1
|
Losgott T, Kudlacek O, Yang JW, Schicker KW, Boehm S, Salzer I. The paracetamol metabolite N-acetyl-4-benzoquinoneimine (NAPQI) prevents modulation of K V7 channels via G-protein coupled receptors by interference with PIP 2 and Ca 2+ sensitivity. Br J Pharmacol 2025; 182:1341-1357. [PMID: 39627952 DOI: 10.1111/bph.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Paracetamol has been found to alleviate inflammatory pain by modulating KV7 channels. Its metabolite N-acetyl-4-benzoquinoneimine (NAPQI) increases currents through these channels via a stretch of three cysteine residues in the channel S2-S3 linker. Through this effect, the excitability of neurons in the pain pathway is dampened. Inflammatory mediators, in turn, enhance the excitability of sensory neurons by inhibiting KV7 channels. Here, a specific interaction between NAPQI and the so-called inflammatory soup was investigated. EXPERIMENTAL APPROACH Currents through KV7 channels were measured in sensory neurons and after heterologous expression in tsA201 cells. In addition, changes in cytosolic Ca2+ and in the distribution of PIP2 (PI(4,5)P2) between membrane and cytosol were determined by fluorescence microscopy. KEY RESULTS NAPQI abolished Ca2+-mediated inhibitory effects of an 'inflammatory soup' containing ADP, ATP, bradykinin, histamine, 5-hydroxytryptamine, prostaglandin E2, substance P and a PAR2 agonist on KV7 channel currents in sensory neurons. Moreover, the increase of KV7.2 channel currents by quenching of cytosolic Ca2+ as well as the current decrease by depletion of membrane PIP2 was impaired by NAPQI. These effects were lost in mutant channels lacking the three cysteines in the S2-S3 linker. CONCLUSION AND IMPLICATION NAPQI targets the three-cysteine motif in the S2-S3 linker of KV7.2 channels to counteract the signalling cascades employed by inflammatory mediators that inhibit these channels. In sensory neurons, this abolishes the closure of KV7 channels by the inflammatory soup. This mechanism is likely involved in the alleviation of inflammatory pain by paracetamol.
Collapse
Affiliation(s)
- Thomas Losgott
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Kudlacek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jae-Won Yang
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus W Schicker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Ray S, Stampf JL, Kudlacek O, Yang JW, Schicker KW, Graf Y, Losgott T, Boehm S, Salzer I. A triple cysteine motif as major determinant of the modulation of neuronal K V7 channels by the paracetamol metabolite N-acetyl-p-benzo quinone imine. Br J Pharmacol 2024; 181:2851-2868. [PMID: 38657956 DOI: 10.1111/bph.16380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/19/2024] [Accepted: 03/10/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND AND PURPOSE The analgesic action of paracetamol involves KV7 channels, and its metabolite N-acetyl-p-benzo quinone imine (NAPQI), a cysteine modifying reagent, was shown to increase currents through such channels in nociceptors. Modification of cysteine residues by N-ethylmaleimide, H2O2, or nitric oxide has been found to modulate currents through KV7 channels. The study aims to identify whether, and if so which, cysteine residues in neuronal KV7 channels might be responsible for the effects of NAPQI. EXPERIMENTAL APPROACH To address this question, we used a combination of perforated patch-clamp recordings, site-directed mutagenesis, and mass spectrometry applied to recombinant KV7.1 to KV7.5 channels. KEY RESULTS Currents through the cardiac subtype KV7.1 were reduced by NAPQI. Currents through all other subtypes were increased, either by an isolated shift of the channel voltage dependence to more negative values (KV7.3) or by such a shift combined with increased maximal current levels (KV7.2, KV7.4, KV7.5). A stretch of three cysteine residues in the S2-S3 linker region of KV7.2 was necessary and sufficient to mediate these effects. CONCLUSION AND IMPLICATION The paracetamol metabolite N-acetyl-p-benzo quinone imine (NAPQI) modifies cysteine residues of KV7 subunits and reinforces channel gating in homomeric and heteromeric KV7.2 to KV7.5, but not in KV7.1 channels. In KV7.2, a triple cysteine motif located within the S2-S3 linker region mediates this reinforcement that can be expected to reduce the excitability of nociceptors and to mediate antinociceptive actions of paracetamol.
Collapse
Affiliation(s)
- Sutirtha Ray
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jan-Luca Stampf
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Kudlacek
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jae-Won Yang
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus W Schicker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Yvonne Graf
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Losgott
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Przybyła GW, Szychowski KA, Gmiński J. Paracetamol - An old drug with new mechanisms of action. Clin Exp Pharmacol Physiol 2021; 48:3-19. [PMID: 32767405 DOI: 10.1111/1440-1681.13392] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 08/02/2020] [Indexed: 12/26/2022]
Abstract
Paracetamol (acetaminophen) is the most commonly used over-the-counter (OTC) drug in the world. Despite its popularity and use for many years, the safety of its application and its mechanism of action are still unclear. Currently, it is believed that paracetamol is a multidirectional drug and at least several metabolic pathways are involved in its analgesic and antipyretic action. The mechanism of paracetamol action consists in inhibition of cyclooxygenases (COX-1, COX-2, and COX-3) and involvement in the endocannabinoid system and serotonergic pathways. Additionally, paracetamol influences transient receptor potential (TRP) channels and voltage-gated Kv7 potassium channels and inhibits T-type Cav3.2 calcium channels. It also exerts an impact on L-arginine in the nitric oxide (NO) synthesis pathway. However, not all of these effects have been clearly confirmed. Therefore, the aim of our paper was to summarize the current state of knowledge of the mechanism of paracetamol action with special attention to its safety concerns.
Collapse
Affiliation(s)
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
4
|
Ray S, Salzer I, Kronschläger MT, Boehm S. The paracetamol metabolite N-acetylp-benzoquinone imine reduces excitability in first- and second-order neurons of the pain pathway through actions on KV7 channels. Pain 2019; 160:954-964. [PMID: 30601242 PMCID: PMC6430418 DOI: 10.1097/j.pain.0000000000001474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Paracetamol (acetaminophen, APAP) is one of the most frequently used analgesic agents worldwide. It is generally preferred over nonsteroidal anti-inflammatory drugs because it does not cause typical adverse effects resulting from the inhibition of cyclooxygenases, such as gastric ulcers. Nevertheless, inhibitory impact on these enzymes is claimed to contribute to paracetamols mechanisms of action which, therefore, remained controversial. Recently, the APAP metabolites N-arachidonoylaminophenol (AM404) and N-acetyl-p-benzoquinone imine (NAPQI) have been detected in the central nervous system after systemic APAP administration and were reported to mediate paracetamol effects. In contrast to nonsteroidal anti-inflammatory drugs that rather support seizure activity, paracetamol provides anticonvulsant actions, and this dampening of neuronal activity may also form the basis for analgesic effects. Here, we reveal that the APAP metabolite NAPQI, but neither the parent compound nor the metabolite AM404, reduces membrane excitability in rat dorsal root ganglion (DRG) and spinal dorsal horn (SDH) neurons. The observed reduction of spike frequencies is accompanied by hyperpolarization in both sets of neurons. In parallel, NAPQI, but neither APAP nor AM404, increases currents through KV7 channels in DRG and SDH neurons, and the impact on neuronal excitability is absent if KV7 channels are blocked. Furthermore, NAPQI can revert the inhibitory action of the inflammatory mediator bradykinin on KV7 channels but does not affect synaptic transmission between DRG and SDH neurons. These results show that the paracetamol metabolite NAPQI dampens excitability of first- and second-order neurons of the pain pathway through an action on KV7 channels.
Collapse
Affiliation(s)
- Sutirtha Ray
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Isabella Salzer
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mira T. Kronschläger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Reactive metabolites of acetaminophen activate and sensitize the capsaicin receptor TRPV1. Sci Rep 2017; 7:12775. [PMID: 28986540 PMCID: PMC5630573 DOI: 10.1038/s41598-017-13054-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
The irritant receptor TRPA1 was suggested to mediate analgesic, antipyretic but also pro-inflammatory effects of the non-opioid analgesic acetaminophen, presumably due to channel activation by the reactive metabolites parabenzoquinone (pBQ) and N-acetyl-parabenzoquinonimine (NAPQI). Here we explored the effects of these metabolites on the capsaicin receptor TRPV1, another redox-sensitive ion channel expressed in sensory neurons. Both pBQ and NAPQI, but not acetaminophen irreversibly activated and sensitized recombinant human and rodent TRPV1 channels expressed in HEK 293 cells. The reducing agents dithiothreitol and N-acetylcysteine abolished these effects when co-applied with the metabolites, and both pBQ and NAPQI failed to gate TRPV1 following substitution of the intracellular cysteines 158, 391 and 767. NAPQI evoked a TRPV1-dependent increase in intracellular calcium and a potentiation of heat-evoked currents in mouse spinal sensory neurons. Although TRPV1 is expressed in mouse hepatocytes, inhibition of TRPV1 did not alleviate acetaminophen-induced hepatotoxicity. Finally, intracutaneously applied NAPQI evoked burning pain and neurogenic inflammation in human volunteers. Our data demonstrate that pBQ and NAQPI activate and sensitize TRPV1 by interacting with intracellular cysteines. While TRPV1 does not seem to mediate acetaminophen-induced hepatotoxicity, our data identify TRPV1 as a target of acetaminophen with a potential relevance for acetaminophen-induced analgesia, antipyresia and inflammation.
Collapse
|
6
|
Ravindranath V, Strobel HW. Cytochrome P450-mediated metabolism in brain: functional roles and their implications. Expert Opin Drug Metab Toxicol 2013; 9:551-8. [PMID: 23330950 DOI: 10.1517/17425255.2013.759208] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cytochromes P450 (P450) and associated monooxygenases are a family of heme proteins involved in metabolism of endogenous compounds (arachidonic acid, eicosanoids and prostaglandins) as also xenobiotics including drugs and environmental chemicals. Liver is the major organ involved in P450-mediated metabolism and hepatic enzymes have been characterized. Extrahepatic organs, such as lung, kidney and brain have the capability for biotransformation through P450 enzymes. Brain, including human brain, expresses P450 enzymes that metabolize xenobiotics and endogenous compounds. AREAS COVERED An overview of P450-mediated metabolism in brain is presented focusing on distinct differences seen in expression of P450 enzymes, generation of unique P450 enzymes in brain through alternate splicing and their consequences in terms of metabolism of psychoactive drugs and inflammatory prompts, such as leukotrienes, thus modulating inflammatory response. EXPERT OPINION The brain possesses unique P450s that metabolize drugs and endogenous compounds through pathways that are markedly different from that seen in liver indicating that extrapolation directly from liver to brain is not appropriate. It is therefore necessary to characterize the unique brain P450s and their ability to metabolize xenobiotics and endogenous compounds to better understand the functions of this important class of enzymes in brain, especially human brain.
Collapse
|
7
|
Andersson DA, Gentry C, Alenmyr L, Killander D, Lewis SE, Andersson A, Bucher B, Galzi JL, Sterner O, Bevan S, Högestätt ED, Zygmunt PM. TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Δ(9)-tetrahydrocannabiorcol. Nat Commun 2011; 2:551. [PMID: 22109525 DOI: 10.1038/ncomms1559] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/19/2011] [Indexed: 12/21/2022] Open
Abstract
TRPA1 is a unique sensor of noxious stimuli and, hence, a potential drug target for analgesics. Here we show that the antinociceptive effects of spinal and systemic administration of acetaminophen (paracetamol) are lost in Trpa1(-/-) mice. The electrophilic metabolites N-acetyl-p-benzoquinoneimine and p-benzoquinone, but not acetaminophen itself, activate mouse and human TRPA1. These metabolites also activate native TRPA1 and, as a consequence, reduce voltage-gated calcium and sodium currents in primary sensory neurons. The N-acetyl-p-benzoquinoneimine metabolite L-cysteinyl-S-acetaminophen was detected in the mouse spinal cord after systemic acetaminophen administration. In the hot-plate test, intrathecal administration of N-acetyl-p-benzoquinoneimine, p-benzoquinone and the electrophilic TRPA1 activator cinnamaldehyde produced antinociception that was lost in Trpa1(-/-) mice. Intrathecal injection of a non-electrophilic cannabinoid, Δ(9)-tetrahydrocannabiorcol, also produced TRPA1-dependent antinociception in this test. Our study provides a molecular mechanism for the antinociceptive effect of acetaminophen and discloses spinal TRPA1 activation as a potential pharmacological strategy to alleviate pain.
Collapse
Affiliation(s)
- David A Andersson
- King's College London, Wolfson Centre for Age-Related Diseases, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Min G. Effects of TK promotor and hepatocyte nuclear factor-4 in CAR-mediated transcriptional activity of phenobarbital responsive unit of CYP2B gene in monkey kidney epithelial-derived cell line COS-7. Ann N Y Acad Sci 2007; 1091:258-69. [PMID: 17341620 DOI: 10.1196/annals.1378.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous studies reported that constitutive androstane receptor (CAR) does not transactivate phenobarbital responsive unit (PBRU)2C1luciferase reporter gene in COS cells in which endogenous CYP2B1 gene is not induced with PB. In order to understand molecular mechanism(s) whereby PBRU is transactivated, this article determined if the use of strong thymidine kinase (TK) promotor rather than the minimal CYP2C1 promotor, and hepatocyte nuclear factor-4 (HNF-4) can affect CAR-mediated transactivation of PBRU in the monkey kidney epithelial-derived COS-7 cells. To examine CAR-mediated transactivation, cultured COS-7 cells were transfected with CAR expression plasmid, pEGFP-mCAR1, and confirmed for high level of the protein expression. In COS-7 cells, TK promotor induced CAR-mediated PBRU transactivation in a dose-dependent manner. Whereas expression of HNF-4 slightly promoted PBRU transactivation with low amount of CAR transfected, it repressed PBRU transactivation in a dose-dependent manner with high amount of CAR. Consistent with the previous reports in Hep G2 cells, CAR transactivated PBRU2C1luciferase in a dose-dependent manner and this CAR-mediated transactivation required functional NR-1 and NF-1 sites. However, HNF-4 did not affect CAR-mediated PBRU transactivation in Hep G2 cells. These results suggest that proximal promotor and a trans-acting factor, HNF-4, can affect CAR-mediated transactivation of PBRU in COS-7 cells.
Collapse
Affiliation(s)
- Gyesik Min
- Department of Microbiological Engineering, Jinju National University, Jinju, Gyeongsangnam-Do, 660-758 Korea.
| |
Collapse
|
9
|
Borodin YI, Maiborodin IV, Safina AF, Strunkin DN. The possibility of cytochrome P450 1A1/1A2 induction in cells of distant lymph nodes of rats after enteral treatment with benzo[a]pyrene. Bull Exp Biol Med 2006; 140:564-7. [PMID: 16758626 DOI: 10.1007/s10517-006-0025-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The mesenteric, mediastinal, and popliteal lymph nodes of rats were studied by indirect immunoperoxidase method using monoclonal antibodies to cytochrome P450 1A1/1A2 after oral treatment with benzo[a]pyrene. These cytochrome forms were detected in monocytes, macrophages, reticular and littoral cells, cell detritus, and liquid contents of the paracortical and medullary sinuses of all studied lymph nodes. The results indicate that exo- and endogenous toxic substances are oxidized not only in the liver, but also in lymph nodes.
Collapse
Affiliation(s)
- Yu I Borodin
- Institute of Clinical and Experimental Lymphology, Siberian Division of Russian Academy of Medical Sciences, Novosibirsk
| | | | | | | |
Collapse
|
10
|
Ravindranath V. Pharmacological and toxicological significance of brain cytochromes P450. Neurotox Res 2001; 3:321-8. [PMID: 14715462 DOI: 10.1007/bf03033193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- V Ravindranath
- Department of Neurochemistry, National Institute of Mental Health And Neurosciences, Hosur Road, Bangalore 560 029, India.
| |
Collapse
|
11
|
Shahani N, Gourie-Devi M, Nalini A, Raju TR. Cyclophosphamide attenuates the degenerative changes induced by CSF from patients with amyotrophic lateral sclerosis in the neonatal rat spinal cord. J Neurol Sci 2001; 185:109-18. [PMID: 11311291 DOI: 10.1016/s0022-510x(01)00479-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our earlier studies have shown that cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS), when intrathecally injected into the neonatal rats, produces an aberrant phosphorylation of neurofilaments (NF) in the ventral horn neurons and reactive astrogliosis in the spinal cord. We wanted to investigate the effect of cyclophosphamide in the spinal cords of neonatal rats exposed to ALS-CSF. A single dose (5 microg in 5 microl saline) of cyclophosphamide was injected, 24 h after the administration of CSF samples from ALS and non-ALS neurological patients into the spinal subarachnoid space of 3-day-old rat pups. Rats were sacrificed after a period of 24 h, and stained with antibodies against the phosphorylated NF (SMI-31 antibody) and glial fibrillary acidic protein (GFAP). Cyclophosphamide treatment resulted in a 50% decrease in the number of SMI-31 stained neuronal soma in ventral horns of spinal cords of ALS-CSF exposed rats. This was accompanied by a decrease in the number of GFAP immunoreactive astrocytes. Furthermore, lactate dehydrogenase (LDH) activity was also decreased significantly, following cyclophosphamide treatment. These results suggest that cyclophosphamide could exert a neuroprotective effect against the neurotoxic action of factor(s) present in the ALS-CSF.
Collapse
Affiliation(s)
- N Shahani
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS) P.O. Box 2900, Hosur Road, 560 029, Bangalore, India
| | | | | | | |
Collapse
|
12
|
Miksys S, Hoffmann E, Tyndale RF. Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol 2000; 59:1501-11. [PMID: 10799646 DOI: 10.1016/s0006-2952(00)00281-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In the rat, nicotine is metabolized to cotinine primarily by hepatic cytochrome P450 (CYP) 2B1. This enzyme is also found in other organs such as the lung and the brain. Hepatic nicotine metabolism is unaltered after nicotine exposure; however, nicotine may regulate CYP2B1 in other tissues. We hypothesized that nicotine induces its own metabolism in brain by increasing CYP2B1. Male rats were treated with nicotine (0.0, 0.1, 0.3, or 1.0 mg base/kg in saline) s.c. daily for 7 days. CYP2B1 mRNA and protein were assayed in the brain and liver by reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting, and immunocytochemistry. In control rats, CYP2B1 mRNA and protein expression were brain region- and cell-specific. CYP2B1 was not induced in the liver, but CYP2B1 mRNA and protein showed dose-dependent, region- and cell-specific patterns of induction across brain regions. At 1.0 mg nicotine/kg, the largest increase in protein was in the brain stem (5.8-fold, P < 0.05) with a corresponding increase in CYP2B1 mRNA (7.6-fold, P < 0.05). Induction of CYP2B1 was also observed in the frontal cortex, striatum, and olfactory tubercle. Immunocytochemistry showed that induction was restricted principally to neurons. These data indicate that nicotine may alter its own metabolism in the brain through transcriptional regulation, perhaps contributing to central tolerance to the effects of nicotine. CYP2B1 and its human homologue CYP2B6 also activate tobacco smoke procarcinogens such as NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]. Highly localized increases in CYP2B could result in increased mutagenesis. These data suggest roles for nicotine-induced CYP2B in central metabolic tolerance, nicotine-induced neurotoxicity, neuroplasticity, and carcinogenesis.
Collapse
Affiliation(s)
- S Miksys
- Centre for Addiction and Mental Health and Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
13
|
Ravindranath V. Metabolism of xenobiotics in the central nervous system: implications and challenges. Biochem Pharmacol 1998; 56:547-51. [PMID: 9783722 DOI: 10.1016/s0006-2952(97)00671-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metabolism of drugs and other xenobiotics in situ in the brain has far-reaching implications in the pharmacological and pharmacodynamic effects of drugs acting on the CNS, particularly with respect to psychoactive drugs wherein a wide range of therapeutic response is typically seen in the patient population. An entirely functional cytochrome P450 (P450) monooxygenase system is known to exist in the rodent and human brain, wherein it is preferentially localized in the neuronal cells, which are the sites of action of psychoactive drugs. Further, bioactivation of xenobiotics, in situ, in the CNS would result in the formation of reactive, toxic metabolites in the neuronal cells that have limited regenerative capability. The presence of P450 enzymes in selective cell populations within distinctive regions of the brain that are affected in certain neurodegenerative disorders implies the potential role of P450-mediated bioactivation as a causative factor in the etiopathogenesis of these diseases. The characterization of brain-specific P450s and their regulation and localization within the CNS assume importance for understanding the potential role of these enzymes in the pathogenesis of neurodegenerative disorders and psychopharmacological modulation of drugs acting on the CNS.
Collapse
Affiliation(s)
- V Ravindranath
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bangalore, India.
| |
Collapse
|
14
|
Rieder CR, Ramsden DB, Williams AC. Cytochrome P450 1B1 mRNA in the human central nervous system. Mol Pathol 1998; 51:138-42. [PMID: 9850336 PMCID: PMC395625 DOI: 10.1136/mp.51.3.138] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS To study the expression of CYP1B1 in a variety of human and rat cell lines as a means of identifying a new tool for the investigation of gene regulation. In addition, to identify the expression of cytochrome P450 1B1 (CYP1B1) in different regions of the central nervous system (CNS). METHODS Reverse transcription-polymerase chain reaction followed by cloning and sequencing were used to detect the expression of CYP1B1 in human cell lines. Poly A+ mRNA from the human spinal cord and from different brain regions was analysed using a CYP1B1 probe labelled with 32PdCTP. RESULTS Expression of CYP1B1 was shown in a human astrocytoma cell line (MOG-G-CCM). CYP1B1 mRNA was expressed in a variety of regions of the CNS but with a distinct regional specificity. Expression was highest in the putamen. CONCLUSIONS The expression of CYP1B1 in a human astrocytoma enables this cell line to be used in further studies of regulation and function of this gene. The demonstration that CYP1B1 mRNA is expressed in a variety of regions of the CNS suggests a role for this gene in brain and spinal cord metabolism. The regional specificity of expression might explain the focal damage of certain human neurodegenerative diseases.
Collapse
Affiliation(s)
- C R Rieder
- Department of Neurology, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, UK
| | | | | |
Collapse
|
15
|
Strobel HW, Geng J, Kawashima H, Wang H. Cytochrome P450-dependent biotransformation of drugs and other xenobiotic substrates in neural tissue. Drug Metab Rev 1997; 29:1079-105. [PMID: 9421686 DOI: 10.3109/03602539709002244] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- H W Strobel
- Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School 77225, USA
| | | | | | | |
Collapse
|
16
|
Riedl AG, Watts PM, Edwards RJ, Boobis AR, Jenner P, Marsden CD. Selective localisation of P450 enzymes and NADPH-P450 oxidoreductase in rat basal ganglia using anti-peptide antisera. Brain Res 1996; 743:324-8. [PMID: 9017262 DOI: 10.1016/s0006-8993(96)00746-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Environmental or endogenous toxins may cause nigral cell death in Parkinson's disease (PD) due to altered expression of P450 enzymes. In rat brain, immunohistochemistry using anti-peptide antisera showed NADPH-P450 oxidoreductase and CYP2B1/2 in various hypothalamic nuclei and CYP1A1 in the globus pallidus, but neither enzyme was expressed in substantia nigra. No specific immunoreactivity to CYP2D1 or CYP3A1 was found in any brain region examined. In contrast, CYP2E1 was expressed in substantia nigra and in striatal blood vessels. Since CYP2E1 is associated with free radical production, it may contribute to the oxidative stress believed to underlie nigral degeneration.
Collapse
Affiliation(s)
- A G Riedl
- Neurodegenerative Disease Research Centre, Pharmacology Group, King's College, London, UK
| | | | | | | | | | | |
Collapse
|
17
|
Ravindranath V, Bhamre S, Bhagwat SV, Anandatheerthavarada HK, Shankar SK, Tirumalai PS. Xenobiotic metabolism in brain. Toxicol Lett 1995; 82-83:633-8. [PMID: 8597120 DOI: 10.1016/0378-4274(95)03508-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent hypothesis suggesting a role for environmental toxins in the pathogenesis of neurodegenerative disorders has stimulated interest in research on xenobiotic metabolizing capability of the brain. In addition to possible irreversible loss of neurons through bioactivation in situ in the nervous tissue, the metabolism of psychoactive drugs in the target tissue can lead to local pharmacological modulation at the site of action. The major drug metabolizing enzymes, cytochromes P-450 (P450) and flavin-containing monooxygenase (FMO) have been detected in rodent brain and human brain tissue obtained at autopsy. The brain microsomal and mitochondrial P450 systems are capable of metabolizing a variety of xenobiotics, while the brain FMO efficiently metabolizes a variety of psychoactive drugs to their respective N-oxides. Immunocytochemical studies have revealed the regional heterogeneity in the distribution of multiple forms of P450 in the brain and the co-localization of P450 and FMO predominantly in the neuronal cells. Although the brain P450 and FMO share many common features with similar enzymes present in other tissues such as liver and lung, there are some distinctive differences. It is evident from the studies carried out so far that the brain can metabolize a variety of lipophilic xenobiotics that enter by way of the blood stream.
Collapse
Affiliation(s)
- V Ravindranath
- Department of Neurochemistry, National Institute of Mental Health and Neuroscience, Bangalore, India
| | | | | | | | | | | |
Collapse
|