1
|
Fliegel S, Brand I, Spanagel R, Noori HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol 2013; 1:7. [PMID: 25505652 PMCID: PMC4230485 DOI: 10.1186/2193-9616-1-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In recent years in vivo microdialysis has become an important method in research studies investigating the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain, numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol. METHODS Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry. RESULTS For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response (glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal response were identified. CONCLUSIONS In summary, our results provide standardized basal values for future experimental and in silico studies on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of a wide range of preclinical data.
Collapse
Affiliation(s)
- Sarah Fliegel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Ines Brand
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| |
Collapse
|
2
|
Wang YF, Sun MY, Hou Q, Hamilton KA. GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge. Eur J Neurosci 2013; 37:1260-9. [PMID: 23406012 DOI: 10.1111/ejn.12137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 11/30/2022]
Abstract
The neuropeptide vasopressin is crucial to mammalian osmotic regulation. Local hypoosmotic challenge transiently decreases and then increases vasopressin secretion. To investigate mechanisms underlying this transient response, we examined the effects of hypoosmotic challenge on the electrical activity of rat hypothalamic supraoptic nucleus (SON) vasopressin neurons using patch-clamp recordings. We found that 5 min exposure of hypothalamic slices to hypoosmotic solution transiently increased inhibitory postsynaptic current (IPSC) frequency and reduced the firing rate of vasopressin neurons. Recovery occurred by 10 min of exposure, even though the osmolality remained low. The γ-aminobutyric acid (GABA)A receptor blocker, gabazine, blocked the IPSCs and the hypoosmotic suppression of firing. The gliotoxin l-aminoadipic acid blocked the increase in IPSC frequency at 5 min and the recovery of firing at 10 min, indicating astrocytic involvement in hypoosmotic modulation of vasopressin neuronal activity. Moreover, β-alanine, an osmolyte of astrocytes and GABA transporter (GAT) inhibitor, blocked the increase in IPSC frequency at 5 min of hypoosmotic challenge. Confocal microscopy of immunostained SON sections revealed that astrocytes and magnocellular neurons both showed positive staining of vesicular GATs (VGAT). Hypoosmotic stimulation in vivo reduced the number of VGAT-expressing neurons, and increased co-localisation and molecular association of VGAT with glial fibrillary acidic protein that increased significantly by 10 min. By 30 min, neuronal VGAT labelling was partially restored, and astrocytic VGAT was relocated to the ventral portion while it decreased in the somatic zone of the SON. Thus, synergistic astrocytic and neuronal GABAergic inhibition could ensure that vasopressin neuron firing is only transiently suppressed under hypoosmotic conditions.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| | | | | | | |
Collapse
|
3
|
Wang YF, Hamilton K. Chronic vs. acute interactions between supraoptic oxytocin neurons and astrocytes during lactation: role of glial fibrillary acidic protein plasticity. ScientificWorldJournal 2009; 9:1308-20. [PMID: 19936568 PMCID: PMC3548440 DOI: 10.1100/tsw.2009.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this article, we review studies of astrocytic-neuronal interactions and their effects on the activity of oxytocin (OXT) neurons within the magnocellular hypothalamo-neurohypophysial system. Previous work over several decades has shown that withdrawal of astrocyte processes increases OXT neuron excitability in the hypothalamic supraoptic nucleus (SON) during lactation. However, chronically disabling astrocyte withdrawal does not significantly affect the functioning of OXT neurons during suckling. Nevertheless, acute changes in a cytoskeletal element of astrocytes, glial fibrillary acidic protein (GFAP), occur in concert with changes in OXT neuronal activity during suckling. Here, we compare these changes in GFAP and related proteins with chronic changes that persist throughout lactation. During lactation, a decrease in GFAP levels accompanies retraction of astrocyte processes surrounding OXT neurons in the SON, resulting from high extracellular levels of OXT. During the initial stage of suckling, acute increases in OXT levels further strengthen this GFAP reduction and facilitate the retraction of astrocyte processes. This change, in turn, facilitates burst discharges of OXT neurons and leads to a transient increase in excitatory neurochemicals. This transient neurochemical surge acts to reverse GFAP expression and results in postburst inhibition of OXT neurons. The acute changes in astrocyte GFAP levels seen during suckling likely recur periodically, accompanied by rhythmic changes in glutamate metabolism, water transport, gliotransmitter release, and spatial relationships between astrocytes and OXT neurons. In the neurohypophysis, astrocyte retraction and reversal with accompanying GFAP plasticity also likely occur during lactation and suckling, which facilitates OXT release coordinated with its action in the SON. These studies of the dynamic interactions that occur between astrocytes and OXT neurons mediated by GFAP extend our understanding of astrocyte functions within the central nervous system.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA.
| | | |
Collapse
|
4
|
Rea K, Cremers TIFH, Westerink BHC. HPLC conditions are critical for the detection of GABA by microdialysis. J Neurochem 2005; 94:672-9. [PMID: 15992383 DOI: 10.1111/j.1471-4159.2005.03218.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In microdialysis studies, neither exocytotic release of gamma-aminobutyric acid (GABA), nor the presence of GABA type B (GABA(B)) autoreceptors, have been clearly established. It was investigated whether the chromatographic separation of GABA may have contributed to discrepancies in the literature. After extending the profile of the HPLC chromatogram to a retention time of 60 min, it was observed that various unknown compounds of biological origin co-eluted near the GABA peak. The retention time of GABA appeared to be extremely sensitive to pH; even at a retention time of around 60 min there was only a small pH window (5.26 +/- 0.01) where GABA was consistently well separated from co-eluting compounds. GABA determined by the improved assay was sensitive to tetrodotoxin (TTX), calcium depletion and the GABA(B) autoreceptor agonist baclofen. The present results illustrate that if the proper analytical conditions are applied, extracellular GABA can be sampled and quantified by microdialysis in free-moving animals. However, when the time-curves are considered, there is a striking delay of about 15-30 min before the effects of TTX, calcium depletion or baclofen are observed, as compared to the reported response of neurotransmitters such as dopamine (less than 5 min). It is assumed that the glial cells serve as a buffer between the GABA synapse and the microdialysis probes. It is proposed that microdialysis samples measure synaptic GABA indirectly, through glial cells surrounding the synapses.
Collapse
Affiliation(s)
- K Rea
- Department of Biomonitoring and Sensoring, University Centre of Pharmacy, Groningen, The Netherlands.
| | | | | |
Collapse
|
5
|
Abstract
A baby sucks at a mother's breast for comfort and, of course, for milk. Milk is made in specialized cells of the mammary gland, and for a baby to feed, the milk must be released into a collecting chamber from where it can be extracted by sucking. Milk "let-down" is a reflex response to the suckling and kneading of the nipple--and sometimes in response to the sight, smell, and sound of the baby--and is ultimately affected by the secretion of oxytocin. Oxytocin has many physiological roles, but its only irreplaceable role is to mediate milk let-down: oxytocin-deficient mice cannot feed their young; the pups suckle but no milk is let down, and they will die unless cross-fostered. Most other physiological roles of oxytocin, including its role in parturition, are redundant in the sense that the roles can be assumed by other mechanisms in the absence of oxytocin throughout development and adult life. Nevertheless, physiological function in these roles can be altered or impaired by acute interventions that alter oxytocin secretion or change the actions of oxytocin. Here we focus on the diverse stimuli that regulate oxytocin secretion and on the apparent diversity of the roles for oxytocin.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, The University of Edinburgh College of Medicine and Veterinary Sciences, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|
6
|
Engelmann M, Bull PM, Brown CH, Landgraf R, Horn TFW, Singewald N, Ludwig M, Wotjak CT. GABA selectively controls the secretory activity of oxytocin neurons in the rat supraoptic nucleus. Eur J Neurosci 2004; 19:601-8. [PMID: 14984410 DOI: 10.1111/j.1460-9568.2004.03151.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently we reported that a single social defeat experience triggers the release of oxytocin (OXT) from somata and dendrites, but not axon terminals, of neurons of the hypothalamic-neurohypophysial system. To further investigate the regulatory mechanisms underlying this dissociated release, we exposed male Wistar rats to a 30-min social defeat and monitored release of the inhibitory amino acids gamma amino butyric acid (GABA) and taurine within the hypothalamic supraoptic nucleus (SON) using microdialysis. Social defeat caused a significant increase in the release of both GABA and taurine within the SON (up to 480%; P < 0.01 vs. prestress release). To reveal the physiological significance of centrally released GABA, the specific GABAA-receptor antagonist bicuculline (0.02 mm) was administered into the SON via retrodialysis. This approach caused a significant increase in the release of OXT both within the SON and into the blood under basal conditions and during stress (up to 300 and 200%, respectively; P < 0.05 vs. basal values), without affecting plasma vasopressin. Electrophysiological studies confirmed the selective action of bicuculline on the firing activity of OXT neurons in the SON. Taken together, our data demonstrate that GABA is released within the SON during emotional stress to act as a selective inhibitor of both central and peripheral OXT secretion.
Collapse
Affiliation(s)
- Mario Engelmann
- Otto-von-Guericke-Universität Magdeburg, Institut für Medizinische Neurobiologie, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Brussaard AB, Koksma JJ. Short-term modulation of GABAA receptor function in the adult female rat. PROGRESS IN BRAIN RESEARCH 2002; 139:31-42. [PMID: 12436924 DOI: 10.1016/s0079-6123(02)39005-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Oxytocin neurons in the supraoptic nucleus (SON) exhibit marked neuronal plasticity during each reproductive cycle. We have previously shown that this neuronal plasticity includes GABAA receptor subunit switching around the time of parturition. Here we focus on addition plasticity in short-term regulatory mechanisms of postsynaptic receptor function before and after parturition, i.e. alterations in metabotropic and allosteric modulation of GABAA receptor activity. Both short- and long-term regulation of the GABAA receptor function affects the electrical behaviour of the oxytocin neurons (Brussaard and Herbison, 2000); however, their causal linkage until recently remained unclear. Non-genomic gonadal steroid feedback to oxytocin neurons is mediated via the neurosteroid allopregnanolone (3 alpha-OH-DHP) that is an allosteric modulator of postsynaptic GABAA receptors. We recently found evidence to support the idea that (1) neurosteroids not only potentiate GABAA receptor function but also prevent its suppression by PKC (Brussaard et al., 2000), and (2) that neurosteroid sensitivity of GABAA receptor is not regulated by subunit switching, but instead, is dependent on the balance between endogenous phosphatase and PKC activity (Koksma et al., 2002). Thus, before pregnancy, the GABAA receptors are sensitive to 3 alpha-OH-DHP, due to a constitutively high level of phosphatase activity. At parturition, endogenous release of oxytocin within the SON shifts the intracellular balance towards a higher level of phosphorylation, leading to 3 alpha-OH-DHP insensitivity of the GABAA receptors. Here we discuss the putative mechanisms underlying these changes in receptor physiology, their causal relations and the functional significance for the hormonal output.
Collapse
Affiliation(s)
- Arjen B Brussaard
- Department of Experimental Neurophysiology, Vrije Universiteit Amsterdam, Research Institute Neurosciences, Centre for Neurogenomics and Cognitive Research, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Armstrong WE, Stern JE, Teruyama R. Plasticity in the electrophysiological properties of oxytocin neurons. Microsc Res Tech 2002; 56:73-80. [PMID: 11810710 DOI: 10.1002/jemt.10019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mammals, the neurohypophysial hormone oxytocin (OT) is released into the bloodstream during labor and lactation to promote uterine contraction and milk ejection, respectively. Electrophysiological studies have established that OT neurons fire in brief, synchronized bursts during this release. During pregnancy and lactation, the intrinsic membrane and synaptic properties of OT, and to a lesser extent vasopressin (VP) neurons, are altered as a part of the adaptation to these specialized states. During lactation OT neurons specifically exhibit an enhanced rebound depolarization which could assist in instigating bursts and an increased gating of firing frequency which is correlated with an enhanced Ca(2+)-dependent after hyperpolarization. Spike broadening occurs in both VP and OT neurons, but in OT neurons this and other changes are present during late pregnancy, suggesting involvement of steroidal hormones in programming neuronal adaptations. Excitatory and inhibitory synaptic activity also are altered by reproductive state. There is a doubling of glutamatergic activity specific to OT neurons which is consistent with an increase in terminal numbers, but this is accompanied by an increase in paired-pulse facilitation, suggesting an increase in the probability of glutamate release during lactation as well. Together with profound changes in both pre- and postsynaptic GABAergic synaptic activity, these data suggest that neurosecretory, and particularly OT neuronal, properties are state-dependent. These modifications may adjust the responsiveness of these neurons to afferent stimulation during periods of increased hormone demand and thereby enhance stimulus-secretion coupling.
Collapse
Affiliation(s)
- William E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee, College of Medicine, Memphis, Tennessee 38163, USA.
| | | | | |
Collapse
|
9
|
Thomas Cunningham J, Bruno SB, Grindstaff RR, Grindstaff RJ, Higgs KH, Mazzella D, Sullivan MJ. Chapter 20 Cardiovascular regulation of supraoptic vasopressin neurons. PROGRESS IN BRAIN RESEARCH 2002. [DOI: 10.1016/s0079-6123(02)39022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Engelmann M, Ludwig M, Singewald N, Ebner K, Sabatier N, Lubec G, Landgraf R, Wotjak CT. Taurine selectively modulates the secretory activity of vasopressin neurons in conscious rats. Eur J Neurosci 2001; 14:1047-55. [PMID: 11683896 DOI: 10.1046/j.0953-816x.2001.01729.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous experiments have shown that a 10-min forced swimming session triggers the release of vasopressin from somata and dendrites, but not axon terminals, of neurons of the hypothalamic-neurohypophysial system. To further investigate regulatory mechanisms underlying this dissociated release, we forced male Wistar rats to swim in warm (20 degrees C) water and monitored release of the potentially inhibitory amino acids gamma amino butyric acid (GABA) and taurine into the hypothalamic supraoptic nucleus using microdialysis. Forced swimming caused a significant increase in the release of taurine (up to 350%; P < 0.05 vs. prestress release), but not GABA. To reveal the physiological significance of centrally released taurine, the specific taurine antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide was administered into the supraoptic nucleus via retrodialysis. Administration of this antagonist caused a significant increase in the release of vasopressin within the supraoptic nucleus and into the blood both under basal conditions and during stress (up to 800%; P < 0.05 vs. basal values), without affecting hypothalamic or plasma oxytocin. Local administration of the GABA(A) receptor antagonist bicuculline, in contrast, failed to influence vasopressin secretion at either time point. In a separate series of in vivo electrophysiological experiments, administration of the same dosage of the taurine antagonist into the supraoptic nucleus via microdialysis resulted in an increased electrical activity of identified vasopressinergic, but not oxytocinergic, neurons. Taken together our data demonstrate that taurine is released within the supraoptic nucleus during physical/emotional stress. Furthermore, at the level of the supraoptic nucleus, taurine inhibits not only the electrical activity of vasopressin neurons but also acts as an inhibitor of both central and peripheral vasopressin secretion during different physiological states.
Collapse
Affiliation(s)
- M Engelmann
- Institut für Medizinische Neurobiologie, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44. D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Burbach JP, Luckman SM, Murphy D, Gainer H. Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 2001; 81:1197-267. [PMID: 11427695 DOI: 10.1152/physrev.2001.81.3.1197] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothalamo-neurohypophysial system (HNS) is the major peptidergic neurosecretory system through which the brain controls peripheral physiology. The hormones vasopressin and oxytocin released from the HNS at the neurohypophysis serve homeostatic functions of water balance and reproduction. From a physiological viewpoint, the core question on the HNS has always been, "How is the rate of hormone production controlled?" Despite a clear description of the physiology, anatomy, cell biology, and biochemistry of the HNS gained over the last 100 years, this question has remained largely unanswered. However, recently, significant progress has been made through studies of gene identity and gene expression in the magnocellular neurons (MCNs) that constitute the HNS. These are keys to mechanisms and events that exist in the HNS. This review is an inventory of what we know about genes expressed in the HNS, about the regulation of their expression in response to physiological stimuli, and about their function. Genes relevant to the central question include receptors and signal transduction components that receive and process the message that the organism is in demand of a neurohypophysial hormone. The key players in gene regulatory events, the transcription factors, deserve special attention. They do not only control rates of hormone production at the level of the gene, but also determine the molecular make-up of the cell essential for appropriate development and physiological functioning. Finally, the HNS neurons are equipped with a machinery to produce and secrete hormones in a regulated manner. With the availability of several gene transfer approaches applicable to the HNS, it is anticipated that new insights will be obtained on how the HNS is able to respond to the physiological demands for its hormones.
Collapse
Affiliation(s)
- J P Burbach
- Rudolf Magnus Institute for Neurosciences, Section of Molecular Neuroscience, Department of Medical Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
12
|
Kornblatt JJ, Grattan DR. Lactation alters gamma-aminobutyric acid neuronal activity in the hypothalamus and cerebral cortex in the rat. Neuroendocrinology 2001; 73:175-84. [PMID: 11307036 DOI: 10.1159/000054634] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gamma-aminobutyric acid (GABA) neurons terminating in the hypothalamus have been implicated in the neuroendocrine regulation of reproductive hormones, particularly luteinizing hormone (LH) and prolactin. The aim of this study was to examine whether GABAergic neuronal activity in the hypothalamus was modified during lactation, and whether any observed changes correlated with changes in secretion of these hormones. Animals were divided into three experimental groups: diestrous controls, lactating with pups present (with pups), and lactating with pups removed for 4 h (without pups). Animals were decapitated either without treatment, or 60 min after inhibition of GABA degradation by aminooxyacetic acid (AOAA) (100 mg/kg, i.p.). The rate of GABA accumulation in the tissue after AOAA is a measure of GABA turnover. GABA turnover was estimated in 13 microdissected brain regions, and serum prolactin and LH measured by radioimmunoassay. Suckling was associated with significantly increased prolactin and significantly decreased LH compared with diestrous rats. In lactating rats with pups, GABA turnover was significantly increased in the cingulate cortex compared with diestrous rats. GABA turnover was significantly increased in the ventrolateral preoptic nucleus of lactating rats with pups compared with diestrous rats or lactating rats without pups. There was significantly lower GABA turnover in the anterior hypothalamic area, ventromedial and dorsomedial hypothalamic nuclei in lactating rats without pups compared with diestrous rats. There were no significant changes in other brain regions examined. The results demonstrate that activity of GABAergic neurons in specific parts of the hypothalamus and cerebral cortex is altered during lactation.
Collapse
Affiliation(s)
- J J Kornblatt
- Department of Anatomy and Structural Biology, School of Medical Sciences and Neuroscience Research Centre, University of Otago, PO Box 913, Dunedin, New Zealand
| | | |
Collapse
|
13
|
|
14
|
Thrivikraman KV, Nemeroff CB, Plotsky PM. Sensitivity to glucocorticoid-mediated fast-feedback regulation of the hypothalamic-pituitary-adrenal axis is dependent upon stressor specific neurocircuitry. Brain Res 2000; 870:87-101. [PMID: 10869505 DOI: 10.1016/s0006-8993(00)02405-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
UNLABELLED Fos-protein immunoreactivity (Fos-IR) was used to identify neurocircuits potentially participating in the regulation of hypothalamic-pituitary-adrenal (HPA) axis sensitivity to glucocorticoid-mediated fast-feedback in rats exposed to the physical stressor, hemorrhage, or the psychological stressor, airpuff startle. Marked regional brain differences in the Fos-IR expression were observed in response to these stressors. Specifically, after hemorrhage, nuclear Fos-IR increased in the nucleus of the solitary tract and other brainstem regions known to regulate hemodynamic processes including the supraoptic nucleus, and the magnocellular division of hypothalamic paraventricular nucleus (PVN). In contrast, after airpuff startle Fos-IR increased in the dorsomedial and lateral hypothalamus as well as in the lateral septum. Thus, activation of brainstem neurocircuits predominated after hemorrhage whereas activation of forebrain neurocircuits predominated after airpuff startle. In other regions, the magnitude of stressor-induced Fos-IR expression varied in a region-specific manner. When stressor exposure was preceded by administration of corticosterone to achieve levels within the physiological range after stressors, HPA axis responses were suppressed in response to the airpuff startle but not to either a small or moderate hemorrhage. IN CONCLUSION (1) fast-feedback mediated inhibition of HPA axis activity is critically dependent upon stressor modality; (2) this apparent selectivity is reflected by differences in the nature of the neurocircuitry mediating these stressors. It is suggested that determination of the central actions of glucocorticoids in mediating fast-feedback regulation of the HPA axis requires evaluation of the interactions between activated glucocorticoid receptors and intracellular signaling cascades evoked by convergent neuronal input.
Collapse
Affiliation(s)
- K V Thrivikraman
- Stress Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, WMB 4000, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
15
|
Brown D, Fontanaud P, Moos FC. The variability of basal action potential firing is positively correlated with bursting in hypothalamic oxytocin neurones. J Neuroendocrinol 2000; 12:506-20. [PMID: 10844579 DOI: 10.1046/j.1365-2826.2000.00478.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Magnocellular oxytocin neurones are proposed as a suitable system for studying the mechanisms involved in the regulation of neuronal bursting activity. They display high frequency (50 sp./s) bursts of spikes (approximately every 300 s), in response to specific stimuli, which are superimposed on a variable level of basal activity and are tightly co-ordinated as a result of network interactions. The relationship between the strength of the bursting activity (as quantified by burst amplitude and interburst interval) and the characteristics of the interburst basal activity were assessed. During control conditions, mean basal activity and variability of firing increased just before bursts. During experimental conditions leading to burst facilitation, burst amplitude increased and interburst interval decreased while a sustained increase in mean firing rate occurred. Variability of firing (measured by both the standard deviation of firing rate, and the index of dispersion which corrected this standard deviation for differences in mean firing rate), increased demonstrating an increase in spike clustering greater than expected as a result of increased basal activity. When bursting was restrained (i.e. interburst interval increased), mean basal activity increased substantially, but index of dispersion decreased. A narrowing of the interspike interval distribution occurred, indicating increased regularity of firing. The aspect of basal activity most strongly correlated with bursting was variability of firing rate. The strongest correlate of burst amplitude was the standard deviation of mean firing rate, whereas the strongest and most consistent correlate of interburst interval was the index of dispersion. In conclusion, bursting behaviour is most strongly related to the irregularity rather than the level of basal activity.
Collapse
Affiliation(s)
- D Brown
- CNRS UPR 9055, Biologie des Neurones Endocrines, CCIPE, Montpellier-Cedex, France.
| | | | | |
Collapse
|
16
|
Brussaard AB, Herbison AE. Long-term plasticity of postsynaptic GABAA-receptor function in the adult brain: insights from the oxytocin neurone. Trends Neurosci 2000; 23:190-5. [PMID: 10782120 DOI: 10.1016/s0166-2236(99)01540-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The subunit switching of ligand-gated receptors is a potentially important mechanism through which synaptic plasticity can be achieved in the nervous system. Although established in an activity-dependent manner for neurotransmission that is mediated by excitatory amino acids, there is much less direct evidence for a role of subunit switching in long-term plasticity of GABAA receptors in the adult. We argue that the hypothalamic oxytocin neurones, which exhibit marked plasticity through each reproductive cycle, provide an excellent model of both presynaptic and postsynaptic long-term plasticity of GABA-mediated transmission in the mature nervous system. The postsynaptic plasticity involves GABAA-receptor-subunit switching in an activity-independent manner. It also has profound effects on the electrical behaviour of the oxytocin neurones and, thus, the neural control of pregnancy and lactation.
Collapse
Affiliation(s)
- A B Brussaard
- Dept of Neurophysiology of the Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Fénelon VS, Herbison AE. Progesterone regulation of GABAA receptor plasticity in adult rat supraoptic nucleus. Eur J Neurosci 2000; 12:1617-23. [PMID: 10792439 DOI: 10.1046/j.1460-9568.2000.00053.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Marked plasticity in GABAA receptor signalling occurs in adult oxytocin neurons of the supraoptic nucleus (SON) through the modulation of GABAA receptor alpha subunits during pregnancy. The present studies were undertaken to examine the potential mechanisms underlying this plasticity. In vivo microdialysis experiments in conscious rats revealed that no significant changes in extracellular GABA concentrations occurred within the SON over the last two days of pregnancy and the time of parturition itself. In situ hybridization studies examined the effects of gonadal steroid manipulation upon the GABAA receptor subunits expressed by SON neurons (alpha1, alpha2, beta2 and gamma2 subunits) and demonstrated that cellular levels of the alpha1 subunit were increased following 8 days oestrogen and progesterone treatment. Estrogen alone or allopregnanolone, the progesterone derivative, had no effect on alpha1 subunit mRNA expression in the SON. Immunocytochemical experiments demonstrated progesterone receptors in many neural populations but not within the SON of late pregnant rats. These studies indicate that alterations in endogenous GABA release within the SON are unlikely to be responsible for the GABAA receptor plasticity exhibited by oxytocin neurons in late pregnancy. Rather, data demonstrate that the fluctuating concentrations of progesterone during pregnancy act indirectly on SON neurons to modulate alpha1 subunit mRNA expression. Together, these experiments provide evidence for the ligand-independent induction of GABAA receptor plasticity in the adult brain by progesterone.
Collapse
Affiliation(s)
- V S Fénelon
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge CB2 4AT, UK
| | | |
Collapse
|
18
|
Abstract
Microdialysis has become a frequently used method to study extracellular levels of GABA and glutamate in the central nervous system. However, the fact that the major part of GABA and glutamate as measured by microdialysis does not fulfill the classical criteria for exocytotic release questions the vesicular origin of the amino acids in dialysates. Glial metabolism or reversal of the (re)uptake sites has been suggested to be responsible for the pool of nonexocytotically released amino-acid transmitters that seem to predominate over the neuronal exocytotic pool. The origin of extracellular GABA and glutamate levels and, as a consequence, the implications of changes in these levels upon manipulations are therefore obscure. This review critically analyzes what microdialysis data signify, i.e., whether amino-acid neurotransmitters sampled by microdialysis represent synaptic release, carrier-mediated release, or glial metabolism. The basal levels of GABA and glutamate are virtually tetrodotoxin- and calcium-independent. Given the fact that evidence for nonexocytotic release mediated by reversal of the uptake sites as a release mechanism relevant for normal neurotransmission is so far limited to conditions of "excessive stimulation," basal levels most likely reflect a nonneuronal pool of amino acids. Extracellular GABA and glutamate concentrations can be enhanced by a wide variety of pharmacological and physiological manipulations. However, it is presently impossible to ascertain that the stimulated GABA and glutamate in dialysates are of neuronal origin. On the other hand, under certain stimulatory conditions, increases in amino-acid transmitters can be obtained in the presence of tetrodotoxin, again suggesting that aspecific factors not directly related to neurotransmission underlie these changes in extracellular levels. It is concluded that synaptic transmission of GABA and glutamate is strictly compartmentalized and as a result, these amino acids can hardly leak out of the synaptic cleft and reach the extracellular space where the dialysis probe samples.
Collapse
Affiliation(s)
- W Timmerman
- University Center for Pharmacy, Department of Medicinal Chemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
19
|
Timmerman W, Westerink BH. Electrical stimulation of the substantia nigra reticulata: detection of neuronal extracellular GABA in the ventromedial thalamus and its regulatory mechanism using microdialysis in awake rats. Synapse 1997; 26:62-71. [PMID: 9097406 DOI: 10.1002/(sici)1098-2396(199705)26:1<62::aid-syn7>3.0.co;2-c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A combination of electrical stimulation and microdialysis was used to study the nigrothalamic gamma aminobutyric acid (GABA)ergic system and its regulatory mechanisms in awake rats. Extracellular GABA levels in the ventromedial nucleus of the thalamus were detected in 3-min fractions collected before, during and after a 10-min stimulation period of the substantia nigra reticulata. Electrical stimulation of the substantia nigra reticulata increased the GABA levels to 155% of basal values in the ventromedial thalamus only during the first 3-min interval upon stimulation. The increase in GABA levels was tetrodotoxin-dependent, implicating an exocytotic origin. The basal levels of extracellular GABA in the ventromedial thalamus were of nonexocytotic origin. To study the mechanism underlying the fast compensatory response in neuronal GABA release after nigral stimulation, local infusions into the ventromedial thalamus of reuptake inhibitors and GABA antagonists were performed and the effect of nigral stimulation was examined under the various applications. Local infusion of the reuptake inhibitors nipecotic acid (500 microM) and SKF 89976-A (20 and 50 microM) increased extracellular GABA levels to 350%, 180% and 600%, respectively, of basal values in the ventromedial thalamus tetrodotoxin-independently. Under these conditions, the increase in extracellular GABA was absent (nipecotic acid) or suppressed (20% of basal values; SKF 89976-A for both doses), leaving it unsolved whether or not the uptake system was responsible for the fast compensation in neuronal GABA after stimulation. The GABA-A antagonist bicucilline (50 microM) was ineffective when infused locally in the ventromedial thalamus, but prolonged the increase in neuronal GABA release after nigral stimulation; the GABA levels were increased during two 3-min samples to approximately 165%, indicating a functional role for GABA-A receptors in regulating the release of GABA from nigrothalamic GABAergic neurons. The GABA-B receptor antagonist CGP 35348 (50 microM) did not affect GABA levels when infused locally in the ventromedial thalamus and neither affected the response in neuronal GABA after stimulation. This finding does not support a role for GABA-B receptors in controlling the release from the nigrothalamic neurons.
Collapse
Affiliation(s)
- W Timmerman
- Department of Medicinal Chemistry, University Center for Pharmacy, Groningen, The Netherlands
| | | |
Collapse
|
20
|
Plasticity in GABAA receptor subunit mRNA expression by hypothalamic magnocellular neurons in the adult rat. J Neurosci 1996. [PMID: 8756419 DOI: 10.1523/jneurosci.16-16-04872.1996] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The magnocellular hypothalamic neurons exhibit a substantial degree of structural and functional plasticity over the time of pregnancy, parturition, and lactation. This study has used in situ hybridization techniques to examine whether the content of alpha 1, alpha 2, beta 2, gamma 2 GABAA receptor subunit mRNAs expressed by these cells fluctuates over this period. A process of regional, followed by cellular and then topographical, analyses within the supraoptic (SON) and posterior paraventricular (PVN) nuclei revealed that an increase in magnocellular alpha 1 subunit mRNA content occurred during the course of pregnancy up to day 19, after which a decline in expression was detected on the day of parturition. Significant fluctuations of this nature were observed only in the oxytocin neuron-enriched regions of the SON and PVN. The expression of alpha 2, beta 2, and gamma 2 subunit mRNAs in the SON and PVN and of all subunit mRNAs in the cingulate cortex did not change over this period. During lactation, gamma 2 subunit mRNA content within the PVN increased significantly on day 14 of lactation as compared with day 7, and topographical analysis suggested that it involved principally magnocellular vasopressin neurons. These results demonstrate the cell-and subunit-specific regulation of GABAA receptor mRNA expression within the hypothalamic magnocellular system. In particular, they suggest that fluctuations in alpha 1 subunit expression may contribute to the marked variations in electrical activity exhibited by magnocellular oxytocin neurons at the time of parturition. More generally, they provide evidence in support of GABAA receptor plasticity within a physiological context in the adult rat brain.
Collapse
|
21
|
Brussaard AB, Kits KS, de Vlieger TA. Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat. J Physiol 1996; 497 ( Pt 2):495-507. [PMID: 8961190 PMCID: PMC1160999 DOI: 10.1113/jphysiol.1996.sp021783] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Oxytocin is known to act on autoreceptors of oxytocin neurones in the supraoptic nucleus (SON). We investigated whether oxytocin modulates putative oxytocin neurones by suppressing the GABAA receptor-mediated synaptic inputs on these cells. 2. GABAergic inhibitory postsynaptic currents (IPSCs) were recorded from SON neurones in hypothalamic slices from young rats. Oxytocin specifically reduced the amplitude of both spontaneous and evoked IPSCs, without altering their current kinetics. 3. The effect of oxytocin was observed in 70% of the magnocellular neurones recorded from the dorsomedial part of the SON. d(CH2)5OVT, a specific antagonist of oxytocin receptors, blocked the effect of oxytocin on the IPSCs. Vasopressin had no effect on oxytocin-sensitive SON neurones. 4. The intervals between spontaneous IPSCs were not affected by oxytocin. This suggested that oxytocin had a postsynaptic effect on SON neurones. 5. This postsynaptic origin was further substantiated by application of TTX, which blocked all evoked release but did not prevent the suppressive effect of oxytocin on the amplitude of the spontaneous IPSCs still present in the recording. The selective effect of oxytocin on IPSC amplitude was also maintained in nominally zero extracellular calcium. 6. Intracellular perfusion of SON neurones with GTP gamma S mimicked the effect of oxytocin on IPSCs, while GDP beta S, similarly applied, abolished the effect of oxytocin. 7. Application of calcium mobilizers such as thapsigargin and caffeine also reduced the amplitude of spontaneous IPSCs without significantly altering the frequency at which IPSCs occurred. 8. Thus, oxytocin depresses GABAergic synapses in the SON via modulation of the postsynaptic GABAA receptors. This would lead to disinhibition of SON neurones sensitive to oxytocin and could, therefore, be a powerful means of controlling the firing of oxytocin neurones.
Collapse
Affiliation(s)
- A B Brussaard
- Graduate School of Neurosciences Amsterdam, Faculty of Biology, Vrije Universiteit, The Netherlands.
| | | | | |
Collapse
|
22
|
Singewald N, Philippu A. Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends Pharmacol Sci 1996. [DOI: 10.1016/s0165-6147(96)80009-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Fenelon VS, Herbison AE. Characterisation of GABAA receptor gamma subunit expression by magnocellular neurones in rat hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:45-56. [PMID: 8750860 DOI: 10.1016/0169-328x(95)00130-k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gamma-aminobutyric acid (GABA) is known to inhibit the electrical and secretory activity of oxytocin and vasopressin neurones located in the supraoptic and paraventricular nuclei following osmotic, cardiovascular or suckling stimuli. To understand fully the nature of GABA actions on these magnocellular neurones it is important to define the heteropentameric GABAA receptor proteins they express. In the present study, single and dual labelling in situ hybridisation and immunocytochemical experiments were undertaken to define the GABAA receptor gamma subunits expressed by these cells. In situ hybridisation with 35S-labelled antisense oligonucleotides showed that all magnocellular neurones in the supraoptic and paraventricular nuclei of the female rat expressed mRNA encoding the gamma 2 subunit of the GABAA receptor but not the gamma 1 or gamma 3 subunits. Immunocytochemical experiments using a specific polyclonal rabbit antibody directed against the gamma 2 subunit of the GABAA receptor showed that all hypothalamic magnocellular neurones were strongly immunoreactive for gamma 2 subunit protein. Dual in situ hybridisation experiments using the gamma 2 subunit 35 S-labelled oligonucleotide with alkaline phosphatase-labelled antisense oligonucleotides specific for either oxytocin or vasopressin revealed that essentially all oxytocin and vasopressin neurones in both the supraoptic and paraventricular nuclei expressed the gamma 2 subunit of the GABAA receptor. Similarly, sequential double immunoperoxidase staining revealed that all oxytocin and vasopressin neurones in both magnocellular nuclei of the hypothalamus were immunoreactive for the gamma 2 subunit. This study shows that only the gamma 2 subunit of the GABAA receptor gamma subunit family is expressed by hypothalamic oxytocin and vasopressin neurones. In conjunction with our previous results, these findings indicate that individual magnocellular neurones express a complement of alpha 1, alpha 2, beta 2, beta 3 and gamma 2 subunits of the GABAA receptor. The observation of strong gamma 2 subunit expression by neurones known to also express alpha 1 and alpha 2 subunit proteins suggests that these magnocellular cells may express GABAA receptors with both benzodiazepine type-1 and type-2 pharmacology.
Collapse
Affiliation(s)
- V S Fenelon
- Department of Neurobiology, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
24
|
Armstrong WE. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog Neurobiol 1995. [DOI: 10.1016/0301-0082(95)80005-s] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Moos FC. GABA-induced facilitation of the periodic bursting activity of oxytocin neurones in suckled rats. J Physiol 1995; 488 ( Pt 1):103-14. [PMID: 8568646 PMCID: PMC1156704 DOI: 10.1113/jphysiol.1995.sp020949] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. GABAergic innervation of oxytocin neurones is particularly abundant during lactation, but little is known about its functional role. In this study, the role of GABAA receptors in the suckling-induced bursting activity of oxytocin neurones was investigated in lactating rats. GABAA agonists or antagonists were applied by pressure injection into the immediate neighbourhood of recorded neurones while simultaneous recordings were made from oxytocin neurones in the contralateral supraoptic nucleus. 2. GABA and the GABA agonist isoguvacine decreased the basal electrical activity while application of GABAA antagonists (picrotoxin and gabazine) increased the basal electrical activity. However, in marked and unexpected contrast, application of GABA and isoguvacine facilitated or triggered milk-ejection reflex bursting activity whereas GABAA antagonists interrupted this reflex activity. 3. Systemic injection of hypertonic saline is known to increase the firing rate of neurones in the supraoptic nucleus and temporarily to interrupt suckling-induced bursting activity. Application of GABA into one supraoptic nucleus counteracted this inhibitory effect on milk ejection. 4. These observations can be explained if the role of the important GABAergic innervation of oxytocin neurones during lactation is to favour the expression of the stereotyped suckling-induced bursting activity. It might do this by attenuating inputs unrelated to suckling which are incompatible with bursts.
Collapse
Affiliation(s)
- F C Moos
- Laboratoire de Neurobiologie Endocrinologique, URA 1197 CNRS, Université de Montpellier II, France
| |
Collapse
|
26
|
Voisin DL, Herbison AE, Poulain DA. Central inhibitory effects of muscimol and bicuculline on the milk ejection reflex in the anaesthetized rat. J Physiol 1995; 483 ( Pt 1):211-24. [PMID: 7776233 PMCID: PMC1157883 DOI: 10.1113/jphysiol.1995.sp020579] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. In order to determine whether GABAergic mechanisms are involved in the control of the milk ejection reflex in the rat, we examined the effects of central administration of a GABAA receptor agonist (muscimol) and antagonist (bicuculline) on the milk ejection reflex in the urethane-anaesthetized rat. 2. Intracerebroventricular (i.c.v.) injection of both muscimol (n = 17), at doses of 5, 10 and 20 ng, and bicuculline (n = 15), at doses of 0.01, 0.1 and 0.3 microgram, inhibited the milk ejection reflex in a dose-dependent manner. The bicuculline-induced inhibition was accompanied by desynchronization of the electroencephalogram and, at the highest dose, by alteration in the sensitivity of the mammary gland to oxytocin. No significant effect on the milk ejection reflex was seen with i.c.v. isotonic saline (n = 5). 3. Injection of 20 (n = 5) or 40 ng (n = 2) muscimol or 0.1 microgram bicuculline (n = 5) i.c.v. did not significantly alter the rise in intramammary pressure evoked by electrical stimulation of the neurohypophysis. 4. Bilateral 400 nl microinfusions directly into the supraoptic nuclei of either muscimol (20-100 ng microliter(-1); n = 10) or bicuculline (0.15 micrograms microliter(-1); n = 5) [corrected] resulted in an inhibition of the milk ejection reflex, which was not accompanied by desynchronization of the electroencephalogram. 5. The effects of i.c.v. injections of muscimol (15 and 20 ng) and bicuculline (0.01, 0.12 and 0.3 microgram) on the electrical activity of twenty-seven antidromically identified supraoptic magnocellular neurones were examined. Both compounds resulted in an inhibition of the background firing of oxytocinergic and vasopressinergic cells, and delayed the occurrence of high frequency bursts in oxytocin neurones. In five supraoptic neurones, bicuculline induced a transient activation before inhibition. 6. The powerful inhibitory action on the milk ejection reflex of both muscimol and bicuculline provides evidence for the importance of GABA neurones in maintaining the functional integrity of the mechanisms which allow the intermittent and pulsatile release of oxytocin during suckling.
Collapse
Affiliation(s)
- D L Voisin
- INSERM U 378, Université de Bordeaux II, France
| | | | | |
Collapse
|
27
|
Fenelon VS, Sieghart W, Herbison AE. Cellular localization and differential distribution of GABAA receptor subunit proteins and messenger RNAs within hypothalamic magnocellular neurons. Neuroscience 1995; 64:1129-43. [PMID: 7753380 DOI: 10.1016/0306-4522(94)00402-q] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The inhibitory neurotransmitter GABA plays an important role in regulating the activity of magnocellular oxytocin and vasopressin neurons located in the supraoptic and paraventricular nuclei through occupancy of GABAA receptors. However, the GABAA receptor is a hetero-oligomeric protein comprised of different subunits and the subunit types expressed in a given receptor complex appear critical for its sensitivity to GABA, benzodiazepines and/or steroids. Thus, in order to understand fully the GABAergic control of oxytocin and vasopressin secretion, definition of the GABAA receptors synthesized by magnocellular neurons in the supraoptic and paraventricular nuclei is required. In the supraoptic nucleus, antibodies directed against the alpha 1, alpha 2 and beta 2/3 subunits of the GABAA receptor revealed similar strong antigen distribution on all magnocellular neurons. Using sequential double-immunoperoxidase staining, immunoreactivity for all three subunits was observed on both oxytocin and vasopressin neurons of the supraoptic nucleus. In contrast, only alpha 2 subunit immunoreactivity was detected on the cell bodies of oxytocin and vasopressin neurons in the paraventricular nucleus. No sex differences were detected. In situ hybridization experiments using 35S-labelled oligonucleotides showed that all supraoptic neurons expressed alpha 1, alpha 2 and beta 2 subunit messenger RNA transcripts while magnocellular neurons in the paraventricular nucleus were only enriched in alpha 2 subunit messenger RNA. Quantitative analysis showed that the expression of alpha 1 and beta 2 subunit messenger RNAs in the paraventricular nucleus was half that observed in the supraoptic nucleus while expression of beta 3 subunit messenger RNA was very low in both nuclei. These results show that all oxytocin and vasopressin neurons located in the supraoptic nucleus synthesize and express alpha 1, alpha 2 and beta 2 subunits of the GABAA receptor while those in the paraventricular nucleus are only immunoreactive for the alpha 2 subunit. These observations suggest, therefore, that at least two pharmacologically distinct GABAA receptor isoforms exist on supraoptic neurons and that these are different to those expressed by paraventricular magnocellular cells. Thus, in addition to providing a definition of the subunits likely to form specific GABAA receptor isoforms on magnocellular neurons, this study gives direct evidence for GABAA receptor heterogeneity between supraoptic and paraventricular neurons, but not between oxytocin and vasopressin cells.
Collapse
Affiliation(s)
- V S Fenelon
- Department of Neurobiology, AFRC Babraham Institute, Cambridge, U.K
| | | | | |
Collapse
|
28
|
Fénelon VS, Theodosis DT, Poulain DA. Fos synthesis in identified magnocellular neurons varies with phenotype, stimulus, location in the hypothalamus and reproductive state. Brain Res 1994; 662:165-77. [PMID: 7859070 DOI: 10.1016/0006-8993(94)90809-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study compared Fos expression in identified hypothalamic magnocellular neurons in lactating and non-lactating female rats submitted to acute haemorrhage or 24 h of water deprivation, stimuli that induce the release of both oxytocin and vasopressin. Quantitative analysis of preparations doubly immunostained for Fos and either of the neuropeptides revealed that oxytocin and vasopressin neurons synthesise Fos in response to either stimulus but to a different degree, depending on the type of neuron, the type of stimulus, the location of the neurons and the reproductive state of the animal. Thus, in terms of number of cells, haemorrhage was significantly more potent than water deprivation in inducing Fos immunoreactivity in either type of neuron in the supraoptic, paraventricular and anterior commissural nuclei. However, the Fos reaction of vasopressin cells in response to either stimulus was greater than that of oxytocin cells in the supraoptic and paraventricular nuclei, and in the perifornical posterior nucleus and nucleus circularis in response to water deprivation. Moreover, when considering each neuronal population as a whole, it was obvious that Fos synthesis varied in relation to the location of the neurons in the different hypothalamic nuclei, suggesting the existence of functionally distinct neuronal subgroups. Finally, our analyses clearly indicated that Fos synthesis in either type of magnocellular neuron was closely linked to the reproductive state of the animal since after haemorrhage or water deprivation, the number of Fos-positive oxytocin cells in the supraoptic nucleus and Fos-positive vasopressin cells in the paraventricular nucleus was significantly less in lactating than in virgin rats.
Collapse
Affiliation(s)
- V S Fénelon
- INSERM U. 378, Université de Bordeaux II, France
| | | | | |
Collapse
|