1
|
Huang R, Han S, Qiu Y, Zhou T, Wu Y, Du H, Xu J, Wei X. Glucocorticoid regulation of lactate release from spinal astrocytes contributes to the induction of spinal LTP of C-fiber-evoked field potentials and the development of mechanical allodynia. Neuropharmacology 2022; 219:109253. [PMID: 36108796 DOI: 10.1016/j.neuropharm.2022.109253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
High-frequency stimulation (HFS) of the sciatic nerve leads to long-term potentiation (LTP) at C-fiber synapse and long-lasting pain hypersensitivity. The underlying mechanisms, however, are still unclear. In the present study, we investigated the involvement of astrocytes derived l-lactate in the spinal dorsal horn subsequent to glucocorticoid (GC) secretion into the plasma in this process using Sprague-Dawley rats and Aldh1L1-CreERT2 mice of either sex. We found that HFS increased l-lactate and monocarboxylate transporters 1/2 (MCT1/2) in the spinal dorsal horn. Inhibition of glycogenolysis or blocking lactate transport prevented the induction of spinal LTP following HFS. Furthermore, Chemogenetical inhibition of dorsal horn astrocytes, which were activated by HFS, prevented spinal LTP, alleviated the mechanical allodynia and the decreased the level l-lactate and GFAP expression in the dorsal horn following HFS. In contrast, Chemogenetics activation of dorsal horn astrocytes in naïve rats induced spinal LTP as well as mechanical allodynia, and increased GFAP expression and l-lactate. Application of l-lactate directly to the spinal cord of naïve rats induced spinal LTP, mechanical allodynia, and increased spinal expression of p-ERK. Importantly, HFS increased GC in the plasma and glucocorticoid receptor (GR) expression in spinal astrocytes, adrenalectomy or knocking down of GR in astrocytes by using Cre-Loxp system blocked the mechanical allodynia, prevented the spinal LTP and the enhancement of lactate after HFS. These results show that lactate released from spinal astrocytes following glucocorticoid release into the plasma enhance synaptic transmission at the C-fiber synapse and underlie pain chronicity.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuang Han
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxin Qiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Taihe Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuning Wu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongchun Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Pagella S, Deussing JM, Kopp-Scheinpflug C. Expression Patterns of the Neuropeptide Urocortin 3 and Its Receptor CRFR2 in the Mouse Central Auditory System. Front Neural Circuits 2021; 15:747472. [PMID: 34867212 PMCID: PMC8633543 DOI: 10.3389/fncir.2021.747472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory systems have to be malleable to context-dependent modulations occurring over different time scales, in order to serve their evolutionary function of informing about the external world while also eliciting survival-promoting behaviors. Stress is a major context-dependent signal that can have fast and delayed effects on sensory systems, especially on the auditory system. Urocortin 3 (UCN3) is a member of the corticotropin-releasing factor family. As a neuropeptide, UCN3 regulates synaptic activity much faster than the classic steroid hormones of the hypothalamic-pituitary-adrenal axis. Moreover, due to the lack of synaptic re-uptake mechanisms, UCN3 can have more long-lasting and far-reaching effects. To date, a modest number of studies have reported the presence of UCN3 or its receptor CRFR2 in the auditory system, particularly in the cochlea and the superior olivary complex, and have highlighted the importance of this stress neuropeptide for protecting auditory function. However, a comprehensive map of all neurons synthesizing UCN3 or CRFR2 within the auditory pathway is lacking. Here, we utilize two reporter mouse lines to elucidate the expression patterns of UCN3 and CRFR2 in the auditory system. Additional immunolabelling enables further characterization of the neurons that synthesize UCN3 or CRFR2. Surprisingly, our results indicate that within the auditory system, UCN3 is expressed predominantly in principal cells, whereas CRFR2 expression is strongest in non-principal, presumably multisensory, cell types. Based on the presence or absence of overlap between UCN3 and CRFR2 labeling, our data suggest unusual modes of neuromodulation by UCN3, involving volume transmission and autocrine signaling.
Collapse
Affiliation(s)
- Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
3
|
Nicotinamide adenine dinucleotide phosphate oxidase 2-derived reactive oxygen species contribute to long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn and persistent mirror-image pain following high-frequency stimulus of the sciatic nerve. Pain 2021; 161:758-772. [PMID: 32195784 DOI: 10.1097/j.pain.0000000000001761] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
High-frequency stimulation (HFS) of the sciatic nerve has been reported to produce long-term potentiation (LTP) and long-lasting pain hypersensitivity in rats. However, the central underlying mechanism remains unclear. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) belongs to a group of electron-transporting transmembrane enzymes that produce reactive oxygen species (ROS). Here, we found that NOX2 was upregulated in the lumbar spinal dorsal horn after HFS of the left sciatic nerve, which induced bilateral pain and spinal LTP in both male and female rats. Blocking NOX2 with blocking peptide or shRNA prevented the development of bilateral mechanical allodynia, the induction of spinal LTP, and the phosphorylation of N-methyl-d-aspartate (NMDA) receptor 2B (GluN2B) and nuclear factor kappa-B (NF-κB) p65 after HFS. Moreover, NOX2 shRNA reduced the frequency and amplitude of both spontaneous excitatory postsynaptic currents and miniature excitatory postsynaptic currents in laminar II neurons. Furthermore, 8-hydroxyguanine (8-OHG), an oxidative stress marker, was increased in the spinal dorsal horn. Spinal application of ROS scavenger, Phenyl-N-tert-butylnitrone (PBN), depressed the already established spinal LTP. Spinal application of H2O2, one ROS, induced LTP and bilateral mechanical allodynia, increased the frequency and amplitude of spontaneous excitatory postsynaptic currents in laminar II neurons, and phosphorylated GluN2B and p65 in the dorsal horn. This study provided electrophysiological and behavioral evidence that NOX2-derived ROS in the spinal cord contributed to persistent mirror-image pain by enhancing the synaptic transmission, which was mediated by increasing presynaptic glutamate release and activation of NMDA receptor and NF-κB in the spinal dorsal horn.
Collapse
|
4
|
Abstract
Spinal projection neurons convey nociceptive signals to multiple brain regions including the parabrachial (PB) nucleus, which contributes to the emotional valence of pain perception. Despite the clear importance of projection neurons to pain processing, our understanding of the factors that shape their intrinsic membrane excitability remains limited. Here, we investigate a potential role for the Na leak channel NALCN in regulating the activity of spino-PB neurons in the developing rodent. Pharmacological reduction of NALCN current (INALCN), or the genetic deletion of NALCN channels, significantly reduced the intrinsic excitability of lamina I spino-PB neurons. In addition, substance P (SP) activated INALCN in ascending projection neurons through downstream Src kinase signaling, and the knockout of NALCN prevented SP-evoked action potential discharge in this neuronal population. These results identify, for the first time, NALCN as a strong regulator of neuronal activity within central pain circuits and also elucidate an additional ionic mechanism by which SP can modulate spinal nociceptive processing. Collectively, these findings indicate that the level of NALCN conductance within spino-PB neurons tightly governs ascending nociceptive transmission to the brain and thereby potentially influences pain perception.
Collapse
|
5
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
6
|
Lucas-Romero J, Rivera-Arconada I, Roza C, Lopez-Garcia JA. Origin and classification of spontaneous discharges in mouse superficial dorsal horn neurons. Sci Rep 2018; 8:9735. [PMID: 29950700 PMCID: PMC6021406 DOI: 10.1038/s41598-018-27993-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Abstract
Superficial laminae of the spinal cord possess a considerable number of neurons with spontaneous activity as reported in vivo and in vitro preparations of several species. Such neurons may play a role in the development of the nociceptive system and/or in the spinal coding of somatosensory signals. We have used electrophysiological techniques in a horizontal spinal cord slice preparation from adult mice to investigate how this activity is generated and what are the main patterns of activity that can be found. The results show the existence of neurons that fire regularly and irregularly. Within each of these main types, it was possible to distinguish patterns of spontaneous activity formed by single action potentials and different types of bursts according to intra-burst firing frequency. Activity in neurons with irregular patterns was blocked by a mixture of antagonists of the main neurotransmitter receptors present in the cord. Approximately 82% of neurons with a regular firing pattern were insensitive to synaptic antagonists but their activity was inhibited by specific ion channel blockers. It is suggested that these neurons generate endogenous activity due to the functional expression of hyperpolarisation-activated and persistent sodium currents driving the activity of irregular neurons.
Collapse
Affiliation(s)
- Javier Lucas-Romero
- Department of Systems Biology, Universidad de Alcala, Alcala de Henares, 28871, Madrid, Spain
| | - Ivan Rivera-Arconada
- Department of Systems Biology, Universidad de Alcala, Alcala de Henares, 28871, Madrid, Spain
| | - Carolina Roza
- Department of Systems Biology, Universidad de Alcala, Alcala de Henares, 28871, Madrid, Spain
| | - Jose A Lopez-Garcia
- Department of Systems Biology, Universidad de Alcala, Alcala de Henares, 28871, Madrid, Spain.
| |
Collapse
|
7
|
Abstract
Pain research is based broadly on physiological disciplines and its development follows the methodological progress of the era, from classical psychophysiology to electrophysiological investigations at peripheral and central nociceptive systems, single cells and ion channels to modern imaging of nociceptive processing. Physiological pain research in Germany has long been part of an interdisciplinary research network extending beyond all political boundaries, and this situation has continued since molecular techniques started to dominate all biomedical research. Current scientific questions, such as intracellular nociceptive signal mechanisms, interactions with other physiological systems including the immune system, or the genetic basis of epidemic and chronic pain diseases can only be solved interdisciplinary and with international collaboration.
Collapse
Affiliation(s)
- K Messlinger
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Deutschland.
| | - H O Handwerker
- Institut für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Deutschland
| |
Collapse
|
8
|
Roza C, Mazo I, Rivera-Arconada I, Cisneros E, Alayón I, López-García JA. Analysis of spontaneous activity of superficial dorsal horn neurons in vitro: neuropathy-induced changes. Pflugers Arch 2016; 468:2017-2030. [PMID: 27726011 DOI: 10.1007/s00424-016-1886-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/06/2016] [Accepted: 09/26/2016] [Indexed: 01/17/2023]
Abstract
The superficial dorsal horn contains large numbers of interneurons which process afferent and descending information to generate the spinal nociceptive message. Here, we set out to evaluate whether adjustments in patterns and/or temporal correlation of spontaneous discharges of these neurons are involved in the generation of central sensitization caused by peripheral nerve damage. Multielectrode arrays were used to record from discrete groups of such neurons in slices from control or nerve damaged mice. Whole-cell recordings of individual neurons were also obtained. A large proportion of neurons recorded extracellularly showed well-defined patterns of spontaneous firing. Clock-like neurons (CL) showed regular discharges at ∼6 Hz and represented 9 % of the sample in control animals. They showed a tonic-firing pattern to direct current injection and depolarized membrane potentials. Irregular fast-burst neurons (IFB) produced short-lasting high-frequency bursts (2-5 spikes at ∼100 Hz) at irregular intervals and represented 25 % of the sample. They showed bursting behavior upon direct current injection. Of the pairs of neurons recorded, 10 % showed correlated firing. Correlated pairs always included an IFB neuron. After nerve damage, the mean spontaneous firing frequency was unchanged, but the proportion of CL increased significantly (18 %) and many of these neurons appeared to acquire a novel low-threshold A-fiber input. Similarly, the percentage of IFB neurons was unaltered, but synchronous firing was increased to 22 % of the pairs studied. These changes may contribute to transform spinal processing of nociceptive inputs following peripheral nerve damage. The specific roles that these neurons may play are discussed.
Collapse
Affiliation(s)
- Carolina Roza
- Dpto. Biología de Sistemas, Edificio de Medicina, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Irene Mazo
- Dpto. Biología de Sistemas, Edificio de Medicina, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Iván Rivera-Arconada
- Dpto. Biología de Sistemas, Edificio de Medicina, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Elsa Cisneros
- Dpto. Biología de Sistemas, Edificio de Medicina, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - Ismel Alayón
- Dpto. Biología de Sistemas, Edificio de Medicina, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain
| | - José A López-García
- Dpto. Biología de Sistemas, Edificio de Medicina, Universidad de Alcalá, Campus Universitario, 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
9
|
Ikeda H, Kiritoshi T, Murase K. Synaptic plasticity in the spinal dorsal horn. Neurosci Res 2009; 64:133-6. [PMID: 19428692 DOI: 10.1016/j.neures.2009.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/17/2022]
Abstract
Long-term potentiation (LTP) at synapses in the spinal dorsal horn is thought to be a cellular mechanism for abnormal pain sensitivity. In this article, we review LTP in spinal projection neurons and presynaptic mechanisms of LTP in the spinal dorsal horn revealed by patch-clamp recording and optical imaging with voltage-sensitive dye.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
| | | | | |
Collapse
|
10
|
Kercel SW. THE ROLE OF VOLUME TRANSMISSION IN AN ENDOGENOUS BRAIN. J Integr Neurosci 2004; 3:7-18. [PMID: 15139075 DOI: 10.1142/s0219635204000348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 01/26/2004] [Indexed: 11/18/2022] Open
Abstract
Brain dynamics depends on synaptic, diffusive, and glial activities. Observations indicate that synaptic and diffusive activities modify each other's morphology, and glial activity modifies both. Synaptic activity modifies glial morphology. Whether diffusion modifies glial morphology has not been reported but it is reasonable to expect that it does. The relationship between these three transmission processes forms a closed-loop hierarchy of causation in brain dynamics, and the operation of that hierarchy may account for some of the seemingly bizarre properties of cognitive function.
Collapse
Affiliation(s)
- Stephen W Kercel
- University of New England, 2 Brian Drive, Brunswick, ME 04011, USA.
| |
Collapse
|
11
|
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMK II) is found throughout the CNS. It regulates calcium signaling in synaptic transmission by phosphorylating various proteins, including neuronal membrane receptors and intracellular transcription factors. Inflammation or injuries to peripheral tissues cause long-lasting increases in the responses of central nociceptive neurons to innocuous and noxious stimuli. This change can occur independently of alterations in the responsiveness of primary afferent neurons and has been termed central sensitization. Central sensitization is a form of activity-dependent plasticity and results from interactions in a set of intracellular signaling pathways, which modulate nociceptive transmission. Here we demonstrate an increased expression and phosphorylation of CaMK II in rat spinal dorsal horn neurons after noxious stimulation by intradermal injection of capsaicin. Local administration of a CaMK II inhibitor in the spinal cord significantly inhibits the enhancement of responses of spinal nociceptive neurons and changes in exploratory behavior evoked by capsaicin injection. In addition, spinal CaMK II activity enhances phosphorylation of AMPA receptor GluR1 subunits during central sensitization produced by capsaicin injection. This study reveals that CaMK II contributes to central sensitization in a manner similar to its role in the processes underlying long-term potentiation.
Collapse
|
12
|
Ziegler EA, Magerl W, Meyer RA, Treede RD. Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input. Brain 1999; 122 ( Pt 12):2245-57. [PMID: 10581220 DOI: 10.1093/brain/122.12.2245] [Citation(s) in RCA: 325] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue injury induces enhanced pain sensation to light touch and punctate stimuli in adjacent, uninjured skin (secondary hyperalgesia). Whereas hyperalgesia to light touch (allodynia) is mediated by A-fibre low-threshold mechanoreceptors, hyperalgesia to punctate stimuli may be mediated by A- or C-fibre nociceptors. To disclose the relative contributions of A- and C-fibres to the hyperalgesia to punctate stimuli, the superficial radial nerve was blocked by pressure at the wrist in nine healthy subjects. Secondary hyperalgesia was induced by intradermal injection of 40 microg capsaicin, and pain sensitivity in adjacent skin was tested with 200 micron diameter probes (35-407 mN). The progress of conduction blockade was monitored by touch, cold, warm and first pain detection and by compound sensory nerve action potential. When A-fibre conduction was blocked completely but C-fibre conduction was fully intact, pricking pain to punctate stimuli was reduced by 75%, but burning pain to capsaicin injection remained unchanged. In normal skin without A-fibre blockade, pain ratings to the punctate probes increased significantly by a factor of two after adjacent capsaicin injection. In contrast, pain ratings to the punctate probes were not increased after capsaicin injection when A-fibre conduction was selectively blocked. However, hyperalgesia to punctate stimuli was detectable immediately after block release, when A-fibre conduction returned to normal. In conclusion, the pricking pain to punctate stimuli is predominantly mediated by A-fibre nociceptors. In secondary hyperalgesia, this pathway is heterosynaptically facilitated by conditioning C-fibre input. Thus, secondary hyperalgesia to punctate stimuli is induced by nociceptive C-fibre discharge but mediated by nociceptive A-fibres.
Collapse
Affiliation(s)
- E A Ziegler
- Institute of Physiology and Pathophysiology,Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
13
|
Doyle CA, Hunt SP. Substance P receptor (neurokinin-1)-expressing neurons in lamina I of the spinal cord encode for the intensity of noxious stimulation: a c-Fos study in rat. Neuroscience 1999; 89:17-28. [PMID: 10051214 DOI: 10.1016/s0306-4522(98)00276-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The substance P receptor neurokinin-1 is expressed by a subset of neurons in the rat spinal cord. We have combined immunostaining for Fos, a marker of noxious peripheral stimulation, and neurokinin-1 to examine whether nociceptive signals from particular peripheral tissues (skin, muscle or knee joint) or activity generated by nerve injury or formalin-induced inflammation are preferentially modulated by substance P. Our results indicate that superficial and deep spinal neurokinin-1-positive neurons process nociceptive information in markedly different ways. In lamina I, the number of double-labelled neurons was positively correlated with the intensity of the stimulus (defined by the total Fos count) and was not directly related to any particular peripheral target. However, in the deeper layers of the spinal cord (V-X), there was no such correlation, and stimulation of joint nociceptors and formalin-induced inflammation produced the greatest proportion of Fos/neurokinin-1 co-localization, suggesting a particular role for substance P in the mediation of joint pain and inflammatory hyperalgesia. Thus, lamina I neurokinin-1 receptor-bearing neurons appear to be involved in intensity discriminative aspects of pain, whereas the deep neurokinin-1 cells are involved in spatial localization or the detection of particular nociceptive submodalities.
Collapse
Affiliation(s)
- C A Doyle
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
14
|
Cellular and subcellular distribution of substance P receptor immunoreactivity in the dorsal vagal complex of the rat and cat: A light and electron microscope study. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<181::aid-cne4>3.0.co;2-b] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Hoheisel U, Kaske A, Mense S. Relationship between neuronal activity and substance P-immunoreactivity in the rat spinal cord during acute and persistent myositis. Neurosci Lett 1998; 257:21-4. [PMID: 9857956 DOI: 10.1016/s0304-3940(98)00792-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The spinal level of substance P (SP) is assumed to be an important determinant of neuronal activity under pathophysiological conditions. In rat dorsal horn neurones, impulse activity was studied during a carrageenan-induced acute (2-8 h) and a Freund's adjuvant-induced persistent (12 days) myositis and compared with the spinal substance P-immunoreactivity (SP-IR) of the same animals. Myositis-induced changes in responsiveness of the neurones reached a maximum within 2-8 h, whereas background activity of the neurones was highest after 12 days of myositis. The area of SP-IR in the superficial dorsal horn decreased during acute and persistent myositis and the integrated density of the staining was largely unchanged. The difference in time-course between neuronal activity and SP-IR suggest that during persistent myositis factors other than SP gain more influence on the behaviour of the neurones.
Collapse
Affiliation(s)
- U Hoheisel
- Institut für Anatomie und Zellbiologie, Universität Heidelberg, Germany
| | | | | |
Collapse
|
16
|
Liu XG, Sandkühler J. Activation of spinal N-methyl-D-aspartate or neurokinin receptors induces long-term potentiation of spinal C-fibre-evoked potentials. Neuroscience 1998; 86:1209-16. [PMID: 9697127 DOI: 10.1016/s0306-4522(98)00107-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The use-dependent increase in synaptic strength between primary afferent C-fibres and second-order neurons in superficial spinal dorsal horn may be an important cellular mechanism underlying central hyperalgesia. This long-term potentiation can be blocked by antagonists of the N-methyl-D-aspartate subtype of glutamate receptor, the neurokinin 1 or the neurokinin 2 receptor. We have tested here whether activation of these receptors by superfusion of the spinal cord with corresponding agonists in the absence of presynaptic activity is sufficient to induce long-term potentiation. In urethane anaesthetized rats C-fibre-evoked field potentials were elicited in superficial laminae of lumbar spinal cord by electrical stimulation of the sciatic nerve. In rats with intact spinal cord, controlled superfusion of the spinal cord at recording segments for 60 min with N-methyl-D-aspartate, substance P or neurokinin A never induced long-term potentiation. Spinal superfusion with a mixture of N-methyl-D-aspartate, substance P and neurokinin A also failed to induce long-term potentiation in four rats tested. In spinalized rats, however, long-term potentiation was induced by either N-methyl-D-aspartate (at 10 microM, to 173 +/- 16% of control) substance P (at 10 microM, to 176 +/- 13% of control) or by neurokinin A (at 1 microM, to 198 +/- .20% of control). The induction of long-term potentiation by N-methyl-D-aspartate, substance P or neurokinin A was blocked by intravenous application of the receptor antagonists dizocilpine maleate (0.5 mg/kg), RP67580 (2 mg/kg) or SR48968 (0.2 mg/kg), respectively. Thus, activation of N-methyl-D-aspartate or neurokinin receptors may induce long-lasting plastic changes in synaptic transmission in afferent C-fibres and this effect may be prevented by tonic descending inhibition.
Collapse
Affiliation(s)
- X G Liu
- II. Physiologisches Institut, Universität Heidelberg, Germany
| | | |
Collapse
|
17
|
Magerl W, Wilk SH, Treede RD. Secondary hyperalgesia and perceptual wind-up following intradermal injection of capsaicin in humans. Pain 1998; 74:257-68. [PMID: 9520240 DOI: 10.1016/s0304-3959(97)00177-2] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wind-up and secondary hyperalgesia both are related to central sensitization, but whereas the former is explained by homosynaptic facilitation, the latter is due to heterosynaptic facilitation. To investigate possible interactions between both types of facilitation, we tested for alterations of perceptual wind-up in the secondary hyperalgesic skin zone adjacent to a capsaicin injection with light touch (by a cotton wisp) and punctate stimuli (calibrated von Frey hairs and pin pricks). Temporal summation of pain sensation (perceptual wind-up) was only observed with a clearly noxious stimulus (pin prick) presented at a repetition frequency of 0.6 s(-1), but not 0.2 s(-1). Pain ratings to trains of pin pricks reached a plateau after 3-4 repetitions, which was 1.65 times the initial rating ('wind-up ratio'). Injection of capsaicin induced a tenderness to mechanical stimuli in adjacent uninjured skin (secondary hyperalgesia), including hyperalgesia to light touch (allodynia) and hyperalgesia to punctate stimuli. Hyperalgesia to punctate stimuli was characterized by a leftward shift of the stimulus response function, corresponding to a decrease in pain threshold and an increase of painfulness of suprathreshold stimuli by a factor of 3-4. After capsaicin, the difference between the ratings of the first and last stimuli of trains of pin pricks was increased, but the ratio was unchanged. This behavior is equivalent to an increase in effective stimulus intensity, and could be mimicked by increasing the pin prick force from 20 mN to 40 and 80 mN in normal skin. Thus, the leftward shift of the stimulus response function fully accounts for all alterations of pain sensitivity to punctate stimuli in the zone of secondary hyperalgesia. We conclude that when the gain of spinal transmission was changed in secondary hyperalgesia, the gain of wind-up remained unchanged. These findings indicate that secondary hyperalgesia (heterotopic facilitation) and wind-up of pain sensation (homotopic facilitation) are independent phenomena.
Collapse
Affiliation(s)
- W Magerl
- Institute of Physiology and Pathophysiology, Johannes Gutenberg-University, Mainz, Germany
| | | | | |
Collapse
|
18
|
Inflammation increases the distribution of dorsal horn neurons that internalize the neurokinin-1 receptor in response to noxious and non-noxious stimulation. J Neurosci 1997. [PMID: 9315923 DOI: 10.1523/jneurosci.17-20-08049.1997] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the neurokinin-1 (NK-1)/substance P (SP) receptor is expressed by neurons throughout the spinal dorsal horn, noxious chemical stimulation in the normal rat only induces internalization of the receptor in cell bodies and dendrites of lamina I. Here we compared the effects of mechanical and thermal stimulation in normal rats and in rats with persistent hindpaw inflammation. Electron microscopic analysis confirmed the upregulation of receptor that occurs with inflammation and demonstrated that in the absence of superimposed stimulation, the increased receptor was, as in normal rats, concentrated on the plasma membrane. In general, noxious mechanical was more effective than noxious thermal stimulation in inducing NK-1 receptor internalization, and this was increased in the setting of inflammation. Although a 5 sec noxious mechanical stimulus only induced internalization in 22% of lamina I neurons in normal rats, after inflammation, it evoked near-maximal (98%) internalization in lamina I, produced significant changes in laminae III-VI, and expanded the rostrocaudal distribution of neurons with internalized receptor. Even non-noxious (brush) stimulation of the inflamed hindpaw induced internalization in large numbers of superficial and deep neurons. For thermal stimulation, the percentage of cells with internalized receptor increased linearly at >45 degrees C, but in normal rats, these were restricted to lamina I. After inflammation, however, the 52 degrees C stimulus also induced internalization in 25% of laminae III-IV cells. These studies provide a new perspective on the reorganization of dorsal horn circuits in the setting of persistent injury and demonstrate a critical contribution of SP.
Collapse
|
19
|
Liu X, Sandkühler J. Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors. J Neurophysiol 1997; 78:1973-82. [PMID: 9325365 DOI: 10.1152/jn.1997.78.4.1973] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Impulses in afferent C fibers, e.g., during peripheral trauma, may induce plastic changes in the spinal dorsal horn that are believed to contribute to some forms of hyperalgesia. The nature of lasting changes in spinal nociception are still not well understood. Here we characterized the long-term potentiation (LTP) of spinal field potentials with a negative focus in superficial spinal dorsal horn evoked by supramaximal electrical stimulation of the sciatic nerve in urethan-anesthetized adult rats. The field potentials studied in this work had high thresholds (>/=7 V, 0.5 ms), long latencies (90-130 ms), and long chronaxy (1.1 ms) and were not abolished by muscle relaxation and spinalization. Thus they were evoked by afferent C fibers. In response to 1-Hz stimulation of afferent C fibers, amplitudes of C-fiber-evoked field potentials remained constant, whereas number of action potentials of some dorsal horn neurons increased progressively (wind-up). In all 25 rats tested, high-frequency, high-intensity stimulation (100 Hz, 30-40 V, 0.5 ms, 400 pulses given in 4 trains of 1-s duration at 10-s intervals) always induced LTP (to approximately 200% of control), which consistently lasted until the end of recording periods (4-9 h). This tetanic stimulation also significantly decreased mean threshold of C-fiber-evoked field potentials. The C-fiber volley, which was recorded simultaneously in sural nerve, was, however, not affected by the same tetanic stimulation. High-frequency, low-intensity stimulation (100 Hz, 3 V, 0.5 ms) never induced LTP in six rats tested. At an intermediate frequency, high-intensity stimulation (20 Hz, 40 V, 0.5 ms, 400 pulses given in 4 trains of 5 s at 10-s intervals) induced LTP in four out of six rats, which lasted until end of recording periods (3-6 h). In the remaining two rats, no LTP was induced. Low-frequency, high-intensity stimulation (2 Hz, 30-40 V, 0.5 ms, 400 pulses) induced LTP that lasted for 2-8 h in four out of five rats. Intravenous application of neurokinin 1 (NK1) or neurokinin 2 (NK2) receptor antagonist RP 67580 (2 mg/kg, n = 5) or SR 48968 (0.3 mg/kg, n = 5) 30 min before high-frequency, high-intensity stimulation blocked the induction of LTP in all rats tested. In contrast, the same dose of their inactive enantiomers RP 68651 (n = 5) or SR 48965 (n = 5) did not affect the induction of LTP. Spinal superfusion with RP 67580 (1 microM) from 30 min before to 30 min after high-frequency, high-intensity stimulation blocked induction of LTP in all five rats tested. Spinal application of SR 48968 (10 nM) prevented LTP in five out of seven rats. However, when spinal superfusions with RP 67580 (1 microM, n = 3) or SR 48968 (10 nM, n = 3) were started 1 h after high-frequency, high-intensity stimulation, established LTP was not affected. Thus the activation of neurokinin receptors is necessary for the induction but not for the maintenance of LTP of C-fiber-evoked field potentials in spinal dorsal horn. This model may be useful to study plastic changes in spinal cord induced by peripheral C-fiber stimulation. The LTP of C-fiber-evoked field potentials may be a mechanism underlying some forms of hyperalgesia.
Collapse
Affiliation(s)
- X Liu
- II. Physiologisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | |
Collapse
|
20
|
Eblen-Zajjur AA, Sandkühler J. Synchronicity of nociceptive and non-nociceptive adjacent neurons in the spinal dorsal horn of the rat: stimulus-induced plasticity. Neuroscience 1997; 76:39-54. [PMID: 8971757 DOI: 10.1016/s0306-4522(96)00286-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Current knowledge of spinal processing of sensory information is largely based on single-cell recordings; however, temporal correlation of multiple cell discharges may play an important role in sensory encoding, and single electrode recordings of several neurons may provide insights into the functions of a neuronal network. The technique was applied to the lumbar spinal dorsal horn of pentobarbital-anaesthetized rats during background activity, steady-state noxious heat stimulation (48 degrees C, 100 s), cold block spinalization or radiant heat-induced inflammation of the skin, and the recordings were evaluated by means of auto-correlation, autospectral and cross-correlation analysis. Background patterns obtained by these three methods were extremely stable in time. Autocorrelation with short lag peaks was observed in 72.2% of neurons (n = 223). Background correlated discharges were found in 83.6% of the neuron pairs (n = 134). Cross-correlation with a central peak, suggestive of common input to the recorded cells, was the most common pattern observed in almost all laminae and was associated with high incidence (91.8%) of overlapping receptive fields and with neurons with initial peak autocorrelation pattern. Cross-correlations with central trough were associated with increase autocorrelation patterns. Bilateral peaks in cross-correlation, suggestive of reverberating circuitry, were observed only for pairs of neurons located in laminae IV and V and were associated with rhythmic discharges in one or in both simultaneously-recorded neurons. Lagged peaks or troughs were observed in 4.6% and 2.2% of neuronal pairs, respectively. Long-lasting skin heating induced qualitative changes (pattern changes) in the cross-correlation of 21.6% of the neuron pairs and quantitative changes in 85.7% of them. During skin inflammation qualitative changes in the cross-correlation pattern were observed in 30.8% of the neuron pairs, and quantitative changes (strength and/or synchronization time) in about 57.7% of them. Spinalization induced quantitative changes in cross-correlation in the vast majority of neuron pairs. The results of the present study suggest that discharges of neighbouring spinal dorsal horn neurons are strongly synchronized probably by propriospinal and primary afferent sources. The existence of functional reverberating circuitry was also evidenced. Finally, the functional synchronicity in the spinal dorsal horn presents stimulus-induced plasticity which consists mainly of changes on the strength and/or time of the synchronization and rarely of activation of new connectivities.
Collapse
|
21
|
Andersen RA, Snyder LH, Bradley DC, Xing J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 1997; 20:303-30. [PMID: 9056716 DOI: 10.1146/annurev.neuro.20.1.303] [Citation(s) in RCA: 882] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent experiments are reviewed that indicate that sensory signals from many modalities, as well as efference copy signals from motor structures, converge in the posterior parietal cortex in order to code the spatial locations of goals for movement. These signals are combined using a specific gain mechanism that enables the different coordinate frames of the various input signals to be combined into common, distributed spatial representations. These distributed representations can be used to convert the sensory locations of stimuli into the appropriate motor coordinates required for making directed movements. Within these spatial representations of the posterior parietal cortex are neural activities related to higher cognitive functions, including attention. We review recent studies showing that the encoding of intentions to make movements is also among the cognitive functions of this area.
Collapse
Affiliation(s)
- R A Andersen
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Much progress has been made the understanding of endogenous pain-controlling systems. Recently, new concepts and ideas which are derived from neurobiology, chaos research and from research on learning and memory have been introduced into pain research and shed further light on the organization and function of endogenous antinociception. These most recent developments will be reviewed here. Three principles of endogenous antinociception have been identified, as follows. (1) Supraspinal descending inhibition: the patterns of neuronal activity in diencephalon, brainstem and spinal cord during antinociceptive stimulation in midbrain periaqueductal gray (PAG) or medullary nucleus raphe magnus have now been mapped on the cellular level, using the c-Fos technique. Results demonstrate that characteristic activity patterns result within and outside the PAG when stimulating at its various subdivisions. The descending systems may not only depress mean discharge rates of nociceptive spinal dorsal horn neurons, but also may modify harmonic oscillations and nonlinear dynamics (dimensionality) of discharges. (2) Propriospinal, heterosegmental inhibition: antinociceptive, heterosegmental interneurons exist which may be activated by noxious stimulation or by supraspinal descending pathways. (3) Segmental spinal inhibition: a robust long-term depression of primary afferent neurotransmission in A delta fibers has been identified in superficial spinal dorsal horn which may underlie long-lasting antinociception by afferent stimulation, e.g. by physical therapy or acupuncture.
Collapse
Affiliation(s)
- J Sandkühler
- II. Physiologisches Institut, Universität Heidelberg, Germany.
| |
Collapse
|
23
|
Sandkühler J, Treier AC, Liu XG, Ohnimus M. The massive expression of c-fos protein in spinal dorsal horn neurons is not followed by long-term changes in spinal nociception. Neuroscience 1996; 73:657-66. [PMID: 8809787 DOI: 10.1016/0306-4522(96)00073-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been suggested that the expression of c-fos and other immediate early genes in spinal dorsal horn neurons would trigger changes in the phenotype of nociceptive neurons which may lead to long-term changes in spinal nociception. To test this hypothesis, we have used a minimally invasive intrathecal stimulation and injection technique which can be applied to adult Sprague-Dawley rats under brief ether anesthesia to induce massive c-fos expression in spinal neurons without affecting peripheral nociceptors. Electrical intrathecal stimulation (0.5 ms pulses, 15 V, 3 Hz for 15 min) or intrathecal injection of N-methyl-D-aspartate (25 nmol) produced massive c-Fos immunoreactivity in neurons throughout the sacral spinal cord and the dorsal horn of the lumber spinal cord. Immunoreactivity declined to control values at mid-thoracic levels. To assess effects of these intrathecal stimuli on nociception, hot-plate and tail-flick latencies and mechanical thresholds of hindlimb withdrawal reflexes were measured once every day for 14 days before and up to 14 days after conditioning stimulation. Spontaneous locomotion of each animal was video-taped daily for 5 min and analysed off-line. On the day of the intrathecal stimulation the tests were performed 1 h before and also 6 h after conditioning stimulation. Thermal and mechanical nociceptive thresholds were temporarily enhanced 6 h after intrathecal stimulation but they were not different from controls one to 14 days later. Thus, the massive expression of c-fos in spinal neurons is not, as previously suggested, a sufficient condition for the induction of long-term changes in spinal nociception.
Collapse
Affiliation(s)
- J Sandkühler
- II. Physiologisches Institut, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
24
|
Zoli M, Agnati LF. Wiring and volume transmission in the central nervous system: the concept of closed and open synapses. Prog Neurobiol 1996; 49:363-80. [PMID: 8888115 DOI: 10.1016/0301-0082(96)00020-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During the past two decades, several revisions of the concepts underlying interneuronal communication in the central nervous system (CNS) have been advanced. Our group has proposed to classify intercellular communication in the CNS under two general frames: 'wiring' (WT) and 'volume' transmission (VT). WT is characterized by a single 'transmission channel' made by cellular (neuronal or glial) structures and with a region of discontinuity not larger than a synaptic cleft. VT is characterized by the diffusion from a cell source (neuronal or glial) of chemical and electrical signals in the extracellular fluid (ECF) for a distance larger than the synaptic cleft Based on morphological and functional characteristics, and in light of the distinction proposed, six main modes of intercellular communication can be recognized in the CNS: gap-junction, membrane juxtaposition, and closed synapse (which represent WT-type modes of communication); open synapse, paracrine transmission and endocrine-like transmission (which represent VT-type modes of communication). Closed and open synapses are distinguished on the basis of the sealing of the signal within or the leakage of the signal outside the synapse Intra-synaptic restriction or extra-synaptic diffusion of transmitters are insured by a number of anatomical arrangements (e.g. glial ensheathment of synapse, size of the synaptic cleft) and functional mechanisms (e.g. density and location of transmitter re-uptake sites and metabolic enzymes). Some central synapses can switch from closed to open state and vice versa, e.g. by changing the amount of transmitter released. Finally, a synapse containing several transmitters can work as an open synapse for one transmitter and as a closed synapse for another.
Collapse
Affiliation(s)
- M Zoli
- Department of Biomedical Sciences, University of Modena, Italy
| | | |
Collapse
|
25
|
Affiliation(s)
- J Sandkühler
- II. Physiologisches Institut, Universität Heidelberg, Germany
| |
Collapse
|
26
|
Mense S, Hoheisel U, Reinert A. The possible role of substance P in eliciting and modulating deep somatic pain. PROGRESS IN BRAIN RESEARCH 1996; 110:125-35. [PMID: 9000721 DOI: 10.1016/s0079-6123(08)62570-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S Mense
- Institut für Anatomie und Zellbiologie, Heidelberg, Germany
| | | | | |
Collapse
|
27
|
Schaible HG. On the role of tachykinins and calcitonin gene-related peptide in the spinal mechanisms of nociception and in the induction and maintenance of inflammation-evoked hyperexcitability in spinal cord neurons (with special reference to nociception in joints). PROGRESS IN BRAIN RESEARCH 1996; 113:423-41. [PMID: 9009749 DOI: 10.1016/s0079-6123(08)61102-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H G Schaible
- Physiologisches Institut, Universität Würzburg, Germany
| |
Collapse
|