1
|
Viyoch J, Matsunaga N, Yoshida M, To H, Higuchi S, Ohdo S. Effect of Haloperidol on mPer1 Gene Expression in Mouse Suprachiasmatic Nuclei. J Biol Chem 2005; 280:6309-15. [PMID: 15590637 DOI: 10.1074/jbc.m411704200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of a typical neuroleptic haloperidol (Hal) on mPer1 gene expression was investigated in mouse suprachiasmatic nuclei (SCN). Hal induced mPer1 mRNA levels both in vivo and in cultured SCN cells. For mechanisms underlying Hal-induced mPer1 expression, N-methyl-d-aspartate (NMDA) glutamate receptor subtype, the phosphorylation form of the transcription factor, and the Ser-133 phosphorylation form of cAMP-responsive element-binding protein (CREB) played an important role, because the induction of mPer1 mRNA significantly decreased after pretreatment with a non-competitive NMDA receptor antagonist, such as MK-801 or CREB antisense. These results suggest that Hal may increase CREB phosphorylation and mPer1 expression according to the activation of the NMDA receptor through the dopaminergic pathways. Although the injection of Hal during the light period increased the amplitude of mPer1 mRNA rhythmicity in a nondrug state, the injection of the drug during the dark period disturbed the rhythmic pattern of mPer1 mRNA. These results suggest that the rhythmicity of clock genes in SCN may be disturbed depending on the dosing time of Hal. On the other hand, because the induction of mPer1 mRNA by Hal seems to be at least partly caused by the NMDA receptor, showing a phase shift or resetting effect of the circadian clock, Hal may also cause such phase shift effects.
Collapse
Affiliation(s)
- Jarupa Viyoch
- Clinical Pharmacokinetics, Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
2
|
Spektor BS, Miller DW, Hollingsworth ZR, Kaneko YA, Solano SM, Johnson JM, Penney JB, Young AB, Luthi-Carter R. Differential D1 and D2 receptor-mediated effects on immediate early gene induction in a transgenic mouse model of Huntington's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 102:118-28. [PMID: 12191502 DOI: 10.1016/s0169-328x(02)00216-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The diminished expression of D1 and D2 dopamine receptors is a well-documented hallmark of Huntington's disease (HD), but relatively little is known about how these changes in receptor populations affect the dopaminergic responses of striatal neurons. Using transgenic mice expressing an N-terminal portion of mutant huntingtin (R6/2 mice), we have examined immediate early gene (IEG) expression as an index of dopaminergic signal transduction. c-fos, jun B, zif268, and N10 mRNA levels and expression patterns were analyzed using quantitative in situ hybridization histochemistry following intraperitoneal administration of selective D1 and D2 family pharmacological agents (SKF-82958 and eticlopride). Basal IEG levels were generally lower in the dorsal subregion of R6/2 striata relative to wild-type control striata at 10-11 weeks of age, a finding in accord with previously reported decreases in D1 and adenosine A2A receptors. D2-antagonist-stimulated IEG expression was significantly reduced in the striata of transgenic animals. In contrast, D1-agonist-induced striatal R6/2 IEG mRNA levels were either equivalent or significantly enhanced relative to control levels, an unexpected result given the reduced level of D1 receptors in R6/2 animals. Understanding the functional bases for these effects may further elucidate the complex pathophysiology of Huntington's disease.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Genes, Immediate-Early/drug effects
- Genes, Immediate-Early/genetics
- Huntingtin Protein
- Huntington Disease/genetics
- Huntington Disease/metabolism
- Huntington Disease/physiopathology
- Male
- Mice
- Mice, Transgenic
- Neostriatum/drug effects
- Neostriatum/metabolism
- Neostriatum/physiopathology
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Neurons/drug effects
- Neurons/metabolism
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Boris S Spektor
- Department of Neurology and Center for Aging, Genetics, and Neurodegeneration, Neurology/B114-2001, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129-4404, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Chapter I Methods used in inducible transcription factor studies: focus on mRNA. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
4
|
Betancur C, Lépée-Lorgeoux I, Cazillis M, Accili D, Fuchs S, Rostène W. Neurotensin gene expression and behavioral responses following administration of psychostimulants and antipsychotic drugs in dopamine D(3) receptor deficient mice. Neuropsychopharmacology 2001; 24:170-82. [PMID: 11120399 PMCID: PMC2556380 DOI: 10.1016/s0893-133x(00)00179-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to psychostimulants and antipsychotics increases neurotensin (NT) gene expression in the striatum and nucleus accumbens. To investigate the contribution of D(3) receptors to these effects we used mice with targeted disruption of the D(3) receptor gene. Basal NT mRNA expression was similar in D(3) receptor mutant mice and wild-type animals. Acute administration of haloperidol increased NT gene expression in the striatum in D(3)+/+, D(3)+/- and D(3)-/- mice. Similarly, acute cocaine and amphetamine induced NT mRNA expression in the nucleus accumbens shell and olfactory tubercle to a comparable extent in D(3) mutants and wild-type mice. Daily injection of cocaine for seven days increased NT mRNA in a restricted population of neurons in the dorsomedial caudal striatum of D(3)+/+ mice, but not in D(3)-/- and D(3)+/- animals. No differences were observed between D(3) receptor mutant mice and wild-type littermates in the locomotor activity and stereotyped behaviors induced by repeated cocaine administration. These findings demonstrate that dopamine D(3) receptors are not necessary for the acute NT mRNA response to drugs of abuse and antipsychotics but appear to play a role in the regulation of NT gene induction in striatal neurons after repeated cocaine. In addition, our results indicate that the acute locomotor response to cocaine and development of psychostimulant-induced behavioral sensitization do not require functional D(3) receptors.
Collapse
Affiliation(s)
- Catalina Betancur
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Hôpital Saint-Antoine
184 rue du Faubourg Saint-Antoine
75571 Paris Cedex 12,FR
- * Correspondence should be adressed to: Catalina Betancur
| | - Isabelle Lépée-Lorgeoux
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Hôpital Saint-Antoine
184 rue du Faubourg Saint-Antoine
75571 Paris Cedex 12,FR
| | - Michèle Cazillis
- Croissance, différenciation et processus tumoraux
INSERM : U515Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine
184, Rue du Faubourg Saint-Antoine
75571 PARIS CEDEX 12,FR
| | - Domenico Accili
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases
NIHBethesda, MD 20892,US
| | - Sara Fuchs
- Department of Immunology
Weizmann Institute of ScienceRehovot 76100,IL
| | - William Rostène
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Hôpital Saint-Antoine
184 rue du Faubourg Saint-Antoine
75571 Paris Cedex 12,FR
| |
Collapse
|
5
|
Fischer HS, Zernig G, Schuligoi R, Miczek KA, Hauser KF, Gerard C, Saria A. Alterations within the endogenous opioid system in mice with targeted deletion of the neutral endopeptidase ('enkephalinase') gene. REGULATORY PEPTIDES 2000; 96:53-8. [PMID: 11102652 DOI: 10.1016/s0167-0115(00)00200-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biological inactivation of enkephalins by neutral endopeptidase (enkephalinase, NEP, EC3.4.24.11) represents a major mechanism for the termination of enkephalinergic signalling in brain. A pharmacological blockade of NEP-activity enhances extracellular enkephalin concentrations and induces opioid-dependent analgesia. Recently, knockout mice lacking the enzyme NEP have been developed [Lu et al., J. Exp. Med. 1995;181:2271-2275]. The present study investigates the functional consequences and biochemical compensatory strategies of a systemic elimination of NEP activity in these knockout mice. Using biochemical and behavioural tests we found that the lack of NEP activity in brain is not compensated by enhanced activities of alternative enkephalin-degrading enzymes. Also no change in enkephalin biosynthesis was detectable by in situ methods quantifying striatal proenkephalin-mRNA levels in NEP-deficient mice compared with wildtype. Only a 21% reduction of mu receptor density in crude brain homogenates of NEP knockout mice was observed, while delta- and kappa-opioid receptor densities were unchanged. This receptor downregulation was also confirmed functionally in the hot-plate paradigm. NEP knockouts developed normally, but showed enhanced aggressive behaviour in the resident-intruder paradigm, and altered locomotor activity as assessed in the photobeam system. Thus, although NEP plays a substantial role in enkephalinergic neurotransmission, the biochemical adaptations within the opioid system of NEP-deficient mice are of only modest nature.
Collapse
Affiliation(s)
- H S Fischer
- Division of Neurochemistry, Department of Psychiatry, A-6020, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
6
|
Gingrich B, Liu Y, Cascio C, Wang Z, Insel TR. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav Neurosci 2000; 114:173-83. [PMID: 10718272 DOI: 10.1037/0735-7044.114.1.173] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The prairie vole (Microtus ochrogaster), a monogamous rodent that forms long-lasting pair bonds, has proven useful for the neurobiological study of social attachment. In the laboratory, pair bonds can be assessed by testing for a partner preference, a choice test in which pair-bonded voles regularly prefer their partner to a conspecific stranger. Studies reported here investigate the role of dopamine D2-like receptors (i.e., D2, D3, and D4 receptors) in the nucleus accumbens (NAcc) for the formation of a partner preference in female voles. Mating facilitated partner preference formation and associated with an approximately 50% increase in extracellular dopamine in the NAcc. Microinjection of the D2 antagonist eticlopride into the NAcc (but not the prelimbic cortex) blocked the formation of a partner preference in mating voles, whereas the D2 agonist quinpirole facilitated formation of a partner preference in the absence of mating. Taken together, these results suggest that D2-like receptors in the NAcc are important for the mediation of social attachments in female voles.
Collapse
Affiliation(s)
- B Gingrich
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
7
|
Liste I, Rodriguez-Pallares J, Caruncho HJ, Labandeira-Garcia JL. Locomotor-activity-induced changes in striatal levels of preprotachykinin and preproenkephalin mRNA. Regulation by the dopaminergic and glutamatergic systems. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:74-83. [PMID: 10381545 DOI: 10.1016/s0169-328x(99)00140-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms by which dopaminergic and glutamatergic inputs interact to regulate striatal neuropeptide expression during physiological motor activity are poorly understood. In this work, striatal expression of preprotachykinin (PPT) and preproenkephalin (PPE) mRNA was studied by in situ hybridization in rats killed 2 h after treadmill running (36 m/min for 20 min). Treadmill running induced a significant increase in the levels of both PPT (60% increase) and PPE (90% increase) mRNA in the striatum of normal rats. The increase in the level of PPT mRNA was blocked in rats previously subjected to nigrostriatal deafferentation (i.e., 6-hydroxydopamine lesion) or pretreated with D1-receptor antagonist SCH-23390 (0.1 mg/kg), the D2-receptor antagonist eticlopride (0.5 mg/kg), or the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK-801 (0.1 mg/kg). The running-induced increase in the level of PPE mRNA was blocked in rats pretreated with SCH-23390 or MK-801. Rats subjected to nigrostriatal deafferentation or pretreated with eticlopride showed an increase in PPE mRNA levels (around 150% and 40% increase, respectively), that was enhanced by running (around 230% and 160% increase, respectively). These results suggest that locomotor activity increases, in a NMDA receptor dependent fashion, the excitatory influence of the corticostriatal glutamatergic system on the two populations of striatal projection neurons, as reflected by increases in the levels of PPT and PPE mRNA. The results obtained after dopamine depletion or injection of dopamine receptor antagonists suggest that a concomitant increase in dopamine release may enhance PPT mRNA level in striatonigral neurons via D1 receptors, and reduce PPE mRNA level in striatopallidal neurons via D2 receptors. Additionally, levels of dopamine and glutamate may be regulated by other complex indirect mechanisms.
Collapse
Affiliation(s)
- I Liste
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, E-15705, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
8
|
Khan SM, Smith TS, Bennett JP. Effects of single and multiple treatments with L-dihydroxyphenylalanine (L-DOPA) on dopamine receptor-G protein interactions and supersensitive immediate early gene responses in striata of rats after reserpine treatment or with unilateral nigrostriatal lesions. J Neurosci Res 1999; 55:71-9. [PMID: 9890435 DOI: 10.1002/(sici)1097-4547(19990101)55:1<71::aid-jnr8>3.0.co;2-g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We studied effects of L-dihydroxyphenylalanine (L-DOPA) treatment in rats following reserpine treatment or unilateral 6-hydroxydopamine (6-OHDA) injections into medial forebrain bundle. Quantitative in situ hybridization for mRNA's coding for the zinc finger immediate early gene (IEG) zif/268 or Jun family IEG jun b revealed that single L-DOPA injections accentuated IEG expression 3- to 7-fold in the dopamine (DA)-depleted striatum. This increased IEG response did not derive from any alterations in DA receptor-G protein coupling, assayed by DA stimulation of 35S-guanosine-5' (gamma-thio) triphosphate (35S-GTP-gamma-S) binding to striatal sections. Reserpine treatment increased both basal and maximal striatal DA-stimulated 35S-GTP-gamma-S binding. The augmented IEG responses to single L-DOPA treatments involved dependency on both D1 and D2 receptors and acutely to N-methyl-D-aspartate (NMDA) channels. Repetitive L-DOPA treatments yielded persistently elevated (zif/268) or additionally up-regulated (jun b) IEG response in the denervated striatum and down-regulated IEG responses in the control striatum. Degraded L-DOPA responses and appearance of involuntary movements after chronic L-DOPA use in advanced Parkinson's disease may derive from these IEG changes.
Collapse
Affiliation(s)
- S M Khan
- Center for the Study of Neurodegenerative Diseases, and the Department of Neurology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
9
|
Abstract
Although caffeine is the most widely used central nervous system stimulant, the neuronal populations and pathways mediating its stimulant effects are not well understood. Using c-Fos protein as a marker for neuronal activation, the present study investigated the pattern of c-Fos induction at 2 hours after low locomotor-stimulant doses (1, 5, 10, and 30 mg/kg, i.p.) of caffeine and compared them with those after a higher dose (75 mg/kg, i.p.) or saline injection in adult male rats. Fos-immunoreactive neurons were counted in selected nuclei across the entire brain. Caffeine induced an increase in locomotor activity in a dose-dependent manner up to doses of 30 mg/kg and a decline at 75 mg/kg. Quantitative analysis of Fos-immunoreactive neurons indicated that no structures showed significant Fos expression at doses below 75 mg/kg or a biphasic pattern of Fos expression, as in locomotion. In contrast, caffeine at 75 mg/kg induced a significant increase compared with the saline condition in the number of Fos-immunoreactive neurons in the majority of structures examined. The structures included the striatum, nucleus accumbens, globus pallidus, and substantia nigra pars reticulata and autonomic and limbic structures including the basolateral and central nuclei of the amygdala, paraventricular and supraoptic hypothalamic nuclei, periventricular hypothalamus, paraventricular thalamic nuclei, parabrachial nuclei, locus coeruleus, and nucleus of the solitary tract. The locomotor-enhancing effects of low doses of caffeine did not appear to be associated with significant Fos expression in the rat brain.
Collapse
Affiliation(s)
- H J Bennett
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
10
|
Ozaki T, Katsumoto E, Mui K, Furutsuka D, Yamagami S. Distribution of Fos- and Jun-related proteins and activator protein-1 composite factors in mouse brain induced by neuroleptics. Neuroscience 1998; 84:1187-96. [PMID: 9578405 DOI: 10.1016/s0306-4522(97)00536-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanisms by which the direct actions of neuroleptics are translated into therapeutic effects are unknown. We immunocytochemically investigated the expression of Fos- and Jun-related proteins and examined activator protein-1 DNA-binding activity in ddY mouse brain 120 min after the administration of haloperidol (1 mg/kg), (-)-sulpiride (20 mg/kg) and a selective dopamine D1 receptor antagonist, SCH23390 (1 mg/kg). The densities of Fos-, FosB-, Fra-1-, Jun- and JunD-immunoreactive nuclei induced by haloperidol and sulpiride in the hippocampus, piriform cortex and accumbens nucleus were higher than those in the control groups. The same regions showed higher densities of FosB-, Fra-1- and JunD-immunoreactive nuclei induced by SCH23390 compared with the control groups. We investigated further the activator protein-1 composite factors using super gel shift assays. These results suggested that induced Fos, FosB, Fra-1, Jun and JunD proteins constitute the activator protein-1 complex after the administration of haloperidol and sulpiride. In contrast, FosB, Fra-1 and JunD appear to constitute the activator protein-1 complex after the administration of SCH23390. Therefore, the diversity of activator protein-1 composite factors suggests that various kinds of gene are induced to act by some neuroleptics.
Collapse
Affiliation(s)
- T Ozaki
- Department of Neuropsychiatry, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | |
Collapse
|
11
|
Sgambato V, Abo V, Rogard M, Besson MJ, Deniau JM. Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 1997; 81:93-112. [PMID: 9300404 DOI: 10.1016/s0306-4522(97)00179-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The protein Fos is a transcription factor which is quickly induced in response to a variety of extracellular signals. Since this protein is expressed in a variety of neuronal systems in response to activation of synaptic afferents, it has been suggested that it might contribute to activity-dependent plasticity in neural networks. The present study investigated the effect of cortical electrical stimulation on the expression of Fos in the basal ganglia in the rat, a group of structures that participate in sensorimotor learning. Results show that the repetitive application of electrical shocks in restricted areas of the cerebral cortex induces an expression of Fos mostly confined to the striatum and the subthalamic nucleus. The induction which can be elicited from different cortical areas (sensorimotor, auditory and limbic areas) does not require particular temporal patterns of stimulation but rather depends on the total number of shocks delivered during a given period of time. Moreover, it appears to be rather independent of the number of spikes discharged by the activated cells. In the striatum, the distribution of immunoreactive neurons is precisely delineated and conforms to the known topographical organization of stimulated corticostriatal projections. As demonstrated using a variety of double labelling techniques (combination of the immunocytochemical detection of Fos with the autoradiography of mu opioid receptors, calbindin immunocytochemistry, in situ hybridization of preproenkephalin and preprotachykinin A messenger RNAs), striatal neurons which express Fos are mostly localized in the matrix compartment and concern equally enkephaline and substance P containing efferent neurons. In the subthalamic nucleus, Fos expression evoked by cortical stimulation is also confined to discrete regions of the nucleus, the localizations corresponding to the primary projection site of the stimulated cortical cells. These results indicate that in addition to its phasic synaptic influence on the basal ganglia, the cerebral cortex could exert a long-term effect on the functional state of this system via a genomic control. Since the basal ganglia are involved in sensorimotor learning and motor habit formation, it is tempting to speculate that the activity-dependent Fos induction at corticostriatal and subthalamic synapses may contribute to consolidate the functionality of the neuronal networks activated during the completion of given motor tasks.
Collapse
Affiliation(s)
- V Sgambato
- Université Pierre et Marie Curie, Department de Neurochimie-Anatomie, U.R.A. 1488, Paris, France
| | | | | | | | | |
Collapse
|
12
|
Marin C, Tolosa E. Striatal synaptophysin levels are not indicative of dopaminergic supersensitivity. Neuropharmacology 1997; 36:1115-7. [PMID: 9294977 DOI: 10.1016/s0028-3908(97)00097-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent evidence suggests that behavioral supersensitivity to dopamine (DA) agonists observed in chronic neuroleptic-treated animals might be related to changes in synaptic morphology and density. The aim of this study was to test this hypothesis using Western blotting to determine the striatal synaptophysin levels in rats chronically treated with haloperidol followed by sub-acute administration of a DA agonist. Chronic haloperidol treatment (1 mg/kg/day for 21 days) produced an 88% increase in striatal synaptophysin levels and a 73% increase in apomorphine-induced stereotypes. Sub-acute administration of the DA D-1 receptor agonist SKF38393 (10 mg/kg/day for 5 days) or the DA D-2 receptor agonist quinpirole (1 mg/kg/day for 5 days) did not modify the haloperidol-induced increase in striatal synaptophysin levels. However, sub-acute administration of SKF38393 attenuated (62%) haloperidol-induced stereotypies. We conclude that there is no direct relationship between stereotyped behavior and synaptophysin levels indicating that striatal synaptophysin levels are not a good marker of dopaminergic supersensitivity.
Collapse
Affiliation(s)
- C Marin
- Departament de Medicina, Hospital Clínic, Universitat de Barcelona, Spain
| | | |
Collapse
|
13
|
Zivin M, Sprah L, Sket D. The D1 receptor-mediated effects of the ergoline derivative LEK-8829 in rats with unilateral 6-hydroxydopamine lesions. Br J Pharmacol 1996; 119:1187-96. [PMID: 8937722 PMCID: PMC1915887 DOI: 10.1111/j.1476-5381.1996.tb16021.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Previous experiments have suggested a potential atypical antipsychotic activity of the ergoline derivative LEK-8829. In vitro experiments showed a high affinity to 5-HT1A, 5-HT2 and D2 receptors (the ratio of pKi values 5-HT2/D2 = 1.11) and a moderate affinity to D1 receptors. In vivo experiments showed antagonism of dopamine and 5-hydroxytryptamine (5-HT) receptor-linked behaviours. 2. In the present study, the rats with unilateral dopaminergic deafferentation of the striatum, induced by the lesion of the median forebrain bundle with 6-hydroxydopamine (6-OHDA), were used to determine the effects of LEK-8829 on turning behaviour and on striatal c-fos mRNA levels. 3. The administration of LEK-8829 induced a long lasting contralateral turning behaviour that was dose-dependent. It was found that the specific D1 receptor antagonist SCH-23390 but not the D2 receptor antagonist haloperidol or 5-HT1A antagonist pindolol, dose-dependently inhibited the turning behaviour induced by LEK-8829. 4. In an attempt to clarify the D1:D2 receptor interactions involved in the action of LEK-8829 in the 6OHDA model, we used in situ hybridization histochemistry to compare the effect of SCH-23390 pretreatment on striatal c-fos mRNA expression induced either by LEK-8829 or by the typical antipsychotic haloperidol. 5. LEK-8829 induced a bilateral striatal c-fos mRNA expression that was significantly higher in the denervated striatum as compared to the intact striatum and was completely blocked on both sides by pretreatment with SCH-23390. In contrast, haloperidol-induced striatal c-fos mRNA expression was limited to the innervated striatum and was not blocked by SCH-23390. 6. Our data demonstrate an intrinsic activity of LEK-8829 on D1 receptors that is potentiated in the dopamine-depleted striatum. We conclude, therefore, that the putative atypical antipsychotic LEK-8829 may prove useful as an experimental tool for the study of D1:D2 receptor interactions and could have beneficial effects in the treatment of drug-induced psychosis in patients with Parkinson's disease.
Collapse
Affiliation(s)
- M Zivin
- School of Medicine, Institute of Pathophysiology, Ljubljana, Slovenia
| | | | | |
Collapse
|
14
|
Wagstaff JD, Gibb JW, Hanson GR. Dopamine D2-receptors regulate neurotensin release from nucleus accumbens and striatum as measured by in vivo microdialysis. Brain Res 1996; 721:196-203. [PMID: 8793101 DOI: 10.1016/0006-8993(96)00132-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was undertaken to examine the role of dopamine D2-receptors in the regulation of neurotensin release. Through a modification of the methods described by Maidment et al. (Neuroscience, 45 (1991) 81-93), we have developed a highly reproducible method of measuring changes in extracellular NT in the striatum and nucleus accumbens by in vivo microdialysis in awake animals. It was observed that calcium-dependent release of NT was evoked in both structures by infusing a high concentration of potassium. In addition, systemic administration of the D2 agonist quinpirole (5 mg/kg) induced a rapid increase of approximately 200% in extracellular NT levels in the lateral caudate and 30-40% in the nucleus accumbens. Conversely, treatment with the D2 antagonist eticlopride (0.5 mg/kg) reduced extracellular NT in the medial anterior caudate and nucleus accumbens 20-30%, but had no effect in the lateral anterior caudate. These data demonstrate for the first time that D2-receptors are important in the dopaminergic regulation of extrapyramidal and limbic NT release in conscious animals.
Collapse
Affiliation(s)
- J D Wagstaff
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, USA
| | | | | |
Collapse
|
15
|
Kroesen S, Marksteiner J, Mahata SK, Mahata M, Fischer-Colbrie R, Saria A, Kapeller I, Winkler H. Effects of haloperidol, clozapine and citalopram on messenger RNA levels of chromogranins A and B and secretogranin II in various regions of rat brain. Neuroscience 1995; 69:881-91. [PMID: 8596656 DOI: 10.1016/0306-4522(95)00275-n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have measured the messenger RNA levels of chromogranins A and B and secretogranin II in various brain regions of rats subchronically treated with various antipsychotic drugs. Since, as shown previously, the messenger RNA levels of these peptides are increased when neurons are stimulated, we hoped to identify by this approach those nuclei which are subchronically influenced by these drugs. The drugs chosen were the neuroleptic halperidol, a blocker of dopamine receptors, the atypical antipsychotic clozapine, which in addition to blocking dopamine receptors also blocks those for serotonin, and citalopram, a specific serotonin reuptake inhibitor. In agreement with previous data on neuropeptide messenger RNAs, we found in the dorsolateral striatum an increase of the secretogranin II messenger RNA levels after haloperidol and a much smaller one after clozapine. In the nucleus accumbens and in the bed nucleus of the stria terminalis, both compounds had a comparable positive effect. These differential effects can be attributed to a different action of these drugs on dopamine receptor subtypes. In the zona incerta, clozapine decreased the secretogranin II and chromogranin A message, whereas in the dorsal raphe it led to an increase. On the other hand, citalopram induced exactly the opposite effects in these two brain regions. This phenomenon can be explained by the differential interaction of these drugs with serotonergic mechanisms. Additional, relatively small changes of the mRNAs were seen in several other brain regions. These results establish that changes in the mRNA levels of the chromogranins are good indicators for the effect of drugs on certain brain nuclei. The concomitant action of haloperidol and clozapine on the limbic regions, i.e. the nucleus accumbens and the bed nucleus of the stria terminalis, points to these brain regions for the antipsychotic action of these two neuroleptics.
Collapse
Affiliation(s)
- S Kroesen
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Evers BM, Wang X, Zhou Z, Townsend CM, McNeil GP, Dobner PR. Characterization of promoter elements required for cell-specific expression of the neurotensin/neuromedin N gene in a human endocrine cell line. Mol Cell Biol 1995; 15:3870-81. [PMID: 7791794 PMCID: PMC230627 DOI: 10.1128/mcb.15.7.3870] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of the gene encoding neurotensin/neuromedin N (NT/N) is mostly limited to the brain and specialized enteroendocrine cells (N cells) of the distal small intestine. We have analyzed the NT/N DNA sequences upstream of the RNA start site that direct cell-specific expression using a novel human endocrine cell line, BON, that resembles intestinal N cells in several important aspects, including NT/N precursor protein processing, ratios of different NT/N mRNA forms, and high levels of constitutive expression of the NT/N gene. Transient transfection assays with plasmids with progressive 5' deletions of the rat NT/N promoter identified the proximal 216 bp of 5' flanking sequences as essential for high-level constitutive NT/N expression in BON cells. In addition, a detailed mutational analysis defined multiple regions within the proximal 216 bp that contribute to cell-specific NT/N expression. These elements include a proximal cyclic AMP response element (CRE)/AP-1-like motif (TGACATCA) that binds c-Jun, JunD, CRE-binding (CREB), and ATF proteins, a near-consensus glucocorticoid response element, and a distal consensus AP-1 site that binds c-Fos, Fra-1, and JunD. In addition, elements contained within two 21-bp imperfect direct repeats play an important role in NT/N expression in BON cells and may bind novel factors that act as positive regulators of NT/N expression. DNase I footprinting and gel shift analyses demonstrate that the sites identified by mutational analysis, and at least one additional site, specifically bind BON cell nuclear proteins in vitro. We speculate that a complex pattern of regulation requiring interaction between a proximal CRE/AP-1-like motif and other upstream control elements play an important role in the high-level constitutive expression of NT/N in the human endocrine cell line BON. In addition, the BON cell line provides a unique model to further characterize the factors regulating cell-specific NT/N expression and to better understand the mechanisms responsible for the terminal differentiation of the N-cell lineage in the gut.
Collapse
Affiliation(s)
- B M Evers
- Department of Surgery, The University of Texas Medical Branch, Galveston 77555, USA
| | | | | | | | | | | |
Collapse
|
17
|
Esteve L, Haby C, Rodeau JL, Humblot N, Aunis D, Zwiller J. Induction of c-fos, jun B and egr-1 expression by haloperidol in PC12 cells: involvement of calcium. Neuropharmacology 1995; 34:439-48. [PMID: 7566476 DOI: 10.1016/0028-3908(95)00006-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acute injection of haloperidol, a dopamine D2 receptor antagonist, is known to increase immediate early gene expression of the fos and jun families in rodent striatal neurons. A set of gene induction, including c-fos, jun B and TIS8/egr-1, was found when haloperidol was added to PC12 cells in culture. Electrophoretic mobility-shift assays show that haloperidol-evoked gene induction was accompanied by a transient and dose-dependent increase in AP1 and EGR-1 binding activities in these cells. Gene expression is tentatively explained by the rapid and transient increase in cytosolic free Ca2+ concentration observed upon haloperidol addition. The cytosolic calcium rise and AP1 binding activation elicited by haloperidol were dependent on extracellular Ca2+, suggesting that haloperidol exerted its effects by promoting Ca2+ entry into PC12 cells. The haloperidol-induced increase in AP1 binding activity and intracellular Ca2+ was not reproduced by two other dopamine D2 receptor antagonists, sulpiride and (+)-butaclamol.
Collapse
Affiliation(s)
- L Esteve
- INSERM U338, Centre de Neurochimie, Strasbourg, France
| | | | | | | | | | | |
Collapse
|