perfused via probes gradually inhibited concentration-dependently DOPA release. Peak 30% inhibition occurred 2 h after perfusion. Muscimol (30 microM)-induced inhibition was antagonized by non-effective 10 microM bicuculline. Bicuculline (30 microM) elicited peak 30% facilitation of DOPA release 2 h after perfusion. Endogenous GABA seems to regulate tonically basal DOPA release via activation of inhibitory GABA(A) receptors in the rat NTS. These findings further support the above proposal.
Collapse
Affiliation(s)
- Y Goshima
- Department of Pharmacology, Yokohama City University School of Medicine, Japan.
| | | | | | | |
Collapse
|
29
|
Honjo K, Goshima Y, Miyamae T, Misu Y. GABA may function tonically via GABA(A) receptors to inhibit hypotension and bradycardia by L-DOPA microinjected into depressor sites of the nucleus tractus solitarii in anesthetized rats. Neurosci Lett 1999; 261:93-6. [PMID: 10081935 DOI: 10.1016/s0304-3940(99)00010-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have proposed that DOPA is a transmitter of the primary baroreceptor afferents terminating in the rat nucleus tractus solitarii (NTS). GABA is a putative inhibitory neuromodulator for baroreflex inputs in the NTS. GABA may inhibit DOPAergic transmission. Drugs were microinjected into depressor sites of the NTS in anesthetized rats. DOPA (10-60 ng) elicited dose-dependent depressor responses. GABA (3-300 ng) elicited dose-dependent pressor responses. Nipecotic acid (100 ng) elicited pressor responses. Bicuculline (10 ng) elicited depressor responses. Responses to DOPA (30 ng) were inhibited by pretreatment with GABA and nipecotic acid, but potentiated by bicuculline, when vascular responses to pretreated drugs returned to basal levels. DOPA ME, a competitive DOPA antagonist, did not displace specific [3H]GABA binding. Prior DOPA ME (1 microg) inhibited by one-half pressor responses to 300 ng GABA. GABA seems to inhibit tonically via GABA(A) receptors depressor responses to DOPA and to elicit pressor responses partially by inhibition of tonic function of endogenous DOPA to activate depressor sites in the NTS. These findings further support the above proposal.
Collapse
Affiliation(s)
- K Honjo
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | |
Collapse
|
30
|
Misu Y, Goshima Y, Yue JL, Miyamae T. Is L-DOPA a neurotransmitter of the primary baroreceptor afferents terminating in the nucleus tractus solitarii of rats? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 42:855-8. [PMID: 9328032 DOI: 10.1016/s1054-3589(08)60881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
31
|
Furukawa N, Goshima Y, Miyamae T, Nishihama M, Okumura F, Fujita K, Misu Y. An L-DOPA-like depressor action of L-threo-dihydroxyphenyl-serine in the rat caudal ventrolateral medulla. Life Sci 1997; 61:1177-83. [PMID: 9315508 DOI: 10.1016/s0024-3205(97)00659-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter and/or neuromodulator in the central nervous system (1). In this study, we investigated whether or not L-threo-dihydroxyphenylserine (L-threo-DOPS), a synthetic amino acid structurally related to L-DOPA, microinjected into the caudal ventrolateral medulla (CVLM) and the rostral ventrolateral medulla (RVLM) shows cardiovascular actions similar to those of L-DOPA in anesthetized rats. When L-threo-DOPS was microinjected into CVLM, it produced dose-dependent (0.01-3 ng) depressor and bradycardic responses. D-threo-DOPS (3 ng) produced no effect. The responses to L-threo-DOPS (1 ng) were almost completely blocked by L-DOPA methyl ester (1 microg), a competitive antagonist for L-DOPA, supporting the existence of an L-threo-DOPS-sensitive recognition site for L-DOPA in CVLM. Microinjection of L-threo-DOPS into RVLM, however, showed no effect (0.001-100 ng), which contrasted with the cardiopressor action of L-DOPA applied in RVLM. In RVLM, there may exist an L-threo-DOPS-insensitive recognition site for L-DOPA.
Collapse
Affiliation(s)
- N Furukawa
- Department of Pharmacology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Misu Y, Goshima Y, Miyamae T, Furukawa N, Sugiyama Y, Okumura Y, Shimizu M, Ohshima E, Suzuki F. L-DOPA Cyclohexyl Ester Is a Novel Stable and Potent Competitive Antagonist Against L-DOPA, as Compared to L-DOPA Methyl Ester. ACTA ACUST UNITED AC 1997. [DOI: 10.1254/jjp.75.307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Nomura T, Inoue K, Creveling CR, Komatsu F, Ohta N, Chino T, Karasawa N, Nagatsu I. Immunocytochemical localization of aromatic L-amino acid decarboxylase and catechol-O-methyltransferase in blood vessel wall of the human dental pulp. Brain Res 1996; 735:314-6. [PMID: 8911671 DOI: 10.1016/0006-8993(96)00790-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Relative large amounts of DOPA as compared with the concentrations of norepinephrine are found in human dental pulp. AADC and COMT are localized in blood vessel walls of human dental pulp. This localization suggests a functional relationship between COMT and AADC with regard to the metabolism of DOPA.
Collapse
Affiliation(s)
- T Nomura
- Department of Periodontology, Matsumoto Dental College, Nagano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Singewald N, Philippu A. Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends Pharmacol Sci 1996. [DOI: 10.1016/s0165-6147(96)80009-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Goshima Y, Miyamae T, Nakamura S, Miki K, Kosaka K, Misu Y. Ventral tegmental injection of nicotine induces locomotor activity and L-DOPA release from nucleus accumbens. Eur J Pharmacol 1996; 309:229-33. [PMID: 8874145 DOI: 10.1016/0014-2999(96)00458-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Effects of nicotine systemically or locally on locomotor activity and L-3,4-dihydroxyphenylalanine (L-DOPA) release were studied using microdialysis in the nucleus accumbens of freely moving rats. The basal L-DOPA release was Ca2(+)-dependent and tetrodotoxin-sensitive. Systemic nicotine (1 mg/kg s.c.) increased locomotor activity and L-DOPA release preferentially in the nucleus accumbens as compared with the striatum. Injection of nicotine (30 micrograms) into the ventral tegmental area increased locomotor activity and L-DOPA release from the nucleus accumbens. These increases were antagonized by prior injection of mecamylamine into the ventral tegmental area. Nicotine induces locomotor activity and L-DOPA release from the nucleus accumbens via nicotinic receptors in the ventral tegmental area. The release may be relevant to behavioral actions of nicotine.
Collapse
Affiliation(s)
- Y Goshima
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
L-DOPA is proposed to be a neurotransmitter and/or neuromodulator in CNS. It is released probably from neurons, which may contain L-DOPA as an end-product, and/or from some compartment other than catecholamine-containing vesicles. The L-DOPA itself produces presynaptic and postsynaptic responses. All are stereoselective and most are antagonized by competitive antagonist. In striatum, L-DOPA is neuromodulator, mother of catecholamines, not only a precursor for dopamine but also a potentiator of children for presynaptic beta-adrenoceptors to facilitate dopamine release and postsynaptic D2 receptors, and ACh release inhibitor. All may cooperate for Parkinson's disease. Meanwhile, supersensitization of increase in L-glutamate release to nanomolar levodopa was seen in Parkinson's model rats, which may relate to dyskinesia or "on-off" during chronic therapy. In lower brainstem, L-DOPA tonically activates postsynaptic depressor sites of NTS and CVLM and pressor sites of RVLM. L-DOPA is probably a neurotransmitter of primary baroreceptor afferents terminating in NTS. GABA, the inhibitory neuromodulator for baroreflex in NTS, tonically functions to inhibit, via GABAA receptors, L-DOPA release and depressor responses to levodopa. Levodopa inversely releases GABA. L-DOPAergic monosynaptic relay from NTS to CVLM and from PHN to RVLM is suggested. Tonic L-DOPAergic baroreceptor-aortic nerve-NTS-CVLM relay seems to carry baroreflex information. Disturbance of neuronal activity to release L-DOPA in NTS, loss of the activity in CVLM, enhancement of the activity with decreased decarboxylation and increase in sensitivity to levodopa in RVLM may be involved in maintenance of hypertension in SHR. This is a story of "L-DOPAergic receptors" with extremely high affinity and low density.
Collapse
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
37
|
Miyamae T, Yue JL, Goshima Y, Misu Y. Depressor action of L-threo-dihydroxyphenylserine in the rat nucleus tractus solitarii. Eur J Pharmacol 1996; 300:105-8. [PMID: 8741173 DOI: 10.1016/0014-2999(95)00875-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microinjections of L-threo-dihydroxyphenylserine (L-threo-DOPS, 0.1-3 ng), a synthetic precursor amino acid of noradrenaline, into the medial area of the nucleus tractus solitarii produced dose-dependent depressor and bradycardic responses in anesthetized rats treated with or without i.p. 3-hydroxybenzylhydrazine, a central inhibitor of L-aromatic amino acid decarboxylase. D-threo-DOPS (3 ng) produced no effect. L-Dihydroxyphenylalanine (L-DOPA) methyl ester (1 microgram), a competitive antagonist of L-DOPA, microinjected into the nucleus tractus solitarii, blocked the depressor and bradycardic responses to L-threo-DOPS itself produces vasodepressor actions without its conversion to noradrenaline, probably via a recognition site for L-DOPA in the rat nucleus tractus solitarii.
Collapse
Affiliation(s)
- T Miyamae
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
38
|
Lawrence AJ, Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol 1996; 48:21-53. [PMID: 8830347 DOI: 10.1016/0301-0082(95)00034-8] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The central control of cardiovascular function has been keenly studied for a number of decades. Of particular interest are the homeostatic control mechanisms, such as the baroreceptor heart-rate reflex, the chemoreceptor reflex, the Bezold-Jarisch reflex and the Breuer-Hering reflex. These neurally-mediated reflexes share a common termination point for their respective centrally-projecting sensory afferents, namely the nucleus tractus solitarius (NTS). Thus, the NTS clearly plays a critical role in the integration of peripherally initiated sensory information regarding the status of blood pressure, heart rate and respiratory function. Many endogenous neurochemicals, from simple amino acids through biogenic amines to complex peptides have the ability to modulate blood pressure and heart rate at the level of the NTS. This review will attempt to collate the current knowledge regarding the roles of neuromodulators in the NTS, the receptor types involved in mediating observed responses and the degree of importance of such neurochemicals in the tonic regulation of the cardiovascular system. The neural pathway that controls the baroreceptor heart-rate reflex will be the main focus of attention, including discussion of the identity of the neurotransmitter(s) thought to act at baroafferent terminals within the NTS. In addition, this review will provide a timely update on the use of recently developed molecular biological techniques that have been employed in the study of the NTS, complementing more classical research.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
39
|
Yue JL, Miyamae T, Ueda H, Misu Y. Altered basal release and pressor effect of L-DOPA in the rostral ventrolateral medulla of spontaneously hypertensive rats. CLINICAL AND EXPERIMENTAL PHARMACOLOGY & PHYSIOLOGY. SUPPLEMENT 1995; 22:S43-5. [PMID: 9072438 DOI: 10.1111/j.1440-1681.1995.tb02964.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Transmitter-like L-DOPA functions as a tonic to produce postsynaptic cardiopressor responses in the rostral ventrolateral medulla (RVLM) of rats. We attempted to clarify whether a transmitter-like L-DOPA system is altered in the RVLM of spontaneously hypertensive rats (SHR) to maintain the hypertension. 2. By microdialysis of left RVLM area, the basal L-DOPA release was higher in SHR than in Wistar-Kyoto (WKY) rats. This release was partially inhibited by tetrodotoxin (TTX, 1 mu mol/L) to a similar degree in both strains. TTX-sensitive L-DOPA release was higher in SHR than in WKY. 3. L-DOPA (10-600 ng) and L-glutamate (10-300 ng) microinjected into left RVLM produced dose-dependent hypertension and tachycardia. Pressor but not tachycardiac responses to L-DOPA at lower doses were slightly greater in SHR than in WKY, whereas no difference to L-glutamate was observed in either strain. 4. In RVLM regions, there was no difference of tyrosine hydroxylase activity in SHR or WKY; however, L-aromatic amino acid decarboxylase activity was lower in SHR than in WKY. 5. Enhanced presynaptic neuronal L-DOPA release, including a decrease in decarboxylation and sensitization of postsynaptic pressor sites to L-DOPA in RVLM, may be involved in the maintenance of hypertension in SHR.
Collapse
Affiliation(s)
- J L Yue
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
40
|
Misu Y, Yue JL, Okumura Y, Miyamae T, Ueda H. Altered basal release and depressor effect of L-DOPA in the nucleus tractus solitarii of spontaneously hypertensive rats. CLINICAL AND EXPERIMENTAL PHARMACOLOGY & PHYSIOLOGY. SUPPLEMENT 1995; 22:S34-6. [PMID: 9072420 DOI: 10.1111/j.1440-1681.1995.tb02946.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. L-DOPA as a probable neurotransmitter of baroreceptor afferents functions as a tonic to mediate cardiodepressor control in the nucleus tractus solitarii (NTS). We attempted to clarify further whether a transmitter-like L-DOPA system is altered in NTS of adult spontaneously hypertensive rats (SHR). 2. By microdialysis of left NTS area, the basal L-DOPA release was lower in SHR than in Wistar-Kyoto (WKY) rats. This release was partially inhibited by tetrodotoxin (TTX, 1 mu mol/L) to a similar degree in both strains. TTX-sensitive L-DOPA release was lower in SHR than in WKY. 3. L-DOPA (10-300 ng) and L-glutamate (3-100 ng) microinjected into left NTS produced dose-dependent hypotension and bradycardia. No difference of responses to L-glutamate was seen in either strain. However, depressor but not bradycardic responses to L-DOPA at higher doses were slightly greater in SHR than in WKY. 4. In caudal dorsomedial medulla including NTS, tyrosine hydroxylase activity was increased in SHR compared to WKY, while there was no difference in either strain of L-aromatic amino acid decarboxylase activity. 5. Impaired tonic neuronal activity to release L-DOPA in NTS may be involved in the maintenance of hypertension in SHR. An increase in sensitivity of a recognition site for L-DOPA seems to occur as a compensatory mechanism for impairment of the neuronal activity.
Collapse
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
41
|
Ueda H, Sato K, Okumura F, Misu Y. L-DOPA inhibits spontaneous acetylcholine release from the striatum of experimental Parkinson's model rats. Brain Res 1995; 698:213-6. [PMID: 8581484 DOI: 10.1016/0006-8993(95)00870-v] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetylcholine (ACh) release was measured by microdialysis. Addition of 10 nM L-DOPA to the perfusate significantly decreased ACh release, from the striatum of rats lesioned with 6-hydroxydopamine (6-OHDA), but not sham-operated rats. The L-DOPA-induced decrease was not affected by (-)-sulpiride which completely blocked D2- and D3-agonist-induced decrease in ACh release in lesioned rats. Neither 10 nM D-DOPA nor 100 nM dopamine caused by any change in ACh release. These findings suggest that L-DOPA-sensitive mechanisms are supersensitized in Parkinson's disease model rats.
Collapse
Affiliation(s)
- H Ueda
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
42
|
Abstract
1. The present study has employed anatomical and neurochemical techniques to assess whether the amino acid, L-glutamate, may be considered as a potential neurotransmitter at rat vagal afferent neurons, with particular reference to baroreceptor afferents. 2. Slide-mounted sections of rat nodose ganglia were incubated with a high-titre antibody to glutamate, and visualization of the resulting immunoreactivity indicated glutamate-positive staining in a population of vagal afferent perikarya. In contrast, interstitial cells were devoid of immunostaining. 3. Release of endogenous glutamate was measured by in vivo microdialysis in the nucleus tractus solitarius, the site of central vagal afferent terminals, and could be evoked with a depolarizing stimulus of KCl in a calcium-dependent fashion. In addition, baroreceptor loading with an intravenous infusion of phenylephrine (30 micrograms/kg per min) increased the spontaneous efflux of glutamate to 148 +/- 28% of basal levels, which was paralleled by an increase in mean arterial pressure (approximately 40 mmHg). Release of glutamate was also elevated two-fold by intracerebral administration of S-nitroso-N-acetylpenicillamine (30 mumol/L), an effect that could be prevented by coadministration of methylene blue (10 mumol/L). 4. These data suggest that neuronal glutamate may be formed in a population of vagal afferent cell bodies, presumably to act on soma membrane receptors. Furthermore, the excitatory amino acid is released in a neurotransmitter-like fashion at the terminal region of vagal afferent neurons, where glutamate release is increased as a consequence of baroreceptor loading and also following activation of soluble guanylate cyclase. Thus, glutamate may be considered a candidate neurotransmitter of vagal baroreceptor afferent neurons, which may be modulated by nitric oxide or an endogenous nitrosothiol.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
43
|
Miyamae T, Yue JL, Okumura Y, Goshima Y, Misu Y. Loss of tonic neuronal activity to release L-DOPA in the caudal ventrolateral medulla of spontaneously hypertensive rats. Neurosci Lett 1995; 198:37-40. [PMID: 8570091 DOI: 10.1016/0304-3940(95)11959-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Experiments were designed to clarify whether a tonic L-DOPA system is altered in the caudal ventrolateral medulla (CVLM) of adult spontaneously hypertensive rats (SHR), compared to age-matched Wistar-Kyoto rats (WKY). By microdialysis in CVLM, basal L-DOPA release was constantly detectable and was lower in SHR than that in WKY. This release was reduced by tetrodotoxin perfusion (1 microM) in WKY to a basal level in SHR, whereas no modification occurred with tetrodotoxin in SHR. No difference of tyrosine hydroxylase and DOPA decarboxylase activities in the CVLM region was seen between the two strains. By microinjections into depressor sites of CVLM, L-DOPA (10-300 ng) or L-glutamate (3-300 ng) elicited dose-dependent depressor and bradycardic responses and greater depressor responses to both amino acids were seen at high doses in SHR, compared to WKY. Tonic neuronal activity to release L-DOPA is lost in the CVLM of adult SHR and this loss may contribute to maintenance of hypertension in SHR.
Collapse
Affiliation(s)
- T Miyamae
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
44
|
Abstract
We have explored probable neurotransmitter roles of L-3,4-dihydroxyphenylalanine (L-DOPA) in baroreceptor reflex and blood pressure regulation in depressor sites of the nucleus tractus solitarii (NTS) and the caudal ventrolateral medulla (CVLM), and in pressor sites of the rostral ventrolateral medulla (RVLM) in anesthetized rats. During microdialysis of these three areas, the basal L-DOPA release is in part tetrodotoxin (TTX)-sensitive and Ca2(+)-dependent, high K+ Ca2(+)-dependently releases dL-DOPA. L-DOPA microinjected (10-300 ng) dose-dependently produces postsynaptic depressor responses in the NTS and CVLM and pressor responses in the RVLM, and a recognition site for L-DOPA functions tonically to activate depressor neurons in the NTS and CVLM and pressor neurons in the RVLM. It is highly probable that L-DOPA is a neurotransmitter of the baroreceptor afferents terminating in the NTS, which is based on further findings such as (1) antagonism by a competitive L-DOPA antagonist against depressor responses to aortic nerve stimulation, (2) TTX-sensitive L-DOPA release by aortic nerve stimulation, (3) abolition of baroreceptor-stimulated L-DOPA release by bilateral sino-aortic denervation and (4) decreases in tyrosine hydroxylase (TH)- and L-DOPA-immunoreactivities without modifications of dopamine- and DBH-immunoreactivities in the left NTS and ganglion nodosum 7 days after ipsilateral aortic nerve denervation peripheral to the ganglion. In the NTS, GABA tonically functions to inhibit via GABAA receptors L-DOPA release and depressor responses to L-DOPA, whereas L-DOPA induces GABA release. Impaired TTX-sensitive neuronal activity to release L-DOPA in the NTS and enhanced TTX-sensitive neuronal activity including a decrease in decarboxylation of L-DOPA to dopamine and an increase in sensitivity of the recognition site to L-DOPA in the RVLM are relevant to the maintenance of hypertension in spontaneously hypertensive rats. Decreases in the contents of L-DOPA in the right CVLM 10 days after electrical lesion of the ipsilateral NTS suggest a 'L-DOPAergic' and monosynaptic relay from the NTS to the CVLM. L-DOPA seems to play major roles as a neurotransmitter for baroreceptor reflex and blood pressure regulation in the lower brainstem of rats.
Collapse
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | |
Collapse
|
45
|
Yue JL, Okumura Y, Miyamae T, Ueda H, Misu Y. Altered tonic L-3,4-dihydroxyphenylalanine systems in the nucleus tractus solitarii and the rostral ventrolateral medulla of spontaneously hypertensive rats. Neuroscience 1995; 67:95-106. [PMID: 7477914 DOI: 10.1016/0306-4522(94)00611-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter in the central nervous system [Y. Misu et al. (1995) Adv. Pharmac. 32, 427-459]. L-DOPA as a probable neurotransmitter for the primary baroreceptor afferents tonically functions to mediate cardiodepressor control in the nucleus tractus solitarii and also tonically functions to mediate cardiopressor control in the rostral ventrolateral medulla of rats. We further attempted to clarify whether a transmitter-like L-DOPA system is altered in these areas of adult spontaneously hypertensive rats. By microdialysis in the left nucleus tractus solitarii area, the basal L-DOPA release was lower in spontaneously hypertensive rats than that in Wistar-Kyoto rats. This release was partially reduced by tetrodotoxin (1 microM) to the same absolute levels in the two strains. Tonic neuronal L-DOPA release is impaired in this nucleus of spontaneously hypertensive rats. This impairment is not secondarily due to decrease in formation or increase in decarboxylation of L-DOPA, since tyrosine hydroxylase activity was increased in spontaneously hypertensive rats, compared to Wistar-Kyoto rats, while no difference of L-aromatic amino acid decarboxylase activity was seen in the caudal dorsomedial medulla including the nucleus. L-DOPA (10-300 ng) microinjected into the nucleus produced dose-dependent hypotension and bradycardia. A maximum depressor response of spontaneously hypertensive rats to L-DOPA at higher doses was slightly greater than that of Wistar-Kyoto rats. On the other hand, in the left rostral ventrolateral medulla, the basal L-DOPA release was higher in spontaneously hypertensive rats than that in Wistar-Kyoto rats. This release was also partially reduced by tetrodotoxin to the same absolute levels in the two strains. Tonic neuronal L-DOPA release is enhanced in spontaneously hypertensive rats. This enhancement seems to include partially a decrease in decarboxylation of L-DOPA, since L-aromatic amino acid decarboxylase activity was decreased in spontaneously hypertensive rats compared to Wistar-Kyoto rats, while no difference in tyrosine hydroxylase activity was seen. L-DOPA (10-600 ng) produced dose-dependent hypertension and tachycardia. Importantly, a pressor response of spontaneously hypertensive rats to L-DOPA at lower doses was slightly greater than that of Wistar-Kyoto rats. L-DOPA seems to play a transmitter-like role in blood pressure regulation at levels of the nucleus tractus solitarii and rostral ventrolateral medulla in rats.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J L Yue
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
46
|
Misu Y, Ueda H, Goshima Y. Neurotransmitter-like actions of L-DOPA. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:427-59. [PMID: 7748801 DOI: 10.1016/s1054-3589(08)61019-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Y Misu
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | |
Collapse
|