1
|
Müller CJT, Quintino-dos-Santos JW, Schimitel FG, Tufik S, Beijamini V, Canteras NS, Schenberg LC. On the verge of a respiratory-type panic attack: Selective activations of rostrolateral and caudoventrolateral periaqueductal gray matter following short-lasting escape to a low dose of potassium cyanide. Neuroscience 2017; 348:228-240. [DOI: 10.1016/j.neuroscience.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 12/05/2016] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
|
2
|
Lei J, Pertovaara A, You HJ. Effects of simulated weightlessness on intramuscular hypertonic saline induced muscle nociception and spinal Fos expression in rats. Brain Res 2014; 1594:204-14. [PMID: 25446440 DOI: 10.1016/j.brainres.2014.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/20/2014] [Accepted: 11/08/2014] [Indexed: 12/30/2022]
Abstract
We assessed the effects of simulated weightlessness, hindlimb unloading (HU) by 7 days of tail suspension, on noxious mechanically and heat evoked spinal withdrawal reflexes and spinal Fos expression during muscle nociception elicited by intramuscular (i.m.) injection of hypertonic (HT; 5.8%) saline into gastrocnemius muscle in rats. In HU rats, i.m. HT saline-induced secondary mechanical hyperalgesia was enhanced, and secondary heat hypoalgesia was significantly delayed. After 7 days of HU, basal Fos expression in spinal L4-6 segments was bilaterally enhanced only in superficial (I-II) but not middle and deep laminae (III-VI) of the spinal dorsal horn, which finding was not influenced by tail denervation. Unilateral i.m. HT saline injection increased spinal Fos expression bilaterally in both the control rats and 7 days of HU rats. The HT saline-induced bilateral increase of spinal Fos occurred within 0.5h and reached its peak within 1h, after which it gradually returned to the control levels within 8h. Spatial patterns of spinal Fos expression differed between the control group and 7 days of HU group. In superficial laminae, the HT saline-induced increases in Fos expression were higher and in the middle and deep laminae V-VI lower in the 7 days of HU than control rats. It is suggested that supraspinal mechanisms presumably underlie the effects of HU on spinally-organized nociception. Simulated weightlessness may enhance descending facilitation and weaken descending inhibition of nociception.
Collapse
Affiliation(s)
- Jing Lei
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi׳an Jiaotong University, Xi׳an 710061, PR China
| | - Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Hao-Jun You
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi׳an Jiaotong University, Xi׳an 710061, PR China.
| |
Collapse
|
3
|
Chen YK, Lei J, Jin L, Tan YX, You HJ. Dynamic variations of c-Fos expression in the spinal cord exposed to intramuscular hypertonic saline-induced muscle nociception. Eur J Pain 2012; 17:336-46. [DOI: 10.1002/j.1532-2149.2012.00207.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Y.-K. Chen
- Center for Biomedical Research on Pain (CBRP); College of Medicine; Xi'an Jiaotong University; China
| | - J. Lei
- Center for Biomedical Research on Pain (CBRP); College of Medicine; Xi'an Jiaotong University; China
| | - L. Jin
- Department of Neurosurgery; The First Hospital affiliated to Xi'an Medical College; China
| | - Y.-X. Tan
- Center for Biomedical Research on Pain (CBRP); College of Medicine; Xi'an Jiaotong University; China
| | - H.-J. You
- Center for Biomedical Research on Pain (CBRP); College of Medicine; Xi'an Jiaotong University; China
| |
Collapse
|
4
|
Mitsikostas DD, Knight YE, Lasalandra M, Kavantzas N, Goadsby PJ. Triptans attenuate capsaicin-induced CREB phosphorylation within the trigeminal nucleus caudalis: a mechanism to prevent central sensitization? J Headache Pain 2011; 12:411-7. [PMID: 21626018 PMCID: PMC3139063 DOI: 10.1007/s10194-011-0352-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 05/09/2011] [Indexed: 12/27/2022] Open
Abstract
The c-AMP-responsive element binding protein (CREB) and its phosphorylated product (P-CREB) are nuclear proteins expressed after stimulation of pain-producing areas of the spinal cord. There is evidence indicating that central sensitization within dorsal horn neurons is dependent on P-CREB transcriptional regulation. The objectives of the study were to investigate the expression of P-CREB in cells in rat trigeminal nucleus caudalis after noxious stimulation and to determine whether pre-treatment with specific anti-migraine agents modulate this expression. CREB and P-CREB labelling was investigated within the trigeminal caudalis by immunohistochemistry after capsaicin stimulation. Subsequently, the effect of i.v. pre-treatment with either sumatriptan (n = 5), or naratriptan (n = 7) on P-CREB expression was studied. Five animals pre-treated with i.v. normal saline were served as controls. CREB and P-CREB labelling was robust in all animal groups within Sp5C. Both naratriptan and sumatriptan decreased P-CREB expression (p = 0.0003 and 0.0013) within the Sp5C. Triptans attenuate activation of CREB within the central parts of the trigeminal system, thereby leading to potential inhibition of central sensitization. P-CREB may serve as a new marker for post-synaptic neuronal activation within Sp5C in animal models relevant to migraine.
Collapse
Affiliation(s)
- Dimos D Mitsikostas
- Headache Group, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|
5
|
Innocuous, not noxious, input activates PKCgamma interneurons of the spinal dorsal horn via myelinated afferent fibers. J Neurosci 2008; 28:7936-44. [PMID: 18685019 DOI: 10.1523/jneurosci.1259-08.2008] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein kinase C gamma (PKCgamma), which is concentrated in interneurons of the inner part of lamina II of the dorsal horn, has been implicated in injury-induced allodynia, a condition wherein pain is produced by innocuous stimuli. Although it is generally assumed that these interneurons receive input from the nonpeptidergic, IB4-positive subset of nociceptors, the fact that PKCgamma cells do not express Fos in response to noxious stimulation suggests otherwise. Here, we demonstrate that the terminal field of the nonpeptidergic population of nociceptors, in fact, lies dorsal to that of PKCgamma interneurons. There was also no overlap between the PKCgamma-expressing interneurons and the transganglionic tracer wheat germ agglutinin which, after sciatic nerve injection, labels all unmyelinated nociceptors. However, transganglionic transport of the beta-subunit of cholera toxin, which marks the medium-diameter and large-diameter myelinated afferents that transmit non-noxious information, revealed extensive overlap with the layer of PKCgamma interneurons. Furthermore, expression of a transneuronal tracer in myelinated afferents resulted in labeling of PKCgamma interneurons. Light and electron microscopic double labeling further showed that the VGLUT1 subtype of vesicular glutamate transmitter, which is expressed in myelinated afferents, marks synapses that are presynaptic to the PKCgamma interneurons. Finally, we demonstrate that a continuous non-noxious input, generated by walking on a rotarod, induces Fos in the PKCgamma interneurons. These results establish that PKCgamma interneurons are activated by myelinated afferents that respond to innocuous stimuli, which suggests that injury-induced mechanical allodynia is transmitted through a circuit that involves PKCgamma interneurons and non-nociceptive, VGLUT1-expressing myelinated primary afferents.
Collapse
|
6
|
Bergerot A, Holland PR, Akerman S, Bartsch T, Ahn AH, MaassenVanDenBrink A, Reuter U, Tassorelli C, Schoenen J, Mitsikostas DD, van den Maagdenberg AMJM, Goadsby PJ. Animal models of migraine: looking at the component parts of a complex disorder. Eur J Neurosci 2006; 24:1517-34. [PMID: 17004916 DOI: 10.1111/j.1460-9568.2006.05036.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Animal models of human disease have been extremely helpful both in advancing the understanding of brain disorders and in developing new therapeutic approaches. Models for studying headache mechanisms, particularly those directed at migraine, have been developed and exploited efficiently in the last decade, leading to better understanding of the potential mechanisms of the disorder and of the action for antimigraine treatments. Model systems employed have focused on the pain-producing cranial structures, the large vessels and dura mater, in order to provide reproducible physiological measures that could be subject to pharmacological exploration. A wide range of methods using both in vivo and in vitro approaches are now employed; these range from manipulation of the mouse genome in order to produce animals with human disease-producing mutations, through sensitive immunohistochemical methods to vascular, neurovascular and electrophysiological studies. No one model system in experimental animals can explain all the features of migraine; however, the systems available have begun to offer ways to dissect migraine's component parts to allow a better understanding of the problem and the development of new treatment strategies.
Collapse
Affiliation(s)
- A Bergerot
- Headache Group, Institute of Neurology, and The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Takhshid MA, Owji AA, Vasei M, Panjehshahin MR, Tabei SMB, Tabatabaee HR, Ay J. Expression of spinal cord Fos protein in response to intrathecal adrenomedullin and CGRP in conscious rats. Brain Res 2004; 1020:30-6. [PMID: 15312784 DOI: 10.1016/j.brainres.2004.05.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2004] [Indexed: 11/17/2022]
Abstract
Adrenomedullin (AM) immunoreactivity and mRNA, in addition to a large number of specific AM-binding sites, exist in the rat spinal cord. However, no phenotype has been reported for AM in the spinal cord. Here, expression of c-fos in response to intrathecal (i.t.) administration of AM, proadrenomedullin N-terminal 20 peptide (PAMP) and calcitonin gene-related peptide (CGRP) was examined in the thoracic, lumbar and sacral regions of spinal cord in conscious rats. Two hours after i.t. administration of either CGRP (2.5 and 10 microg) or AM (10 microg), the number of c-Fos immunoreactive nuclei was increased in all the spinal regions examined in this study, with the highest increase observed in the superficial dorsal horn. Few cells with c-fos immunoreactivity were found in the spinal cord of rats 2 h after i.t. injection of either saline or PAMP. Effects of AM (10 microg) and CGRP (2.5 microg) on c-fos expression were blocked when rats were pretreated with 40 microg of intrathecal CGRP8-37 (CGRP1 receptor antagonist). Fos-like immunoreactivity induced by i.t. CGRP and/or AM were also significantly abolished by i.t. administration of the nitric oxide (NO) inhibitor, l-NAME, indicating that endogenous NO is a necessary intermediary in CGRP and AM induced c-fos expression in the rat spinal cord. In conclusion, AM induces c-fos expression in rat spinal cord when administered intrathecally, with the pattern being similar to those produced by i.t. CGRP. Effects of the two peptides are sensitive to CGRP8-37 and l-NAME.
Collapse
Affiliation(s)
- M A Takhshid
- Department of Biochemistry, The Shiraz University of Medical Sciences, P.O. Box 1971 Shiraz, Iran
| | | | | | | | | | | | | |
Collapse
|
8
|
Igwe OJ, Chronwall BM. Hyperalgesia induced by peripheral inflammation is mediated by protein kinase C betaII isozyme in the rat spinal cord. Neuroscience 2001; 104:875-90. [PMID: 11440817 DOI: 10.1016/s0306-4522(01)00107-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have addressed the molecular mechanism(s) of hyperalgesia, which depends on increased excitability of dorsal horn neurons and on sensitization of primary afferent nociceptors, during peripheral inflammation. Following unilateral adjuvant-induced inflammation in the rat hind paw, time-course changes in behavioral hyperalgesia and functional activities of Ca2+/phospholipid-dependent protein kinase C isozymes were examined. Inflammation was characterized by increase in paw diameter, and behavioral hyperalgesia was quantified as paw withdrawal latency from a radiant heat source. Behavioral hyperalgesia on the injected paw was significantly increased. This was accompanied by a significant increase in total functional membrane-associated protein kinase C activity, whereas total cytosolic protein kinase C activity was unchanged on the sides of the lumbar spinal cord both contralateral and ipsilateral to the inflammation. Importantly, on the side of lumbar cord ipsilateral to the inflamed paw, the activity of membrane-associated protein kinase CbetaII was increased following the same time-course as the paw withdrawal latency decrease, suggesting an increased translocation of protein kinase Cbetall to the membrane related to behavioral hyperalgesia. A defined mixture of purified gangliosides, which inhibits intracellular protein kinase C translocation and activation, decreased inflammation-induced paw withdrawal latency, and specifically decreased the activity of membrane-associated protein kinase Cbetall on the side of the spinal cord ipsilateral to the inflammation. Quantitative immunohistochemical analyses demonstrated intensified protein kinase CbetaII-like immunoreactivity on the side of the spinal cord ipsilateral to the inflammation. Time-course for increases in the activity of membrane-associated protein kinase CbetaII, and in intensity of protein kinase CbetaII-immunoreactivity, paralleled inflammation-mediated changes in paw withdrawal latency and paw diameter. Our findings indicate an apparent involvement of protein kinase CbetaII isozyme specifically in the molecular mechanism(s) of thermal hyperalgesia.
Collapse
Affiliation(s)
- O J Igwe
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology, MO 64110, USA.
| | | |
Collapse
|
9
|
Abstract
To address the neurochemistry of the mechanisms that underlie the development of acute and persistent pain, our laboratory has been studying mice with deletions of gene products that have been implicated in nociceptive processing. We have recently raised mice with a deletion of the preprotachykinin-A gene, which encodes the peptides substance P (SP) and neurokinin A (NKA). These studies have identified a specific behavioral phenotype in which the animals do not detect a window of "pain" intensities; this window cuts across thermal, mechanical, and chemical modalities. The lowered thermal and mechanical withdrawal thresholds that are produced by tissue or nerve injury, however, were still present in the mutant mice. Thus, the behavioral manifestations of threshold changes in nociceptive processing in the setting of injury do not appear to require SP or NKA. To identify relevant neurochemical factors downstream of the primary afferent, we are also studying the dorsal horn second messenger systems that underlie the development of tissue and nerve injury-induced persistent pain states. We have recently implicated the gamma isoform of protein kinase C (PKCgamma) in the development of nerve injury-induced neuropathic pain. Acute pain processing, by contrast, is intact in the PKCgamma-null mice. Taken together, these studies emphasize that there is a distinct neurochemistry of acute and persistent pain. Persistent pain should be considered a disease state of the nervous system, not merely a prolonged acute pain symptom of some other disease conditions.
Collapse
Affiliation(s)
- A I Basbaum
- Departments of Anatomy and Physiology and W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Martin WJ, Liu H, Wang H, Malmberg AB, Basbaum AI. Inflammation-induced up-regulation of protein kinase Cgamma immunoreactivity in rat spinal cord correlates with enhanced nociceptive processing. Neuroscience 1999; 88:1267-74. [PMID: 10336135 DOI: 10.1016/s0306-4522(98)00314-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation of various second messengers contributes to long-term changes in the excitability of dorsal horn neurons and to persistent pain conditions produced by injury. Here, we compared the time-course of decreased mechanical nociceptive thresholds and the density of protein kinase Cgamma immunoreactivity in the dorsal horn after injections of complete Freund's adjuvant in the plantar surface of the rat hindpaw. Complete Freund's adjuvant significantly increased paw diameter and mechanical sensitivity ipsilateral to the inflammation. The changes peaked one day post-injury, but endured for at least two weeks. In these rats, we recorded a 75-100% increase in protein kinase Cgamma immunoreactivity in the ipsilateral superficial dorsal horn of the L4 and L5 segments at all time-points. Electron microscopy revealed that the up-regulation was associated with a significant translocation of protein kinase Cgamma immunoreactivity to the plasma membrane. In double-label cytochemical studies, we found that about 20% of the protein kinase Cgamma-immunoreactive neurons, which are concentrated in inner lamina II, contain glutamate decarboxylase-67 messenger RNA, but none stain for parvalbumin or nitric oxide synthase. These results indicate that persistent changes in protein kinase Cgamma immunoreactivity parallel the time-course of mechanical allodynia and suggest that protein kinase Cgamma contributes to the maintenance of the allodynia produced by peripheral inflammation. The minimal expression of protein kinase Cgamma in presumed inhibitory neurons suggests that protein kinase Cgamma-mediated regulation of excitatory interneurons underlies the changes in spinal cord activity during persistent nociception.
Collapse
Affiliation(s)
- W J Martin
- Department of Anatomy, W.M. Keck Foundation Center for Integrative Neuroscience, University of California at San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Just over a decade has past since Hunt et al. reported that the gene c-fos and its protein product Fos are expressed in the spinal cord of rats subjected to peripheral noxious stimulation. These authors showed that noxious stimulation (application of radiant heat or mustard oil) to the hind paw resulted in a massive increase in the expression of Fos in neurons in the dorsal horn of the lumbar spinal cord. Since then, there has been an explosion of studies in which c-fos has been used to study nociception (pain), and the number of such studies increases each year. The net result has been to establish c-fos expression as a valuable tool in pain research. Moreover, recent studies have provided evidence identifying the role of c-fos expression in spinal nociceptive processes. However, there are several important limitations to the practice of using c-fos to study nociception, and these limitations can be easily overlooked as the practice graduates to the status of an established technique. The increasing use of c-fos to study nociception necessitates a critical review of the practice, identifying the shortcomings as well as the strengths of this tool.
Collapse
Affiliation(s)
- J A Harris
- School of Psychology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Abstract
Much progress has been made the understanding of endogenous pain-controlling systems. Recently, new concepts and ideas which are derived from neurobiology, chaos research and from research on learning and memory have been introduced into pain research and shed further light on the organization and function of endogenous antinociception. These most recent developments will be reviewed here. Three principles of endogenous antinociception have been identified, as follows. (1) Supraspinal descending inhibition: the patterns of neuronal activity in diencephalon, brainstem and spinal cord during antinociceptive stimulation in midbrain periaqueductal gray (PAG) or medullary nucleus raphe magnus have now been mapped on the cellular level, using the c-Fos technique. Results demonstrate that characteristic activity patterns result within and outside the PAG when stimulating at its various subdivisions. The descending systems may not only depress mean discharge rates of nociceptive spinal dorsal horn neurons, but also may modify harmonic oscillations and nonlinear dynamics (dimensionality) of discharges. (2) Propriospinal, heterosegmental inhibition: antinociceptive, heterosegmental interneurons exist which may be activated by noxious stimulation or by supraspinal descending pathways. (3) Segmental spinal inhibition: a robust long-term depression of primary afferent neurotransmission in A delta fibers has been identified in superficial spinal dorsal horn which may underlie long-lasting antinociception by afferent stimulation, e.g. by physical therapy or acupuncture.
Collapse
Affiliation(s)
- J Sandkühler
- II. Physiologisches Institut, Universität Heidelberg, Germany.
| |
Collapse
|
13
|
Sandkühler J, Treier AC, Liu XG, Ohnimus M. The massive expression of c-fos protein in spinal dorsal horn neurons is not followed by long-term changes in spinal nociception. Neuroscience 1996; 73:657-66. [PMID: 8809787 DOI: 10.1016/0306-4522(96)00073-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been suggested that the expression of c-fos and other immediate early genes in spinal dorsal horn neurons would trigger changes in the phenotype of nociceptive neurons which may lead to long-term changes in spinal nociception. To test this hypothesis, we have used a minimally invasive intrathecal stimulation and injection technique which can be applied to adult Sprague-Dawley rats under brief ether anesthesia to induce massive c-fos expression in spinal neurons without affecting peripheral nociceptors. Electrical intrathecal stimulation (0.5 ms pulses, 15 V, 3 Hz for 15 min) or intrathecal injection of N-methyl-D-aspartate (25 nmol) produced massive c-Fos immunoreactivity in neurons throughout the sacral spinal cord and the dorsal horn of the lumber spinal cord. Immunoreactivity declined to control values at mid-thoracic levels. To assess effects of these intrathecal stimuli on nociception, hot-plate and tail-flick latencies and mechanical thresholds of hindlimb withdrawal reflexes were measured once every day for 14 days before and up to 14 days after conditioning stimulation. Spontaneous locomotion of each animal was video-taped daily for 5 min and analysed off-line. On the day of the intrathecal stimulation the tests were performed 1 h before and also 6 h after conditioning stimulation. Thermal and mechanical nociceptive thresholds were temporarily enhanced 6 h after intrathecal stimulation but they were not different from controls one to 14 days later. Thus, the massive expression of c-fos in spinal neurons is not, as previously suggested, a sufficient condition for the induction of long-term changes in spinal nociception.
Collapse
Affiliation(s)
- J Sandkühler
- II. Physiologisches Institut, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|