1
|
Karger S, Wiesner T, Kersting A, Braun M, Ebert T, Wurst U, Kratzsch J, Stumvoll M, Fasshauer M. Increased chromogranin a and carcinoid syndrome-like symptoms in a patient treated with duloxetine. Endocr Pract 2014; 20:e215-8. [PMID: 25100382 DOI: 10.4158/ep14162.cr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We report the case of a 50-year-old female patient who presented with symptoms suggestive of a serotonin-secreting neuroendocrine neoplasm. In addition, her serum chromogranin A (CA) level was elevated by more than 8-fold. METHODS We present a case report with review of the relevant literature. RESULTS No abnormalities could be detected in a complete conventional and functional morphological diagnostic work-up including a gallium-68-DOTA-d-Phe1-Tyr3-octreotide (Ga-68-DOTATOC) positron emission tomography-computed tomography (PET-CT) scan. These negative results prompted us to consider possible drug-related effects as the cause for these findings. The patient had started to take duloxetine, a second-generation antidepressant (SGA) and selective serotonin-norepinephrine reuptake inhibitor (SNRI), at a dose of 60 mg/day 2 months prior to her first visit at our department for pain relief. After withdrawal of duloxetine, her symptoms promptly ceased, and her CA levels fell to normal values within 7 weeks. CONCLUSION We conclude that selective serotonin-norepinephrine reuptake inhibitors (SNRIs) can cause symptoms suggestive of serotonin-secreting neuroendocrine neoplasms, as well as elevated CA levels leading to unnecessary and expensive diagnostic workups. To our knowledge, the association between SNRI treatment and increased CA levels has not been described in the literature and needs to be further evaluated in well-controlled prospective studies.
Collapse
Affiliation(s)
- Stefan Karger
- Department of Endocrinology and Nephrology, University of Leipzig
| | - Tobias Wiesner
- Department of Endocrinology and Nephrology, University of Leipzig
| | - Anette Kersting
- Clinic of Psychosomatic Medicine and Psychotherapy, University of Leipzig
| | - Miriam Braun
- Clinic of Psychosomatic Medicine and Psychotherapy, University of Leipzig
| | - Thomas Ebert
- Department of Endocrinology and Nephrology, University of Leipzig IFB Adiposity Diseases, University of Leipzig
| | - Ulrike Wurst
- Department of Endocrinology and Nephrology, University of Leipzig IFB Adiposity Diseases, University of Leipzig
| | - Juergen Kratzsch
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig
| | - Michael Stumvoll
- Department of Endocrinology and Nephrology, University of Leipzig
| | - Mathias Fasshauer
- Department of Endocrinology and Nephrology, University of Leipzig IFB Adiposity Diseases, University of Leipzig
| |
Collapse
|
2
|
Schijndel JEV, Martens GJM. Gene expression profiling in rodent models for schizophrenia. Curr Neuropharmacol 2011; 8:382-93. [PMID: 21629445 PMCID: PMC3080594 DOI: 10.2174/157015910793358132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 04/15/2010] [Accepted: 04/30/2010] [Indexed: 12/12/2022] Open
Abstract
The complex neurodevelopmental disorder schizophrenia is thought to be induced by an interaction between predisposing genes and environmental stressors. In order to get a better insight into the aetiology of this complex disorder, animal models have been developed. In this review, we summarize mRNA expression profiling studies on neurodevelopmental, pharmacological and genetic animal models for schizophrenia. We discuss parallels and contradictions among these studies, and propose strategies for future research.
Collapse
Affiliation(s)
- Jessica E Van Schijndel
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience & Nijmegen Centre for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | | |
Collapse
|
3
|
Harte MK, Bachus SB, Reynolds GP. Increased N-acetylaspartate in rat striatum following long-term administration of haloperidol. Schizophr Res 2005; 75:303-8. [PMID: 15885521 DOI: 10.1016/j.schres.2004.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 10/25/2004] [Accepted: 11/03/2004] [Indexed: 11/25/2022]
Abstract
N-acetylaspartate (NAA) is present in high concentrations in the CNS and is found primarily in neurons. NAA is considered to be a marker of neuronal viability. Numerous magnetic resonance spectroscopy (MRS) and postmortem studies have shown reductions of NAA in different brain regions in schizophrenia. Most of these studies involved patients chronically treated with antipsychotic drugs. However, the effect of chronic antipsychotic treatment on NAA remains unclear. In the present study, we measured NAA in brain tissue taken from 43 male Long-Evans rats receiving 28.5 mg/kg haloperidol decanoate i.m. every 3 weeks for 24 weeks and from 21 controls administered with vehicle. Determination of tissue concentrations of NAA was achieved by HPLC of sections of frozen tissue from several brain regions with relevance to schizophrenia. Chronic administration of haloperidol was associated with a significant increase (+23%) in NAA in the striatum (p<0.05) when compared to controls, with no significant changes in the other regions investigated (frontal and temporal cortex, thalamus, hippocampus, amygdala, and nucleus accumbens). NAA appears to be selectively increased in the striatum of rats chronically receiving haloperidol. This increase may reflect a hyperfunction of striatal neurons and relate to the reported increase in somal size of these cells and/or the increase in synaptic density seen in this region following antipsychotic administration. The lack of effect in other regions indicates that the well-documented NAA deficits seen in chronically treated schizophrenia patients is not an effect of antipsychotic medication and may in fact be related to the disease process.
Collapse
Affiliation(s)
- M K Harte
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
4
|
Kontkanen O, Törönen P, Lakso M, Wong G, Castrén E. Antipsychotic drug treatment induces differential gene expression in the rat cortex. J Neurochem 2002; 83:1043-53. [PMID: 12437575 DOI: 10.1046/j.1471-4159.2002.01213.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antipsychotic drug treatment is known to modulate gene expression in experimental animals. In this study, candidate target genes for antipsychotic drug action were searched using microarrays after acute clozapine treatment (1, 6 and 24 h) in the rat prefrontal cortex. Microarray data clustering with a self-organizing map algorithm revealed differential expression of genes involved in presynaptic function following acute clozapine treatment. The differential expression of 35 genes most profoundly regulated in expression arrays was further examined using in situ hybridization following acute clozapine, and chronic clozapine and haloperidol treatments. Acute administration of clozapine regulated the expression of chromogranin A, synaptotagmin V and calcineurin A mRNAs in the cortex. Chronic clozapine treatment induced differential cortical expression of chromogranin A, son of sevenless (SoS) and Sec-1. Chronic treatment with haloperidol regulated the mRNA expression of inhibitor of DNA-binding 2 (ID-2) and Rab-12. Furthermore, the expression of visinin-like proteins-1, -2 and -3 was regulated by chronic drug treatments in various brain regions. Our data suggest that acute and chronic treatments with haloperidol and clozapine modulate the expression of genes involved in synaptic function and in regulation of intracellular Ca2+ in cortex.
Collapse
Affiliation(s)
- Outi Kontkanen
- A.I. Virtanen Institute, University of Kuopio, Kuopio, Finland Department of Psychiatry, University of Kuopio, Kuopio, Finland
| | | | | | | | | |
Collapse
|
5
|
Medhurst AD, Zeng BY, Charles KJ, Gray J, Reavill C, Hunter AJ, Shale JA, Jenner P. Up-regulation of secretoneurin immunoreactivity and secretogranin II mRNA in rat striatum following 6-hydroxydopamine lesioning and chronic L-DOPA treatment. Neuroscience 2002; 105:353-64. [PMID: 11672603 DOI: 10.1016/s0306-4522(01)00190-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Destruction of the nigro-striatal pathway in Parkinson's disease and treatment with L-DOPA lead to persistent alterations in basal ganglia output pathways that are poorly characterised. Differential display mRNA analysis was used to study the effects of 6-hydroxydopamine-induced lesions of the medial forebrain bundle on gene expression in the rat striatum. One up-regulated cDNA identified in two independent groups of 6-hydroxydopamine-lesioned animals was cloned and sequence analysis showed 97% homology to secretogranin II. Differential up-regulation of secretogranin II following 6-hydroxydopamine lesioning was confirmed in a further group of 6-hydroxydopamine-lesioned rats using TaqMan real time quantitative reverse transcription-polymerase chain reaction. Following chronic L-DOPA treatment of 6-hydroxydopamine-lesioned rats, secretogranin II mRNA was further up-regulated to a similar degree to that observed for preproenkephalin A mRNA expression. Immunohistochemical analysis confirmed the increase in secretogranin II peptide levels in striatal neurones in 6-hydroxydopamine-lesioned rats following chronic L-DOPA treatment. The increase in secretogranin II mRNA occurring following destruction of the nigro-striatal pathway and chronic L-DOPA treatment may result in an increase in secretoneurin levels, which could be important for the regulation of striatal output pathways.
Collapse
Affiliation(s)
- A D Medhurst
- Neuroscience Research, GlaxoSmithKline, Harlow, Essex, UK.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kähler CM, Fischer-Colbrie R. Secretoneurin--a novel link between the nervous and the immune system. Conservation of the sequence and functional aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 482:279-90. [PMID: 11192588 DOI: 10.1007/0-306-46837-9_22] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C M Kähler
- Dept. of Internal Medicine, Univ. Hospital Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
7
|
Eastwood SL, Burnet PW, Harrison PJ. Expression of complexin I and II mRNAs and their regulation by antipsychotic drugs in the rat forebrain. Synapse 2000; 36:167-77. [PMID: 10819897 DOI: 10.1002/(sici)1098-2396(20000601)36:3<167::aid-syn2>3.0.co;2-d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Complexin (cx) I and II are homologous synaptic protein genes which are differentially expressed in mouse and human brain and differentially affected in schizophrenia. We characterized the distribution of cx I and II mRNAs in rat forebrain and examined whether their abundance, or the transcript of the synaptic marker synaptophysin, is affected by 14 days' administration of antipsychotic drugs (haloperidol, chlorpromazine, risperidone, olanzapine, or clozapine). Cx I mRNA predominated in medial habenula, medial septum-diagonal band complex, and thalamus, whereas cx II mRNA was more abundant in most other regions, including isocortex and hippocampus. Within the hippocampus, cx I mRNA was primarily expressed by interneurons and cx II mRNA by granule cells and pyramidal neurons. Localized cx II mRNA signal was seen in the dentate gyrus molecular layer, suggestive of its transport into granule cell dendrites. Antipsychotic treatment produced selective, modest effects on cx mRNA expression. Cx I mRNA was elevated by olanzapine in dorsolateral striatum and frontoparietal cortex, while the abundance of cx II mRNA relative to cx I mRNA was decreased in both areas by olanzapine and haloperidol. Chlorpromazine increased cx II mRNA in frontoparietal cortex and synaptophysin mRNA in dorsolateral striatum. In summary, the data have implications both for understanding the effects of antipsychotic medication on synaptic organization, and for synaptic protein expression studies in patients treated with the drugs.
Collapse
Affiliation(s)
- S L Eastwood
- University Department of Psychiatry, Warneford Hospital, Oxford, UK.
| | | | | |
Collapse
|
8
|
Abstract
In addition to their neurochemical effects, antipsychotic (neuroleptic) drugs produce structural brain changes. This property is relevant not only for understanding the drugs' mode of action, but because it complicates morphological studies of schizophrenia. Here the histological neuropathological effects of antipsychotics are reviewed, together with brief mention of those produced by other treatments sometimes used in schizophrenia (electroconvulsive shock, lithium and antidepressants). Most data come from drug-treated rats, though there are also some human post-mortem studies with broadly congruent findings. The main alteration associated with antipsychotic medication concerns the ultrastructure and proportion of synaptic subpopulations in the caudate nucleus. In rats, synapses and dendrites in lamina VI of the prefrontal cortex are also affected. The changes are indicative of a drug-induced synaptic plasticity, although the underlying mechanisms are poorly understood. Similarly, it is unclear whether the neuropathological features relate primarily to the therapeutic action of antipsychotics or, more likely, to their predisposition to cause tardive dyskinesia and other motor side-effects. Clozapine seems to cause lesser and somewhat different alterations than do typical antipsychotics, albeit based on few data. There is no good evidence that antipsychotics cause neuronal loss or gliosis, nor that they promote neurofibrillary tangle formation or other features of Alzheimer's disease.
Collapse
Affiliation(s)
- P J Harrison
- University Department of Psychiatry, Warneford Hospital, Oxford, UK.
| |
Collapse
|
9
|
Alheid GF, Shammah-Lagnado SJ, Beltramino CA. The interstitial nucleus of the posterior limb of the anterior commissure: a novel layer of the central division of extended amygdala. Ann N Y Acad Sci 1999; 877:645-54. [PMID: 10415676 DOI: 10.1111/j.1749-6632.1999.tb09294.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G F Alheid
- Department of Physiology, Northwestern University Medical Center, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
10
|
Ciesielski-Treska J, Ulrich G, Taupenot L, Chasserot-Golaz S, Corti A, Aunis D, Bader MF. Chromogranin A induces a neurotoxic phenotype in brain microglial cells. J Biol Chem 1998; 273:14339-46. [PMID: 9603942 DOI: 10.1074/jbc.273.23.14339] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromogranin A (CGA) belongs to a multifunctional protein family widely distributed in secretory vesicles in neurons and neuroendocrine cells. Within the brain, CGA is localized in neurodegenerative areas associated with reactive microglia. By using cultured rodent microglia, we recently described that CGA induces an activated phenotype and the generation of nitric oxide. These findings led us to examine whether CGA might affect neuronal survival, expression of neurofilaments, and high affinity gamma-aminobutyric acid uptake in neurons cultured in the presence or absence of microglial cells. We found that CGA was unable to exert a direct toxic effect on neurons but provoked neuronal injury and degeneration in the presence of microglial cells. These effects were observed with natural and recombinant CGA and with a recombinant N-terminal fragment corresponding to residues 1-78. CGA stimulated microglial cells to secrete heat-stable diffusible neurotoxic agents. CGA also induced a marked accumulation of nitric oxide and tumor necrosis factor-alpha by microglia, but we could not establish a direct correlation between the levels of nitric oxide and tumor necrosis factor-alpha and the neuronal damage. The possibility that CGA represents an endogenous factor that triggers the microglial responses responsible for the pathogenesis of neuronal degeneration is discussed.
Collapse
Affiliation(s)
- J Ciesielski-Treska
- Unité INSERM U-338 de Biologie de la Communication Cellulaire, Centre de Neurochimie, 5 Rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Winkler H, Fischer-Colbrie R. Regulation of the biosynthesis of large dense-core vesicles in chromaffin cells and neurons. Cell Mol Neurobiol 1998; 18:193-209. [PMID: 9535290 PMCID: PMC11560186 DOI: 10.1023/a:1022516919932] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. The proteins of large dense-core vesicles (LDV) in neuroendocrine tissues are well characterized. Secretory components comprise chromogranins and neuropeptides. Intrinsic membrane proteins include cytochrome b-561, transporters, SV2, synaptotagmin, and synaptobrevin. 2. The effects of stimulation and of second messengers on the biosynthesis of LDV have been studied in detail. 3. Regulation of biosynthesis is complex. The cell can adapt to prolonged stimulation either by producing vesicles of normal size filled with a higher quantum of secretory peptides or by forming larger vesicles. In addition, some components, e.g., enzymes, can be upregulated specifically.
Collapse
Affiliation(s)
- H Winkler
- Department of Pharmacology, University of Innsbruck, Austria
| | | |
Collapse
|
12
|
Schulz E, Fleischhaker C, Clement HW, Remschmidt H. Blood biogenic amines during clozapine treatment of early-onset schizophrenia. J Neural Transm (Vienna) 1998; 104:1077-89. [PMID: 9503259 DOI: 10.1007/bf01273320] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aims of this investigation were to evaluate long-term and short-term effects of clozapine-treatment on plasma biogenic amines and psychopathology measures in adolescents with schizophrenia (DSM-III-R criteria). The long-term study was conducted in a study sample of 40 young patients (age 14-22 years) following a mean of 3.4 years of neuroleptic treatment. During the study, 20 patients received clozapine, and the other 20 patients were treated with standard neuroleptic medications. At the beginning of the open clinical trials, the patients had already been receiving clozapine treatment for 24 +/- 15 months. Assessment of the biochemical and psychopathological measures was performed on six occasions at consecutive 6-week intervals during maintenance treatment with clozapine or conventional neuroleptics. Blood levels of serotonin, 3-methoxy-4-hydroxy-phenylglycol (MHPG), norepinephrine, and epinephrine were significantly higher in clozapine-treated patients than in conventionally treated patients. During long-term treatment, higher serotonin levels were associated with significantly fewer negative symptoms of schizophrenia, whereas higher MHPG levels were correlated with less depression. The short-term effects of clozapine were assessed in a second and independent study sample. After failing on conventional neuroleptics in clinical trials lasting a mean of 1.6 years, 15 inpatients (aged 11-20 years) received clozapine. Weekly ratings of psychopathological symptoms using standard rating scales were performed in parallel to blood samplings for measurements of biogenic amines and serum levels of clozapine. These measures were obtained for 6 weeks during conventional neuroleptic treatment and for 6 weeks during the open-label clozapine trial. Serum levels of serotonin and plasma norepinephrine levels were significantly higher during treatment with clozapine than during pretreatment with typical neuroleptics. A comparison of plasma epinephrine levels in responders (n = 7) and nonresponders (n = 8) to clozapine revealed that response to clozapine can be predicted by epinephrine levels prior to initiation of treatment with clozapine (responders ranging from 32.2 to 90.3 pg/ml; nonresponders ranging from 92.5 to 473.5 pg/ml). Additionally, subjects who responded to clozapine showed increased mean plasma concentrations of MHPG and epinephrine during treatment with this drug in comparison to the levels measured during pretreatment with typical neuroleptic medication. Nonresponders to clozapine failed to show this increase. Finally, in responders to clozapine a negative linear relationship between negative symptoms of schizophrenia and the concentrations of plasma norepinephrine and serum serotonin were observed. In conclusion, our results demonstrate that plasma epinephrine levels prior to initiation of clozapine therapy predict response to this atypical neuroleptic. Our findings derived from short-term and maintenance treatment with clozapine suggest involvement of norepinephrine, epinephrine and serotonin in the therapeutic actions of the atypical neuroleptic clozapine.
Collapse
Affiliation(s)
- E Schulz
- Department of Child and Adolescent Psychiatry, Philipps-University, Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
13
|
Kaufmann WA, Barnas U, Maier J, Saria A, Alheid GF, Marksteiner J. Neurochemical compartments in the human forebrain: evidence for a high density of secretoneurin-like immunoreactivity in the extended amygdala. Synapse 1997; 26:114-30. [PMID: 9131771 DOI: 10.1002/(sici)1098-2396(199706)26:2<114::aid-syn3>3.0.co;2-b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Secretoneurin is a 33-amino acid neuropeptide produced by endoproteolytic processing from secretogranin II, which is a member of the chromogranin/ secretogranin family. In this immunocytochemical study we investigated the localization of secretoneurin-like immunoreactivity in the human substantia innominata in relation to the ventral striatopallidal system, the bed nucleus-amygdala complex and the basal nucleus of Meynert. A high density of secretoneurin immunostaining was found in the medial part of the nucleus accumbens. All subdivisions of the bed nucleus of the stria terminalis displayed a very prominent immunostaining for secretoneurin, whereas substance P and enkephalin showed a more restricted distribution. A high concentration of secretoneurin immunoreactivity was also observed in the central and medial amygdaloid nuclei. In the lateral bed nucleus of the stria terminalis and the sublenticular substantia innominata, the appearance of secretoneurin immunoreactivity was very similar to that of enkephalin-like immunoreactivity, exhibiting mostly peridendritic and perisomatic staining. The ventral pallidum and the inner pallidal segment displayed strong secretoneurin immunostaining. Secretoneurin did not label cholinergic neurons in the basal forebrain. This study demonstrates that secretoneurin-like immunoreactivity is prominent in the bed nucleus-amygdala complex, referred to as extended amygdala. The distribution of secretoneurin-like immunoreactivity in comparison with that of other neuroanatomical markers suggests that this forebrain system is a discret compartment in the human forebrain.
Collapse
Affiliation(s)
- W A Kaufmann
- Clinic of Psychiatry, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|