1
|
Ma KY, Cai XY, Wang XT, Wang ZX, Huang WM, Wu ZY, Feng ZY, Shen Y. Three-Dimensional Heterogeneity of Cerebellar Interposed Nucleus-Recipient Zones in the Thalamic Nuclei. Neurosci Bull 2021; 37:1529-1541. [PMID: 34609736 DOI: 10.1007/s12264-021-00780-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
The cerebellum is conceptualized as a processor of complex movements and is also endowed with roles in cognitive and emotional behaviors. Although the axons of deep cerebellar nuclei are known to project to primary thalamic nuclei, macroscopic investigation of the characteristics of these projections, such as the spatial distribution of recipient zones, is lacking. Here, we studied the output of the cerebellar interposed nucleus (IpN) to the ventrolateral (VL) and centrolateral (CL) thalamic nuclei using electrophysiological recording in vivo and trans-synaptic viral tracing. We found that IpN stimulation induced mono-synaptic evoked potentials (EPs) in the VL but not the CL region. Furthermore, both the EPs induced by the IpN and the innervation of IpN projections displayed substantial heterogeneity across the VL region in three-dimensional space. These findings indicate that the recipient zones of IpN inputs vary between and within thalamic nuclei and may differentially control thalamo-cortical networks.
Collapse
Affiliation(s)
- Kuang-Yi Ma
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xin-Yu Cai
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xin-Tai Wang
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhao-Xiang Wang
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, 310013, China
| | - Wan-Meng Huang
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in the Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhou-Yan Feng
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, 310013, China
| | - Ying Shen
- Department of Physiology and Department of Neurology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Dacre J, Colligan M, Clarke T, Ammer JJ, Schiemann J, Chamosa-Pino V, Claudi F, Harston JA, Eleftheriou C, Pakan JMP, Huang CC, Hantman AW, Rochefort NL, Duguid I. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron 2021; 109:2326-2338.e8. [PMID: 34146469 PMCID: PMC8315304 DOI: 10.1016/j.neuron.2021.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Executing learned motor behaviors often requires the transformation of sensory cues into patterns of motor commands that generate appropriately timed actions. The cerebellum and thalamus are two key areas involved in shaping cortical output and movement, but the contribution of a cerebellar-thalamocortical pathway to voluntary movement initiation remains poorly understood. Here, we investigated how an auditory "go cue" transforms thalamocortical activity patterns and how these changes relate to movement initiation. Population responses in dentate/interpositus-recipient regions of motor thalamus reflect a time-locked increase in activity immediately prior to movement initiation that is temporally uncoupled from the go cue, indicative of a fixed-latency feedforward motor timing signal. Blocking cerebellar or motor thalamic output suppresses movement initiation, while stimulation triggers movements in a behavioral context-dependent manner. Our findings show how cerebellar output, via the thalamus, shapes cortical activity patterns necessary for learned context-dependent movement initiation.
Collapse
Affiliation(s)
- Joshua Dacre
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Matt Colligan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas Clarke
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Julian J Ammer
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Julia Schiemann
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Victor Chamosa-Pino
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Federico Claudi
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - J Alex Harston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Constantinos Eleftheriou
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Janelle M P Pakan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ian Duguid
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Eelkman Rooda OHJ, Kros L, Faneyte SJ, Holland PJ, Gornati SV, Poelman HJ, Jansen NA, Tolner EA, van den Maagdenberg AMJM, De Zeeuw CI, Hoebeek FE. Single-pulse stimulation of cerebellar nuclei stops epileptic thalamic activity. Brain Stimul 2021; 14:861-872. [PMID: 34022430 DOI: 10.1016/j.brs.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/05/2021] [Accepted: 05/03/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Epileptic (absence) seizures in the cerebral cortex can be stopped by pharmacological and optogenetic stimulation of the cerebellar nuclei (CN) neurons that innervate the thalamus. However, it is unclear how such stimulation can modify underlying thalamo-cortical oscillations. HYPOTHESIS Here we tested whether rhythmic synchronized thalamo-cortical activity during absence seizures can be desynchronized by single-pulse optogenetic stimulation of CN neurons to stop seizure activity. METHODS We performed simultaneous thalamic single-cell and electrocorticographical recordings in awake tottering mice, a genetic model of absence epilepsy, to investigate the rhythmicity and synchronicity. Furthermore, we tested interictally the impact of single-pulse optogenetic CN stimulation on thalamic and cortical recordings. RESULTS We show that thalamic firing is highly rhythmic and synchronized with cortical spike-and-wave discharges during absence seizures and that this phase-locked activity can be desynchronized upon single-pulse optogenetic stimulation of CN neurons. Notably, this stimulation of CN neurons was more effective in stopping seizures than direct, focal stimulation of groups of afferents innervating the thalamus. During interictal periods, CN stimulation evoked reliable but heterogeneous responses in thalamic cells in that they could show an increase or decrease in firing rate at various latencies, bi-phasic responses with an initial excitatory and subsequent inhibitory response, or no response at all. CONCLUSION Our data indicate that stimulation of CN neurons and their fibers in thalamus evokes differential effects in its downstream pathways and desynchronizes phase-locked thalamic neuronal firing during seizures, revealing a neurobiological mechanism that may explain how cerebellar stimulation can stop seizures.
Collapse
Affiliation(s)
- Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands; Department of Neurosurgery, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Sade J Faneyte
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Peter J Holland
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Huub J Poelman
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands
| | - Nico A Jansen
- Department of Neurology, Leiden University Medical Center, 2300, RC Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2300, RC Leiden, the Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, 2300, RC Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2300, RC Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, 2300, RC Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Center, 2300, RC Leiden, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, 1105, BA Amsterdam, the Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015, AA Rotterdam, the Netherlands; Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht Medical Center, 3508, AB Utrecht, the Netherlands.
| |
Collapse
|
4
|
Schäfer CB, Gao Z, De Zeeuw CI, Hoebeek FE. Temporal dynamics of the cerebello-cortical convergence in ventro-lateral motor thalamus. J Physiol 2021; 599:2055-2073. [PMID: 33492688 PMCID: PMC8048920 DOI: 10.1113/jp280455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
KEY POINTS Ventrolateral thalamus (VL) integrates information from cerebellar nuclei and motor cortical layer VI. Inputs from the cerebellar nuclei evoke large-amplitude responses that depress upon repetitive stimulation while layer VI inputs from motor cortex induce small-amplitude facilitating responses. We report that the spiking of VL neurons can be determined by the thalamic membrane potential, the frequency of cerebellar inputs and the duration of pauses after cerebellar high frequency stimulation. Inputs from motor cortical layer VI shift the VL membrane potential and modulate the VL spike output in response to cerebellar stimulation. These results help us to decipher how the cerebellar output is integrated in VL and modulated by motor cortical input. ABSTRACT Orchestrating complex movements requires well-timed interaction of cerebellar, thalamic and cerebral structures, but the mechanisms underlying the integration of cerebro-cerebellar information in motor thalamus remain largely unknown. Here we investigated how excitatory inputs from cerebellar nuclei (CN) and primary motor cortex layer VI (M1-L6) neurons may regulate the activity of neurons in the mouse ventrolateral (VL) thalamus. Using dual-optical stimulation of the CN and M1-L6 axons and in vitro whole-cell recordings of the responses in VL neurons, we studied the individual responses as well as the effects of combined CN and M1-L6 stimulation. Whereas CN inputs evoked large-amplitude responses that were depressed upon repetitive stimulation, M1-L6 inputs elicited small-amplitude responses that were facilitated upon repetitive stimulation. Moreover, pauses in CN stimuli could directly affect VL spiking probability, an effect that was modulated by VL membrane potential. When CN and M1-L6 pathways were co-activated, motor cortical afferents increased the thalamic spike output in response to cerebellar stimulation, indicating that CN and M1 synergistically, yet differentially, control the membrane potential and spiking pattern of VL neurons.
Collapse
Affiliation(s)
| | - Zhenyu Gao
- Department of NeuroscienceErasmus MCRotterdam3015 AAThe Netherlands
| | - Chris I. De Zeeuw
- Department of NeuroscienceErasmus MCRotterdam3015 AAThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Dutch Academy of Arts & ScienceAmsterdam1105 BAThe Netherlands
| | - Freek E. Hoebeek
- Department of NeuroscienceErasmus MCRotterdam3015 AAThe Netherlands
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital and Brain CenterUniversity Medical Center UtrechtUtrecht3584 EAThe Netherlands
| |
Collapse
|
5
|
Gornati SV, Schäfer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE. Differentiating Cerebellar Impact on Thalamic Nuclei. Cell Rep 2019; 23:2690-2704. [PMID: 29847799 PMCID: PMC5990493 DOI: 10.1016/j.celrep.2018.04.098] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/26/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
The cerebellum plays a role in coordination of movements and non-motor functions. Cerebellar nuclei (CN) axons connect to various parts of the thalamo-cortical network, but detailed information on the characteristics of cerebello-thalamic connections is lacking. Here, we assessed the cerebellar input to the ventrolateral (VL), ventromedial (VM), and centrolateral (CL) thalamus. Confocal and electron microscopy showed an increased density and size of CN axon terminals in VL compared to VM or CL. Electrophysiological recordings in vitro revealed that optogenetic CN stimulation resulted in enhanced charge transfer and action potential firing in VL neurons compared to VM or CL neurons, despite that the paired-pulse ratio was not significantly different. Together, these findings indicate that the impact of CN input onto neurons of different thalamic nuclei varies substantially, which highlights the possibility that cerebellar output differentially controls various parts of the thalamo-cortical network. Cerebello-thalamic axons form terminals of varying size in distinct thalamic nuclei Cerebello-thalamic responses vary in amplitude in distinct thalamic nuclei Repetitive stimuli depress cerebello-thalamic responses in all thalamic nuclei
Collapse
Affiliation(s)
- Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Carmen B Schäfer
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; Department of Neurosurgery, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Alex L Nigg
- Department of Pathology, Optical Imaging Center, Erasmus MC, 3015 AA Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; NIDOD Institute, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands.
| |
Collapse
|
6
|
Nashef A, Cohen O, Israel Z, Harel R, Prut Y. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions. Cell Rep 2019; 23:1275-1285. [PMID: 29719244 DOI: 10.1016/j.celrep.2018.04.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/15/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022] Open
Abstract
In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC) system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions.
Collapse
Affiliation(s)
- Abdulraheem Nashef
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Oren Cohen
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah Hospital, Jerusalem, Israel
| | - Ran Harel
- Department of Neurosurgery, Sheba Medical Center, Tel Aviv, Israel
| | - Yifat Prut
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel.
| |
Collapse
|
7
|
Convergence of Primary Sensory Cortex and Cerebellar Nuclei Pathways in the Whisker System. Neuroscience 2018; 368:229-239. [DOI: 10.1016/j.neuroscience.2017.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/07/2017] [Accepted: 07/16/2017] [Indexed: 01/23/2023]
|
8
|
Pieterman K, Batalle D, Dudink J, Tournier JD, Hughes EJ, Barnett M, Benders MJ, Edwards AD, Hoebeek FE, Counsell SJ. Cerebello-cerebral connectivity in the developing brain. Brain Struct Funct 2016; 222:1625-1634. [PMID: 27573027 PMCID: PMC5406415 DOI: 10.1007/s00429-016-1296-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 08/22/2016] [Indexed: 01/28/2023]
Abstract
Disrupted cerebellar development and injury is associated with impairments in both motor and non-motor domains. Methods to non-invasively characterize cerebellar afferent and efferent connections during early development are lacking. The aim of this study was to assess the feasibility of delineating cortico-ponto-cerebellar (CPC) and cerebello-thalamo-cortical (CTC) white matter tracts during brain development using high angular resolution diffusion imaging (HARDI). HARDI data were obtained in 24 infants born between 24+6 and 39 weeks gestational age (median 33+4 weeks) and scanned between 29+1 and 44 weeks postmenstrual age (PMA) (median 37+1 weeks). Probabilistic tractography of CPC and CTC fibers was performed using constrained spherical deconvolution. Connections between cerebellum and contralateral cerebral hemisphere were identified in all infants studied. Fractional anisotropy (FA) values of CTC and CPC pathways increased with increasing PMA at scan (p < 0.001). The supratentorial regions connecting to contralateral cerebellum in most subjects, irrespective of PMA at scan, included the precentral cortex, superior frontal cortex, supplementary motor area, insula, postcentral cortex, precuneus, and paracentral lobule. This study demonstrates the feasibility of assessing CTC and CPC white matter connectivity in vivo during the early stages of development. The ability to assess cerebellar connectivity during this critical developmental period may help improve our understanding of the role of the cerebellum in a wide range of neuromotor and neurocognitive disorders.
Collapse
Affiliation(s)
- Kay Pieterman
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK.,Department of Neonatology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Dafnis Batalle
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Jeroen Dudink
- Department of Neonatology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Radiology, Erasmus Medical Centre, Rotterdam, The Netherlands.,Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - J-Donald Tournier
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK.,Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, King's College London, London, SE1 7EH, UK
| | - Emer J Hughes
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Madeleine Barnett
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Manon J Benders
- Department of Perinatology, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A David Edwards
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | - Serena J Counsell
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| |
Collapse
|
9
|
Wijesinghe R, Protti DA, Camp AJ. Vestibular Interactions in the Thalamus. Front Neural Circuits 2015; 9:79. [PMID: 26696836 PMCID: PMC4667082 DOI: 10.3389/fncir.2015.00079] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/10/2015] [Indexed: 01/31/2023] Open
Abstract
It has long been known that the vast majority of all information en route to the cerebral cortex must first pass through the thalamus. The long held view that the thalamus serves as a simple hi fidelity relay station for sensory information to the cortex, however, has over recent years been dispelled. Indeed, multiple projections from the vestibular nuclei to thalamic nuclei (including the ventrobasal nuclei, and the geniculate bodies)- regions typically associated with other modalities- have been described. Further, some thalamic neurons have been shown to respond to stimuli presented from across sensory modalities. For example, neurons in the rat anterodorsal and laterodorsal nuclei of the thalamus respond to visual, vestibular, proprioceptive and somatosensory stimuli and integrate this information to compute heading within the environment. Together, these findings imply that the thalamus serves crucial integrative functions, at least in regard to vestibular processing, beyond that imparted by a “simple” relay. In this mini review we outline the vestibular inputs to the thalamus and provide some clinical context for vestibular interactions in the thalamus. We then focus on how vestibular inputs interact with other sensory systems and discuss the multisensory integration properties of the thalamus.
Collapse
Affiliation(s)
- Rajiv Wijesinghe
- Sensory Systems and Integration Laboratory, Sydney Medical School, Discipline of Biomedical Science, University of Sydney Sydney, NSW, Australia
| | - Dario A Protti
- Vision Laboratory, Sydney Medical School, Discipline of Physiology, University of Sydney Sydney, NSW, Australia
| | - Aaron J Camp
- Sensory Systems and Integration Laboratory, Sydney Medical School, Discipline of Biomedical Science, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
10
|
Kros L, Eelkman Rooda OHJ, De Zeeuw CI, Hoebeek FE. Controlling Cerebellar Output to Treat Refractory Epilepsy. Trends Neurosci 2015; 38:787-799. [PMID: 26602765 DOI: 10.1016/j.tins.2015.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/12/2015] [Accepted: 10/18/2015] [Indexed: 11/27/2022]
Abstract
Generalized epilepsy is characterized by recurrent seizures caused by oscillatory neuronal firing throughout thalamocortical networks. Current therapeutic approaches often intervene at the level of the thalamus or cerebral cortex to ameliorate seizures. We review here the therapeutic potential of cerebellar stimulation. The cerebellum forms a prominent ascending input to the thalamus and, whereas stimulation of the foliated cerebellar cortex exerts inconsistent results, stimulation of the centrally located cerebellar nuclei (CN) reliably stops generalized seizures in experimental models. Stimulation of this area indicates that the period of stimulation with respect to the phase of the oscillations in thalamocortical networks can optimize its effect, opening up the possibility of developing on-demand deep brain stimulation (DBS) treatments.
Collapse
Affiliation(s)
- Lieke Kros
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Kros L, Eelkman Rooda OHJ, Spanke JK, Alva P, van Dongen MN, Karapatis A, Tolner EA, Strydis C, Davey N, Winkelman BHJ, Negrello M, Serdijn WA, Steuber V, van den Maagdenberg AMJM, De Zeeuw CI, Hoebeek FE. Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol 2015; 77:1027-49. [PMID: 25762286 PMCID: PMC5008217 DOI: 10.1002/ana.24399] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/13/2023]
Abstract
Objective Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized spike‐and‐wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modulation of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures. Methods Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering, which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically increased or decreased CN neuron activity could modulate GSWD occurrence as well as short‐lasting, on‐demand CN stimulation could disrupt epileptic seizures. Results We found that a subset of CN neurons show phase‐locked oscillatory firing during GSWDs and that manipulating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of the γ‐aminobutyric acid type A (GABA‐A) agonist muscimol increased GSWD occurrence up to 37‐fold, whereas increasing the frequency and regularity of CN neuron firing with the use of GABA‐A antagonist gabazine decimated its occurrence. A single short‐lasting (30–300 milliseconds) optogenetic stimulation of CN neuron activity abruptly stopped GSWDs, even when applied unilaterally. Using a closed‐loop system, GSWDs were detected and stopped within 500 milliseconds. Interpretation CN neurons are potent modulators of pathological oscillations in thalamocortical network activity during absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies should be evaluated. Ann Neurol 2015;77:1027–1049
Collapse
Affiliation(s)
- Lieke Kros
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Jochen K Spanke
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Parimala Alva
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, United Kingdom
| | - Marijn N van Dongen
- Bioelectronics Section, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Athanasios Karapatis
- Bioelectronics Section, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christos Strydis
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Neil Davey
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, United Kingdom
| | - Beerend H J Winkelman
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Mario Negrello
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Wouter A Serdijn
- Bioelectronics Section, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Volker Steuber
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, United Kingdom
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Geng S, Zhou W, Zhao X, Yuan Q, Ma Z, Wang J. Bifurcation and oscillation in a time-delay neural mass model. BIOLOGICAL CYBERNETICS 2014; 108:747-756. [PMID: 25048203 DOI: 10.1007/s00422-014-0616-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
The neural mass model developed by Lopes da Silva et al. simulates complex dynamics between cortical areas and is able to describe a limit cycle behavior for alpha rhythms in electroencephalography (EEG). In this work, we propose a modified neural mass model that incorporates a time delay. This time-delay model can be used to simulate several different types of EEG activity including alpha wave, interictal EEG, and ictal EEG. We present a detailed description of the model's behavior with bifurcation diagrams. Through simulation and an analysis of the influence of the time delay on the model's oscillatory behavior, we demonstrate that a time delay in neuronal signal transmission could cause seizure-like activity in the brain. Further study of the bifurcations in this new neural mass model could provide a theoretical reference for the understanding of the neurodynamics in epileptic seizures.
Collapse
Affiliation(s)
- Shujuan Geng
- School of Information Science and Engineering, Shandong University, 27 Shanda Road, Jinan, 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci 2013; 7:163. [PMID: 24273509 PMCID: PMC3822295 DOI: 10.3389/fncom.2013.00163] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/24/2013] [Indexed: 12/23/2022] Open
Abstract
Motor thalamus (Mthal) is implicated in the control of movement because it is strategically located between motor areas of the cerebral cortex and motor-related subcortical structures, such as the cerebellum and basal ganglia (BG). The role of BG and cerebellum in motor control has been extensively studied but how Mthal processes inputs from these two networks is unclear. Specifically, there is considerable debate about the role of BG inputs on Mthal activity. This review summarizes anatomical and physiological knowledge of the Mthal and its afferents and reviews current theories of Mthal function by discussing the impact of cortical, BG and cerebellar inputs on Mthal activity. One view is that Mthal activity in BG and cerebellar-receiving territories is primarily "driven" by glutamatergic inputs from the cortex or cerebellum, respectively, whereas BG inputs are modulatory and do not strongly determine Mthal activity. This theory is steeped in the assumption that the Mthal processes information in the same way as sensory thalamus, through interactions of modulatory inputs with a single driver input. Another view, from BG models, is that BG exert primary control on the BG-receiving Mthal so it effectively relays information from BG to cortex. We propose a new "super-integrator" theory where each Mthal territory processes multiple driver or driver-like inputs (cortex and BG, cortex and cerebellum), which are the result of considerable integrative processing. Thus, BG and cerebellar Mthal territories assimilate motivational and proprioceptive motor information previously integrated in cortico-BG and cortico-cerebellar networks, respectively, to develop sophisticated motor signals that are transmitted in parallel pathways to cortical areas for optimal generation of motor programmes. Finally, we briefly review the pathophysiological changes that occur in the BG in parkinsonism and generate testable hypotheses about how these may affect processing of inputs in the Mthal.
Collapse
Affiliation(s)
- Clémentine Bosch-Bouju
- 1Department of Anatomy, Otago School of Medical Science, University of Otago Dunedin, New Zealand ; 2Brain Health Research Centre, Otago School of Medical Science, University of Otago Dunedin, New Zealand
| | | | | |
Collapse
|
14
|
Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci 2013; 33:6552-6. [PMID: 23575852 DOI: 10.1523/jneurosci.5521-12.2013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebellum is an essential structure for the control of movement. It sends abundant ascending projections to the cerebral cortex via the thalamus, but its contribution to cortical activity remains largely unknown. Here we studied its influence on cortical neuronal activity in freely moving rats. We demonstrate an excitatory action of the cerebellum on the motor thalamus and the motor cortex. We also show that cerebellar inactivation disrupts the gamma-band coherence of local field potential between the sensory and motor cortices during whisking. In contrast, phase locking of neuronal activities to local gamma oscillations was preserved in the sensory and motor cortices by cerebellar inactivation. These results indicate that the cerebellum contributes to coordinated sensorimotor cortical activities during motor activation and thus participates in the multiregional cortical processing of information.
Collapse
|
15
|
Person AL, Raman IM. Synchrony and neural coding in cerebellar circuits. Front Neural Circuits 2012; 6:97. [PMID: 23248585 PMCID: PMC3518933 DOI: 10.3389/fncir.2012.00097] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/16/2012] [Indexed: 11/18/2022] Open
Abstract
The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input–output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor circuits.
Collapse
Affiliation(s)
- Abigail L Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine Aurora, CO, USA
| | | |
Collapse
|
16
|
De Zeeuw CI, Hoebeek FE, Bosman LWJ, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 2011; 12:327-44. [PMID: 21544091 DOI: 10.1038/nrn3011] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are generally considered to communicate information by increasing or decreasing their firing rate. However, in principle, they could in addition convey messages by using specific spatiotemporal patterns of spiking activities and silent intervals. Here, we review expanding lines of evidence that such spatiotemporal coding occurs in the cerebellum, and that the olivocerebellar system is optimally designed to generate and employ precise patterns of complex spikes and simple spikes during the acquisition and consolidation of motor skills. These spatiotemporal patterns may complement rate coding, thus enabling precise control of motor and cognitive processing at a high spatiotemporal resolution by fine-tuning sensorimotor integration and coordination.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Wu D, Anastassios B, Xiong W, Madhok J, Jia X, Thakor NV. Study of the origin of short- and long-latency SSEP during recovery from brain ischemia in a rat model. Neurosci Lett 2010; 485:157-61. [PMID: 20816917 DOI: 10.1016/j.neulet.2010.08.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 08/12/2010] [Accepted: 08/28/2010] [Indexed: 10/19/2022]
Abstract
Somatosensory evoked potentials (SSEPs) have been established as an electrophysiological tool for the prognostication of neurological outcome in patients with hypoxic-ischemic brain injury. The early and late responses in SSEPs reflect the sequential activation of neural structures along the somatosensory pathway. This study reports that the SSEP can be separated into early (short-latency, SL) and late (long-latency, LL) responses using independent component analysis (ICA), based on the assumption that these components are generated from different neural sources. Moreover, this source separation into the SL and LL components allows analysis of electrophysiological response to brain injury, even when the SSEPs are severely distorted and SL and LL components get mixed. With the help of ICA decomposition and corrected peak estimation, the latency of LL-SSEP is shown to be predictive of long-term neurological outcome. Further, it is shown that the recovery processes of SL- and LL-SSEPs follow different dynamics, with the SL-SSEP restored earlier than LL-SSEP. We predict that the SL- and LL-SSEPs reflect the timing of the progression of evoked response through the thalamocortical pathway and as such respond differently depending upon injury and recovery of the thalamic and cortical regions, respectively.
Collapse
Affiliation(s)
- Dan Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
18
|
Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proc Natl Acad Sci U S A 2010; 107:8410-5. [PMID: 20395550 DOI: 10.1073/pnas.0907118107] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The output of the cerebellar cortex is controlled by two main inputs, (i.e., the climbing fiber and mossy fiber-parallel fiber pathway) and activations of these inputs elicit characteristic effects in its Purkinje cells: that is, the so-called complex spikes and simple spikes. Target neurons of the Purkinje cells in the cerebellar nuclei show rebound firing, which has been implicated in the processing and storage of motor coordination signals. Yet, it is not known to what extent these rebound phenomena depend on different modes of Purkinje cell activation. Using extracellular as well as patch-clamp recordings, we show here in both anesthetized and awake rodents that simple and complex spike-like train stimuli to the cerebellar cortex, as well as direct activation of the inferior olive, all result in rebound increases of the firing frequencies of cerebellar nuclei neurons for up to 250 ms, whereas single-pulse stimuli to the cerebellar cortex predominantly elicit well-timed spiking activity without changing the firing frequency of cerebellar nuclei neurons. We conclude that the rebound phenomenon offers a rich and powerful mechanism for cerebellar nuclei neurons, which should allow them to differentially process the climbing fiber and mossy fiber inputs in a physiologically operating cerebellum.
Collapse
|
19
|
Modeling absence seizure dynamics: Implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. J Theor Biol 2008; 253:189-201. [DOI: 10.1016/j.jtbi.2008.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/31/2008] [Accepted: 03/05/2008] [Indexed: 11/22/2022]
|
20
|
Abstract
Spontaneous and stimulus-induced oscillatory EEG activities range over a wide scope of frequencies from 1 Hz to 1 kHz. In the ultrafast domain, trains of 5-10 micropotentials are superimposed to primary thalamic and cortical components in somtosensory evoked potentials (SEP) as brief bursts of 1000 Hz and 600 Hz, respectively. Over the last years, hypotheses on generators and functions of this frequency-edge of population activity have been elaborated in numerous studies. Here, the relevant findings and ideas were surveyed from the body of literature. Special emphasis was paid to the anatomical and cellular origin of burst SEP, their assumed impact on somatosensory coding and perspectives for scientific as well as clinical applications.
Collapse
Affiliation(s)
- Fabian Klostermann
- Charité-Universitätsmedizin Berlin, CBF, Dept. ol Neurology, Hindenburgdamm 30, 12200 Berlin, Germany.
| |
Collapse
|
21
|
Esser SK, Hill SL, Tononi G. Modeling the Effects of Transcranial Magnetic Stimulation on Cortical Circuits. J Neurophysiol 2005; 94:622-39. [PMID: 15788519 DOI: 10.1152/jn.01230.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is commonly used to activate or inactivate specific cortical areas in a noninvasive manner. Because of technical constraints, the precise effects of TMS on cortical circuits are difficult to assess experimentally. Here, this issue is investigated by constructing a detailed model of a portion of the thalamocortical system and examining the effects of the simulated delivery of a TMS pulse. The model, which incorporates a large number of physiological and anatomical constraints, includes 33,000 spiking neurons arranged in a 3-layered motor cortex and over 5 million intra- and interlayer synaptic connections. The model was validated by reproducing several results from the experimental literature. These include the frequency, timing, dose response, and pharmacological modulation of epidurally recorded responses to TMS (the so-called I-waves), as well as paired-pulse response curves consistent with data from several experimental studies. The modeled responses to simulated TMS pulses in different experimental paradigms provide a detailed, self-consistent account of the neural and synaptic activities evoked by TMS within prototypical cortical circuits.
Collapse
Affiliation(s)
- Steve K Esser
- Neuroscience Training Program, University of Wisconsin, 6001 Research Park Boulevard, Madison, Wisconsin 53719-1176, USA
| | | | | |
Collapse
|
22
|
Abstract
Relay neurons of the lateral geniculate nucleus innervate visual cortex, but they also provide axonal collaterals to neurons in the thalamic reticular nucleus, and these thalamic reticular neurons provide feedback inhibition to relay cells. An alternative source of inhibitory inputs onto geniculate relay neurons arises from intralaminar interneurons that provide feedforward inhibition via retinogeniculate innervation, and perhaps feedback inhibition via the corticothalamic pathway, analogous to that involving thalamic reticular neurons. Several reports indicate that relay neurons may also give rise to axonal collaterals within the lateral geniculate nucleus, constituting another route for feedback or local integration. We now provide new data indicating that collaterals from geniculate relay neurons provide excitatory input to local intralaminar interneurons and that this pathway may serve as a previously unknown means of local feedback inhibition. This circuitry could prove important in such activities as surround inhibition of receptive fields or increasing signal gain over noise.
Collapse
|
23
|
Livy DJ, Maier SE, West JR. Fetal Alcohol Exposure and Temporal Vulnerability: Effects of Binge-Like Alcohol Exposure on the Ventrolateral Nucleus of the Thalamus. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02278.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Tomitaka S, Tomitaka M, Tolliver BK, Sharp FR. Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK-801) injures pyramidal neurons in rat retrosplenial cortex. Eur J Neurosci 2000; 12:1420-30. [PMID: 10762370 DOI: 10.1046/j.1460-9568.2000.00018.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, ketamine, phencyclidine (PCP) and dizocilpine (MK-801), produce psychosis in people. In rodents they produce cytoplasmic vacuoles in injured retrosplenial cortical neurons that express HSP70 heat shock protein. This study examined possible circuits and receptors that mediate this neuronal injury. Bilateral, but not unilateral, injection of dizocilpine (5, 10, 15, 20 microg/microL per side) into the anterior thalamus induced HSP70 protein in pyramidal neurons in deep layer III of rat retrosplenial cortex 24 h later. In contrast, bilateral dizocilpine injections (5, 10, 15, 20 microg/microL per side) into the retrosplenial cortex or into the diagonal band of Broca did not induce HSP70. Bilateral injections of muscimol (0.1, 1, 10 microg/microL per side), a GABAA (gamma-aminobutyric acid) agonist, into the anterior thalamus blocked HSP70 induction in the retrosplenial cortex produced by systemic dizocilpine (1 mg/kg). Bilateral thalamic injections of baclofen (0.1, 1, 10 microg/microL per side), a GABAB agonist, were ineffective. Anterograde tracer studies confirmed that neurons in the anterior thalamus project to superficial layer III of the retrosplenial cortex where the dendrites of HSP70-immunostained neurons in deep layer III reside. Bilateral blockade of NMDA receptors on GABA neurons in the reticular nuclei of the thalamus is proposed to decrease GABA neuronal firing, decrease GABA release and decrease activation of GABAA receptors. This activates thalamic projection neurons that damage retrosplenial cortical neurons presumably via unblocked cortical glutamate alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and kainate receptors. The increases of blood flow that occur in the thalamus and retrosplenial cortex of people that have psychosis produced by NMDA antagonists could be related to thalamic excitation of the retrosplenial cortex produced by these drugs.
Collapse
Affiliation(s)
- S Tomitaka
- Departments of Neurology, University of California at San Francisco, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
25
|
Lukhanina EP, Burchinskaya LF, Kolomiets BP. Functional and structural modifications in cells of theVA-VL thalamic nuclei under the influence of the neurotoxin MPTP. NEUROPHYSIOLOGY+ 1999. [DOI: 10.1007/bf02515097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Timofeev I, Steriade M. Fast (mainly 30-100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol 1997; 504 ( Pt 1):153-68. [PMID: 9350626 PMCID: PMC1159944 DOI: 10.1111/j.1469-7793.1997.153bf.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Intracellular recordings from 216 thalamocortical (TC) neurones in the ventrolateral (VL) nucleus of intact-cortex and decorticated cats under ketamine-xylazine anaesthesia revealed spontaneously occurring fast oscillations (mainly 30-100 Hz) in 86% of investigated cells. The fast depolarizing events consisted of excitatory postsynaptic potentials (EPSPs), giving rise to fast prepotentials (FPPs) in 22% of neurones, which eventually lead to full-blown action potentials. The frequency of fast events changed by factors of 2-5 in periods as short as 0.3-1.0 s. 2. The spontaneous oscillations were similar to responses evoked in VL relay neurones by stimuli to the afferent cerebellofugal axons in brachium conjunctivum (BC) and were strikingly reduced or abolished after electrolytic lesion of BC axons. 3. The amplitude and duration of fast depolarizing events were significantly reduced during the descending phase of the inhibitory postsynaptic potentials (IPSPs) in TC cells, related to spontaneous spindles or evoked by local thalamic stimulation. 4. Averaged field potentials recorded from motor cortex and triggered by EPSPs and/or action potentials of intracellularly recorded VL cells demonstrated that both spontaneous and BC-evoked fast depolarizations in VL relay neurones were coherent with fast rhythms in cortical area 4. 5. These results show that, in addition to the thalamic and cortical generation sites of the fast (so-called gamma) oscillations, prethalamic relay stations, such as deep cerebellar nuclei, are major contributors to the induction of fast rhythms which depend on the depolarization of thalamic and cortical neurones and which represent a hallmark of brain activation patterns.
Collapse
Affiliation(s)
- I Timofeev
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Quebec, Canada
| | | |
Collapse
|
27
|
Abstract
There is increasing speculation that individual neurones in the cerebellar nuclei are involved in the control of complex multi-joint movements rather than simple movements about a single-joint. These neurones project predominantly to the primary motor cortex after relaying in the motor thalamus. Given a) that localised regions of the motor cortex control individual muscles which generally act about single joints and b) the relatively tight topographical arrangement of thalamocortical connections, it is reasonable to hypothesise that if cerebellar output neurones control single-joint movements they are likely to project to localised areas of the motor thalamus, whereas if they project to more widespread regions they are likely to influence movements involving multiple joints. In this context, we have examined the ramifications and terminations of single anterogradely labelled axons in the cerebellothalamic pathway of the rat. A total of nine axons were traced (by using a 100 x oil objective) through serial sections from the caudal end of the thalamus to their terminations in the motor thalamus. Each of these axons gave off one or more collaterals which terminated in the intralaminar or other associated groups of thalamic nuclei, implying simultaneous activation of two functionally separate cerebellothalamic pathways. In the relay nucleus or motor thalamus, four axons formed either a single focal group of terminals or multiple groupings of terminals within a localised region, and five terminated over widespread regions including one which terminated bilaterally. These results show that a large proportion of cerebellar output neurones may be in a position to influence multi-joint or even bimanual movements.
Collapse
Affiliation(s)
- T D Aumann
- Department of Anatomy, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
28
|
Lukhanina EP. Role of the ventrolateral nucleus of the thalamus in extrapyramidal motor pathology. NEUROPHYSIOLOGY+ 1996. [DOI: 10.1007/bf01053340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Sawyer SF, Tepper JM, Groves PM. Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: light and electron microscopy. Neuroscience 1994; 63:725-45. [PMID: 7898673 DOI: 10.1016/0306-4522(94)90518-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The morphology and synaptic organization of neurons in the ventroanterior-ventrolateral nucleus of rats was examined using in vivo intracellular staining techniques. Neurons were characterized electrophysiologically based on intrinsic membrane properties and synaptic responses to stimulation of motor cortex and cerebellar nuclei, as described in the companion paper. Cerebellar-responsive neurons were stained intracellularly with either horseradish peroxidase or biocytin. All stained ventroanterior-ventrolateral nucleus neurons were identified as thalamocortical neurons on anatomical (and often electrophysiological) grounds, consistent with previous findings that rat ventroanterior-ventrolateral nucleus is interneuron-sparse. Ventroanterior-ventrolateral nucleus neurons had three to eight thick primary dendrites. Proximal dendrites often exhibited a tufted branching pattern, from which many thinner, higher order dendrites arose. Dendrites branched to form a funnel-like infiltration of the neuropil that resulted in a spherical, roughly homogeneous dendritic field. The axon originated from the cell body or a proximal dendrite and coursed laterally and dorsally to innervate motor cortex. One to five axon collaterals were emitted in the rostral dorsolateral sector of the thalamic reticular nucleus; collaterals were not observed in the ventroanterior-ventrolateral nucleus or other nuclei in dorsal thalamus. The synaptic organization of the ventroanterior-ventrolateral nucleus was examined with electron microscopy, including two intracellularly labeled ventroanterior-ventrolateral nucleus neurons that were shown electrophysiologically to receive monosynaptic inputs from the cerebellum. The neuropil of rat ventroanterior-ventrolateral nucleus lacked the complexity and diversity found in corresponding thalamic nuclei of felines and primates, due to the paucity of interneurons. Vesicle-containing dendrites, dendrodendritic synapses and glomeruli were not observed. Three broad classes of presynaptic terminals were identified. (1) Small round boutons: small boutons containing densely-packed, small round vesicles that formed asymmetric synapses predominantly with the distal dendrites of thalamocortical neurons. These were the most prevalent type of bouton in the ventroanterior-ventrolateral nucleus (78% of presynaptic elements) and likely arose from the cerebral cortex. (2) Large round boutons: large terminals with loosely packed small round vesicles that made multiple asymmetric synapses with proximal and intermediate dendrites. Large round boutons comprised 8% of the neuropil, and likely arose from the cerebellar nuclei. (3) Medium size boutons with pleomorphic vesicles: medium-sized profiles containing pleomorphic vesicles that formed symmetric synapses with proximal, intermediate and distal dendrites and, less frequently, with cell bodies.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S F Sawyer
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157
| | | | | |
Collapse
|
30
|
|