1
|
Kow LM, Pataky S, Dupré C, Phan A, Martin-Alguacil N, Pfaff DW. Analyses of rapid estrogen actions on rat ventromedial hypothalamic neurons. Steroids 2016; 111:100-112. [PMID: 27017919 PMCID: PMC4965276 DOI: 10.1016/j.steroids.2016.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
Rapid estrogen actions are widely diverse across many cell types. We conducted a series of electrophysiological studies on single rat hypothalamic neurons and found that estradiol (E2) could rapidly and independently potentiate neuronal excitation/depolarizations induced by histamine (HA) and N-Methyl-d-Aspartate (NMDA). Now, the present whole-cell patch study was designed to determine whether E2 potentiates HA and NMDA depolarizations - mediated by distinctly different types of receptors - by the same or by different mechanisms. For this, the actions of HA, NMDA, as well as E2, were investigated first using various ion channel blockers and then by analyzing and comparing their channel activating characteristics. Results indicate that: first, both HA and NMDA depolarize neurons by inhibiting K(+) currents. Second, E2 potentiates both HA and NMDA depolarizations by enhancing the inhibition of K(+) currents, an inhibition caused by the two transmitters. Third, E2 employs the very same mechanism, the enhancement of K(+) current inhibition, thus to rapidly potentiate HA and NMDA depolarizations. These data are of behavioral importance, since the rapid E2 potentiation of depolarization synergizes with nuclear genomic actions of E2 to facilitate lordosis behavior, the primary female-typical reproductive behavior.
Collapse
Affiliation(s)
- Lee-Ming Kow
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Stefan Pataky
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Christophe Dupré
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Anna Phan
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Nieves Martin-Alguacil
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Donald W Pfaff
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
2
|
Liu ZL, Wu X, Luo YJ, Wang L, Qu WM, Li SQ, Huang ZL. Signaling mechanism underlying the histamine-modulated action of hypoglossal motoneurons. J Neurochem 2016; 137:277-86. [PMID: 26811198 DOI: 10.1111/jnc.13548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 01/14/2023]
Abstract
Histamine, an important modulator of the arousal states of the central nervous system, has been reported to contribute an excitatory drive at the hypoglossal motor nucleus to the genioglossus (GG) muscle, which is involved in the pathogenesis of obstructive sleep apnea. However, the effect of histamine on hypoglossal motoneurons (HMNs) and the underlying signaling mechanisms have remained elusive. Here, whole-cell patch-clamp recordings were conducted using neonatal rat brain sections, which showed that histamine excited HMNs with an inward current under voltage-clamp and a depolarization membrane potential under current-clamp via histamine H1 receptors (H1Rs). The phospholipase C inhibitor U-73122 blocked H1Rs-mediated excitatory effects, but protein kinase A inhibitor and protein kinase C inhibitor did not, indicating that the signal transduction cascades underlying the excitatory action of histamine on HMNs were H1R/Gq/11 /phospholipase C/inositol-1,4,5-trisphosphate (IP3). The effects of histamine were also dependent on extracellular Na(+) and intracellular Ca(2+), which took place via activation of Na(+)-Ca(2+) exchangers. These results identify the signaling molecules associated with the regulatory effect of histamine on HMNs. The findings of this study may provide new insights into therapeutic approaches in obstructive sleep apnea. We proposed the post-synaptic mechanisms underlying the modulation effect of histamine on hypoglossal motoneuron. Histamine activates the H1Rs via PLC and IP3, increases Ca(2+) releases from intracellular stores, promotes Na(+) influx and Ca(2+) efflux via the NCXs, and then produces an inward current and depolarizes the neurons. Histamine modulates the excitability of HMNs with other neuromodulators, such as noradrenaline, serotonin and orexin. We think that these findings should provide an important new direction for drug development for the treatment of obstructive sleep apnea.
Collapse
Affiliation(s)
- Zi-Long Liu
- Department of Pulmonary Medicine, Center of Snoring and Sleep Apnea Medicine, Zhongshan Hospital of Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xu Wu
- Department of Pulmonary Medicine, Center of Snoring and Sleep Apnea Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yan-Jia Luo
- State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lu Wang
- State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shan-Qun Li
- Department of Pulmonary Medicine, Center of Snoring and Sleep Apnea Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine. J Neurosci 2016; 35:13555-67. [PMID: 26446210 DOI: 10.1523/jneurosci.1445-15.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K(+) (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K(+) current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASK(f/f) mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30-50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30-50 Hz activity in ChAT-Cre:TASK(f/f) mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain cholinergic neurons are important modulators of cortical arousal and γ activity, and in this study we investigated the mechanism by which these neurons are activated by the wake-active neurotransmitter histamine. We found that histamine inhibited a class of K(+) leak channels called TASK channels and that deletion of TASK channels selectively on cholinergic neurons modulated baseline EEG activity as well as histamine-induced changes in γ activity. By identifying a discrete brain circuit where TASK channels can influence γ activity, these results represent new knowledge that enhances our understanding of how subcortical arousal systems may contribute to the generation of attentive states.
Collapse
|
4
|
Kim YS, Kim YB, Kim WB, Yoon BE, Shen FY, Lee SW, Soong TW, Han HC, Colwell CS, Lee CJ, Kim YI. Histamine resets the circadian clock in the suprachiasmatic nucleus through the H1R-CaV1.3-RyR pathway in the mouse. Eur J Neurosci 2015. [DOI: 10.1111/ejn.13030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoon Sik Kim
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Young-Beom Kim
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Woong Bin Kim
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Bo-Eun Yoon
- Center for Neural Science and Center for Functional Connectomics; Korea Institute of Science and Technology; Seoul 136-791 Korea
- Department of Nanobiomedical Science; Dankook University; Chungnam Korea
| | - Feng-Yan Shen
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Seung Won Lee
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Tuck-Wah Soong
- Department of Physiology; Yong Loo Lin School of Medicine; National University of Singapore Bik MD9; Singapore Singapore
| | - Hee-Chul Han
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| | - Christopher S. Colwell
- Department of Psychiatry & Biobehavioral Sciences; University of California-Los Angeles; Los Angeles CA USA
| | - C. Justin Lee
- Center for Neural Science and Center for Functional Connectomics; Korea Institute of Science and Technology; Seoul 136-791 Korea
| | - Yang In Kim
- Department of Physiology and Neuroscience Research Institute; Korea University College of Medicine; Seoul 136-705 Korea
| |
Collapse
|
5
|
The mast cell stabilizer sodium cromoglycate reduces histamine release and status epilepticus-induced neuronal damage in the rat hippocampus. Neuropharmacology 2015; 92:49-55. [DOI: 10.1016/j.neuropharm.2014.12.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/17/2023]
|
6
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
7
|
Han KS, Mannaioni G, Hamill CE, Lee J, Junge CE, Lee CJ, Traynelis SF. Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain 2011; 4:32. [PMID: 21827709 PMCID: PMC3170262 DOI: 10.1186/1756-6606-4-32] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
Protease activated receptor-1 (PAR1) is expressed in multiple cell types in the CNS, with the most prominent expression in glial cells. PAR1 activation enhances excitatory synaptic transmission secondary to the release of glutamate from astrocytes following activation of astrocytically-expressed PAR1. In addition, PAR1 activation exacerbates neuronal damage in multiple in vivo models of brain injury in a manner that is dependent on NMDA receptors. In the hippocampal formation, PAR1 mRNA appears to be expressed by a subset of neurons, including granule cells in the dentate gyrus. In this study we investigate the role of PAR activation in controlling neuronal excitability of dentate granule cells. We confirm that PAR1 protein is expressed in neurons of the dentate cell body layer as well as in astrocytes throughout the dentate. Activation of PAR1 receptors by the selective peptide agonist TFLLR increased the intracellular Ca2+ concentration in a subset of acutely dissociated dentate neurons as well as non-neuronal cells. Bath application of TFLLR in acute hippocampal slices depolarized the dentate gyrus, including the hilar region in wild type but not in the PAR1-/- mice. PAR1 activation increased the frequency of action potential generation in a subset of dentate granule neurons; cells in which PAR1 activation triggered action potentials showed a significant depolarization. The activation of PAR1 by thrombin increased the amplitude of NMDA receptor-mediated component of EPSPs. These data suggest that activation of PAR1 during normal function or pathological conditions, such as during ischemia or hemorrhage, can increase the excitability of dentate granule cells.
Collapse
Affiliation(s)
- Kyung-Seok Han
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Leal-Cardoso JH, Lahlou S, Weinreich D, Caldas Magalhães PJ. The essential oil of Croton nepetaefolius selectively blocks histamine-augmented neuronal excitability in guinea-pig celiac ganglion. J Pharm Pharmacol 2010; 62:1045-53. [PMID: 20663039 DOI: 10.1111/j.2042-7158.2010.01121.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Croton nepetaefolius is a medicinal plant useful against intestinal disorders. In this study, we elucidate the effects of its essential oil (EOCN) on sympathetic neurons, with emphasis on the interaction of EOCN- and histamine-induced effects. METHODS The effects of EOCN and histamine were studied in guinea-pig celiac ganglion in vitro. KEY FINDINGS Histamine significantly altered the resting potential (E(m)) and the input resistance (R(i)) of phasic neurons (from -56.6 +/- 1.78 mV and 88.6 +/- 11.43 MOmega, to -52.9 +/- 1.96 mV and 108.6 +/- 11.00 MOmega, respectively). E(m), R(i) and the histamine-induced alterations of these parameters were not affected by 200 microg/ml EOCN. The number of action potentials produced by a 1-s (two-times threshold) depolarising current and the current threshold (I(th)) for eliciting action potentials (rheobase) were evaluated. Number of action potentials and I(th) were altered by histamine (from 2.6 +/- 0.43 action potentials and 105.4 +/- 11.15 pA to 6.2 +/- 1.16 action potentials and 67.3 +/- 8.21 pA, respectively). EOCN alone did not affect number of action potentials and I(th) but it fully blocked the histamine-induced modifications of number of action potentials and I(th). All the effects produced by histamine were abolished by pyrilamine. CONCLUSIONS EOCN selectively blocked histamine-induced modulation of active membrane properties.
Collapse
|
9
|
Abstract
In December 2009, Glenn Hatton died, and neuroendocrinology lost a pioneer who had done much to forge our present understanding of the hypothalamus and whose productivity had not faded with the passing years. Glenn, an expert in both functional morphology and electrophysiology, was driven by a will to understand the significance of his observations in the context of the living, behaving organism. He also had the wit to generate bold and challenging hypotheses, the wherewithal to expose them to critical and elegant experimental testing, and a way with words that gave his papers and lectures clarity and eloquence. The hypothalamo-neurohypophysial system offered a host of opportunities for understanding how physiological functions are fulfilled by the electrical activity of neurones, how neuronal behaviour changes with changing physiological states, and how morphological changes contribute to the physiological response. In the vision that Glenn developed over 35 years, the neuroendocrine brain is as dynamic in structure as it is adaptable in function. Its adaptability is reflected not only by mere synaptic plasticity, but also by changes in neuronal morphology and in the morphology of the glial cells. Astrocytes, in Glenn's view, were intimate partners of the neurones, partners with an essential role in adaptation to changing physiological demands.
Collapse
Affiliation(s)
- G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | | | | |
Collapse
|
10
|
Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons. J Neurosci 2010; 30:4369-81. [PMID: 20335473 DOI: 10.1523/jneurosci.0378-10.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively.
Collapse
|
11
|
Tighilet B, Manrique C, Lacour M. Stress axis plasticity during vestibular compensation in the adult cat. Neuroscience 2009; 160:716-30. [PMID: 19285120 DOI: 10.1016/j.neuroscience.2009.02.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/08/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
The postural, ocular motor, perceptive and neurovegetative syndromes resulting from unilateral vestibular neurectomy (UVN) symptoms could generate a stress and thereby activate the hypothalamo-pituitary-adrenal (HPA) axis. This study was aimed at determining whether UVN causes changes in the activity of the HPA axis, and if so, evaluating the time course of changes associated with UVN syndrome. At the cellular level, corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) immunoreactivity (Ir) were analyzed and quantified in the paraventricular nucleus (PVN) and the vestibular nuclei (VN) complex of cats killed early (1 and 7 days) or late (30 and 90 days) after UVN. Dopamine-beta-hydroxylase (DbetaH), the enzyme synthesizing noradrenaline was examined in the locus coeruleus (LC) in these same cats. At the behavioral level, the time course of recovery of the postural and locomotor functions was quantified at the same postoperative delays in another group of UVN cats. Results showed a significant bilateral increase in the number of both AVP-Ir and CRF-Ir neurons in the PVN and an increase of DbetaH-Ir neurons in the LC at 1, 7 and 30 days after UVN. This increased number of neurons was no longer observed at 90 days. Conversely, a significant bilateral decrease of CRF-Ir neurons was observed in the VN at these same postlesion times, with a similar return to control values at 90 days. Our behavioral observations showed strong posturo-locomotor functional deficits early after UVN (1 and 7 days), which had recovered partially at 30 days and completely by 90 days postlesion. We demonstrate a long-lasting activation of the HPA axis, which likely reflects a chronic stress, experienced by the animals, which corresponds to the time course of full vestibular compensation, and which is no longer present when the animals are completely free of posturo-locomotor symptoms at 90 days.
Collapse
Affiliation(s)
- B Tighilet
- Université Aix-Marseille, UMR 6149 Université de Provence/CNRS, Neurobiologie Intégrative et Adaptative, Pôle 3C, Comportement, Cerveau, Cognition, Centre de St Charles, 3 Place Victor Hugo, Marseille Cedex 3, France.
| | | | | |
Collapse
|
12
|
Liu B, Liang H, Liu L, Zhang H. Phosphatidylinositol 4,5-bisphosphate hydrolysis mediates histamine-induced KCNQ/M current inhibition. Am J Physiol Cell Physiol 2008; 295:C81-91. [PMID: 18448631 DOI: 10.1152/ajpcell.00028.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The M-type potassium channel, of which its molecular basis is constituted by KCNQ2-5 homo- or heteromultimers, plays a key role in regulating neuronal excitability and is modulated by many G protein-coupled receptors. In this study, we demonstrate that histamine inhibits KCNQ2/Q3 currents in human embryonic kidney (HEK)293 cells via phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolysis mediated by stimulation of H(1) receptor and phospholipase C (PLC). Histamine inhibited KCNQ2/Q3 currents in HEK293 cells coexpressing H(1) receptor, and this effect was totally abolished by H(1) receptor antagonist mepyramine but not altered by H(2) receptor antagonist cimetidine. The inhibition of KCNQ currents was significantly attenuated by a PLC inhibitor U-73122 but not affected by depletion of internal Ca(2+) stores or intracellular Ca(2+) concentration ([Ca(2+)](i)) buffering via pipette dialyzing BAPTA. Moreover, histamine also concentration dependently inhibited M current in rat superior cervical ganglion (SCG) neurons by a similar mechanism. The inhibitory effect of histamine on KCNQ2/Q3 currents was entirely reversible but became irreversible when the resynthesis of PIP(2) was impaired with phosphatidylinsitol-4-kinase inhibitors. Histamine was capable of producing a reversible translocation of the PIP(2) fluorescence probe PLC(delta1)-PH-GFP from membrane to cytosol in HEK293 cells by activation of H(1) receptor and PLC. We concluded that the inhibition of KCNQ/M currents by histamine in HEK293 cells and SCG neurons is due to the consumption of membrane PIP(2) by PLC.
Collapse
Affiliation(s)
- Boyi Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | | | | | | |
Collapse
|
13
|
Poole SL, Lewis DI, Deuchars SA. Histamine depolarizes neurons in the dorsal vagal complex. Neurosci Lett 2007; 432:19-24. [PMID: 18162318 DOI: 10.1016/j.neulet.2007.11.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 11/20/2007] [Accepted: 11/29/2007] [Indexed: 11/17/2022]
Abstract
We sought to determine whether histamine has effects on single neurons in the dorsal vagal complex of the brainstem since previous studies have suggested a role for histamine receptors in this region. Using whole-cell patch clamp recordings from neurons within the nucleus of the tractus solitarius (NTS) and the dorsal vagal nucleus (DVN), histamine (20 microM) depolarized a small proportion of neurons in these regions accompanied by a decrease in input resistance. Although few neurons were depolarized (21% of NTS neurons and 15% of DVN neurons), those that were affected showed robust depolarizations of 13 mV. These depolarizations were antagonized by the histamine H1 receptor antagonist triprolidine (2 microM) and were subject to a level of desensitization. Neither histamine nor the H3 receptor agonist imetit caused any change in the amplitudes of excitatory or inhibitory postsynaptic potentials elicited in NTS neurons by stimulation of the solitary tract. These data indicate that histamine has a restricted but profound effect on neurons in the dorsal vagal complex.
Collapse
Affiliation(s)
- Sarah L Poole
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | |
Collapse
|
14
|
Zhou J, Lee AW, Devidze N, Zhang Q, Kow LM, Pfaff DW. Histamine-induced excitatory responses in mouse ventromedial hypothalamic neurons: ionic mechanisms and estrogenic regulation. J Neurophysiol 2007; 98:3143-52. [PMID: 17942628 DOI: 10.1152/jn.00337.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histamine is capable of modulating CNS arousal states by regulating neuronal excitability. In the current study, histamine action in the ventromedial hypothalamus (VMH), its related ionic mechanisms, and its possible facilitation by estrogen were investigated using whole cell patch-clamp recording in brain slices from ovariectomized female mice. Under current clamp, a bath application of histamine (20 microM) caused membrane depolarization, associated with an increased membrane resistance. In some cells, the depolarization was accompanied by action potentials. Histamine application also significantly reduced the latency of action potential evoked by current steps. Histamine-induced depolarization was not affected by either tetrodotoxin or Cd(2+). However, after blocking K(+) channels with tetraethylammonium, 4-aminopyridine, and Cs(+), depolarization was significantly decreased. Under voltage clamp, histamine-induced depolarization was associated with an inward current. The current-voltage relationship revealed that this inward current reversed near E(K). The histamine effect was mimicked by a histamine receptor 1 (H(1)) agonist, but not a histamine receptor 2 (H(2)) agonist. An H(1) antagonist, but not H(2) antagonist, abolished histamine responses. When ovariectomized mice were treated with estradiol benzoate (E2), histamine-induced depolarization was significantly enhanced with an increased percentage of cells showing action potential firing. These results suggest that histamine depolarized VMH neurons by attenuating a K(+) leakage current and this effect was mediated by H(1) receptor. E2 facilitated histamine-induced excitation of VMH neurons. This histamine effect may present a potential mechanism by which estrogens modulate the impact of generalized CNS arousal on a sexual arousal-related neuronal group.
Collapse
Affiliation(s)
- Jin Zhou
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Whyment AD, Blanks AM, Lee K, Renaud LP, Spanswick D. Histamine Excites Neonatal Rat Sympathetic Preganglionic Neurons In Vitro Via Activation of H1 Receptors. J Neurophysiol 2006; 95:2492-500. [PMID: 16354729 DOI: 10.1152/jn.01135.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of histamine in regulating excitability of sympathetic preganglionic neurons (SPNs) and the expression of histamine receptor mRNA in SPNs was investigated using whole-cell patch-clamp electrophysiological recording techniques combined with single-cell reverse transcriptase polymerase chain reaction (RT-PCR) in transverse neonatal rat spinal cord slices. Bath application of histamine (100 μM) or the H1 receptor agonist histamine trifluoromethyl toluidide dimaleate (HTMT; 10 μM) induced membrane depolarization associated with a decrease in membrane conductance in the majority (70%) of SPNs tested, via activation of postsynaptic H1 receptors negatively coupled to one or more unidentified K+ conductances. Histamine and HTMT application also induced or increased the amplitude and/or frequency of membrane potential oscillations in electrotonically coupled SPNs. The H2 receptor agonist dimaprit (10 μM) or the H3 receptor agonist imetit (100 nM) were without significant effect on the membrane properties of SPNs. Histamine responses were sensitive to the H1 receptor antagonist triprolidine (10 μM) and the nonselective potassium channel blocker barium (1 mM) but were unaffected by the H2 receptor antagonist tiotidine (10 μM) and the H3 receptor antagonist, clobenpropit (5 μM). Single cell RT-PCR revealed mRNA expression for H1 receptors in 75% of SPNs tested, with no expression of mRNA for H2, H3, or H4 receptors. These data represent the first demonstration of H1 receptor expression in SPNs and suggest that histamine acts to regulate excitability of these neurons via a direct postsynaptic effect on H1 receptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Animals, Newborn
- Autonomic Fibers, Preganglionic/chemistry
- Autonomic Fibers, Preganglionic/drug effects
- Autonomic Fibers, Preganglionic/physiology
- Barium/pharmacology
- Dimaprit/pharmacology
- Female
- Ganglia, Sympathetic/chemistry
- Ganglia, Sympathetic/drug effects
- Ganglia, Sympathetic/physiology
- Histamine/analogs & derivatives
- Histamine/pharmacology
- Histamine/physiology
- Histamine Agonists/pharmacology
- Histamine H1 Antagonists/pharmacology
- Imidazoles/pharmacology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Neurons/chemistry
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Potassium/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Inbred WKY
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/physiology
- Receptors, Histamine H2/physiology
- Receptors, Histamine H3/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- Triprolidine/pharmacology
Collapse
Affiliation(s)
- Andrew D Whyment
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Lee AW, Devidze N, Pfaff DW, Zhou J. Functional genomics of sex hormone-dependent neuroendocrine systems: specific and generalized actions in the CNS. PROGRESS IN BRAIN RESEARCH 2006; 158:243-72. [PMID: 17027700 DOI: 10.1016/s0079-6123(06)58012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sex hormone effects on hypothalamic neurons have been worked out to a point where receptor mechanisms are relatively well understood, a neural circuit for a sex steroid-dependent behavior has been determined, and several functional genomic regulations have been discovered and conceptualized. With that knowledge in hand, we approach deeper problems of explaining sexual arousal and generalized CNS arousal. After a brief summary of arousal mechanisms, we focus on three chemical systems which signal generalized arousal and impact hormone-dependent hypothalamic neurons of behavioral importance: histamine, norepinephrine and enkephalin.
Collapse
Affiliation(s)
- Anna W Lee
- Laboratory of Neurobiology and Behavior, Box 275, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
17
|
Ponzio TA, Hatton GI. Adenosine postsynaptically modulates supraoptic neuronal excitability. J Neurophysiol 2004; 93:535-47. [PMID: 15356187 DOI: 10.1152/jn.01185.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of adenosine on the excitability of supraoptic nucleus neurons were investigated in whole cell patch-clamp experiments conducted in horizontal slices of rat hypothalamus. Adenosine (10-100 muM) inhibited all neurons tested by reducing or abolishing spontaneous or evoked discharge. Large hyperpolarizations were seen, averaging -6.08 +/- 0.83 mV below resting membrane potential, and action potential durations were significantly reduced by 134 +/- 41 mus in the presence of 100 muM adenosine. The A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 muM) blocked these effects, whereas the A(1) agonists N(6)-cyclopentyladenosine (CPA) and N(6)-cyclohexyladenosine (CHA) mimicked the actions of adenosine. A(2) receptor contributions to excitability were assessed by application of an A(2) agonist, carboxamidoadenosine (CPCA). This resulted in membrane depolarizations (3.56 +/- 0.65 mV) and maintenance of firing. The presence of endogenous adenosine in the slice was revealed by both the application of the adenosine uptake inhibitor dilazep (1-100 muM), which resulted in a strong inhibition of firing activity, and the application of DPCPX, which induced firing in cells silenced by negative current injection. We tested for postsynaptic actions of adenosine by blocking G protein activation via GDP-beta-S infusion into recorded neurons. Under these conditions, the adenosinergic inhibition of firing and reduction of spike duration were blocked, suggesting the effects were mediated by postsynaptic adenosine receptors. That the effects on excitability could be due to direct activation of adenosine A(1) receptors on supraoptic neurons was further explored immunocytochemically via the co-labeling of magnocellular neurons with polyclonal antibodies raised against the A(1) receptors. It is concluded that adenosine, acting at postsynaptic A(1) receptors, exhibits a powerful inhibitory influence on supraoptic magnocellular activity and is an important endogenous regulator of magnocellular neuroendocrine function.
Collapse
Affiliation(s)
- Todd A Ponzio
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, USA.
| | | |
Collapse
|
18
|
Wainwright A, Rutter AR, Seabrook GR, Reilly K, Oliver KR. Discrete expression of TRPV2 within the hypothalamo-neurohypophysial system: Implications for regulatory activity within the hypothalamic-pituitary-adrenal axis. J Comp Neurol 2004; 474:24-42. [PMID: 15156577 DOI: 10.1002/cne.20100] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient receptor potential channel proteins (TRPs) constitute a steadily growing family of ion channels with a range of purported functions. It has been demonstrated that TRPV2 is activated by moderate thermal stimuli and, in the rat, is expressed in medium to large diameter dorsal root ganglion neurons. In this study, antisera specific for the human TRPV2 homologue were raised and characterized for immunohistochemical use. Subsequently, thorough investigation was made of the localization of this cation channel in the macaque primate brain. TRPV2-immunoreactive material was highly restrictively localized to hypothalamic paraventricular, suprachiasmatic, and supraoptic nuclei. Confocal double- and triple-labeling studies demonstrated that TRPV2 immunoreactivity is preferentially localized to oxytocinergic and vasopressinergic neurons. Few, if any, cells in these regions expressed TRPV2 immunoreactivity in the absence of oxytocin immunoreactivity or vasopressin immunoreactivity. Expression in the paraventricular and supraoptic nuclei suggests that TRPV2 is likely to play a fundamental role in mediating cation transport in neurohypophysial neurons. TRPV2 has been shown to be translocated upon cell activation and neurons expressing TRPV2 immunoreactivity in vivo are among those known to engage in sporadic, intense activity. Taken together, these data suggest that this channel may play a vital role in mediating physiological activities associated with oxytocin and vasopressin release such as parturition, lactation, and diuresis. These data may also implicate the involvement of TRPV2 in disorders of the hypothalamic-pituitary-adrenal axis, including anxiety, depression, hypertension, and preterm labor.
Collapse
Affiliation(s)
- Anna Wainwright
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex CM20 2QR, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Jacklet JW, Tieman DG. Nitric oxide and histamine induce neuronal excitability by blocking background currents in neuron MCC of Aplysia. J Neurophysiol 2004; 91:656-65. [PMID: 14762147 DOI: 10.1152/jn.00409.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) and histamine are important neurotransmitters and neuromodulators. We investigated their ability to modulate the membrane ionic currents and excitability of the metacerebral cell (MCC) of Aplysia using voltage clamp techniques. MCC is a serotonergic modulator of the feeding neural circuit. It receives powerful long-lasting excitatory synaptic input mediated by NO and histamine. NO donors reduced a background outward current at and above the resting potential, associated with decreased membrane conductance. This produced a substantial steady-state inward current that was relatively insensitive to cesium or cobalt. The NO response appears to be due to the reduction of a background potassium current and a small increase in persistent inward sodium current. Treatment with 8-bromoguanosine-3'5'-cyclic monophosphate mimics this response, suggesting it is mediated primarily by the NO-guanylyl cyclase-cGMP pathway. In some MCCs, NO blocked an additional potassium current that resulted in current reversal near the potassium equilibrium potential in current-voltage plots. Histamine also reduced a background outward current at and above the resting potential. However, treatment with cobalt, which blocks calcium and calcium-dependent currents, blocked the histamine response, suggesting that histamine decreases calcium activated potassium currents. Although nifedipine (L-type calcium channel blocker) and tetraethylammonium reduced some calcium and calcium-dependent potassium currents, they had only a slight effect on the NO and histamine responses. Both NO and histamine decreased steady-state membrane currents, and thereby depolarized MCC and increased its excitability, but different ionic currents and second messenger pathways are involved, allowing complex state and time dependent modulation of MCC's activity.
Collapse
Affiliation(s)
- Jon W Jacklet
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York 12222, USA.
| | | |
Collapse
|
20
|
Wallace DJ, Chen C, Marley PD. Histamine promotes excitability in bovine adrenal chromaffin cells by inhibiting an M-current. J Physiol 2002; 540:921-39. [PMID: 11986380 PMCID: PMC2290283 DOI: 10.1113/jphysiol.2001.013370] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The current study has investigated the electrophysiological responses evoked by histamine in bovine adrenal chromaffin cells using perforated-patch techniques. Histamine caused a transient hyperpolarization followed by a sustained depolarization of 7.2 +/- 1.4 mV associated with an increase in spontaneous action potential frequency. The hyperpolarization was abolished after depleting intracellular Ca(2+) stores with thapsigargin (100 nM), and was reduced by 40 % with apamin (100 nM). Membrane resistance increased by about 60 % during the histamine-induced depolarization suggesting inhibition of a K(+) channel. An inward current relaxation, typical of an M-current, was observed in response to negative voltage steps from a holding potential of -30 mV. This current reversed at -81.6 +/- 1.8 mV and was abolished by the M-channel inhibitor linopirdine (100 microM). During application of histamine, the amplitude of M-currents recorded at a time corresponding with the sustained depolarization was reduced by 40 %. No inward current rectification was observed in the range -150 to -70 mV, and glibenclamide (10 microM) had no effect on either resting membrane potential or the response to histamine. The results show that an M-current is present in bovine chromaffin cells and that this current is inhibited during sustained application of histamine, resulting in membrane depolarization and increased discharge of action potentials. These results demonstrate for the first time a possible mechanism coupling histamine receptors to activation of voltage-operated Ca(2+) channels in these cells.
Collapse
Affiliation(s)
- Damian J Wallace
- Department of Pharmacology, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
21
|
Ghamari-Langroudi M, Bourque CW. Ionic basis of the caesium-induced depolarisation in rat supraoptic nucleus neurones. J Physiol 2001; 536:797-808. [PMID: 11691873 PMCID: PMC2278899 DOI: 10.1111/j.1469-7793.2001.00797.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2001] [Accepted: 06/15/2001] [Indexed: 11/29/2022] Open
Abstract
1. The effects of external Cs(+) on magnocellular neurosecretory cells were studied during intracellular recordings from 93 supraoptic nucleus neurones in superfused explants of rat hypothalamus. 2. Bath application of 3-5 mM Cs(+) provoked reversible membrane depolarisation and increased firing rate in all of the neurones tested. Voltage-current analysis revealed an increase in membrane resistance between -120 and -55 mV. The increase in resistance was greater below -85 mV than at more positive potentials. 3. Voltage-clamp analysis showed that external Cs(+) blocked the hyperpolarisation-activated inward current, I(H). Under current clamp, application of ZD 7288, a selective blocker of I(H), caused an increase in membrane resistance at voltages < or = -65 mV. Voltage-current analysis further revealed that blockade of I(H) caused hyperpolarisation when the initial voltage was < -60 mV but had no effect at more positive values. 4. Current- and voltage-clamp analysis of the effects of Cs(+) in the presence of ZD 7288, or ZD 7288 and tetraethyl ammonium (TEA), revealed an increase in membrane resistance throughout the range of voltages tested (-120 to -45 mV). The current blocked by Cs(+) in the absence of I(H) was essentially voltage independent and reversed at -100 mV. The reversal potential shifted by +22.7 mV when external [K(+)] was increased from 3 to 9 mM. We conclude that, in addition to blocking I(H), external Cs(+) blocks a leakage K(+) current that contributes significantly to the resting potential of rat magnocellular neurosecretory cells.
Collapse
Affiliation(s)
- M Ghamari-Langroudi
- Centre for Research in Neuroscience, Montreal General Hospital and McGill University, 1650 Cedar Avenue, Montreal, QC, Canada H3G 1A4
| | | |
Collapse
|
22
|
Bealer SL, Crowley WR. Histaminergic control of oxytocin release in the paraventricular nucleus during lactation in rats. Exp Neurol 2001; 171:317-22. [PMID: 11573984 DOI: 10.1006/exnr.2001.7770] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central neurotransmitters regulating both systemic and central release of oxytocin (OT) during lactation are not completely defined. Although central histaminergic systems have been implicated in systemic release of OT, the role of this neurotransmitter in suckling-induced intranuclear OT secretion has not been investigated. Therefore, microdialysis of the paraventricular nucleus (PVN) was used to determine if suckling stimulates histamine release within the PVN and if nursing-induced intranuclear OT release is reduced by local blockade of either H1 or H2 histamine receptors. Female Holtzman rats were implanted with microdialysis probes adjacent to the PVN on lactation days 8-12. The next day, the pups and dam were separated for 4 h, reunited, and again separated. Histamine concentrations in dialysates were measured before, during, and following suckling. In separate animals, a similar separation/reunion paradigm was used, but the dialysate OT concentration was measured during PVN perfusion with vehicle or an H1 or H2 receptor antagonist. Suckling increased dialysate concentrations of both histamine and OT in the PVN. Furthermore, local pharmacological blockade of either H1 or H2 receptors prevented the increase in OT release in the PVN during suckling. These data demonstrate that activation of histamine receptors in the PVN is necessary for intranuclear release of OT induced by suckling and extend previous findings demonstrating a similar relationship between central histamine and systemic release of OT.
Collapse
Affiliation(s)
- S L Bealer
- Department of Physiology, University of Tennessee, Memphis, 38163, USA
| | | |
Collapse
|
23
|
Sladek CD, Kapoor JR. Neurotransmitter/neuropeptide interactions in the regulation of neurohypophyseal hormone release. Exp Neurol 2001; 171:200-9. [PMID: 11573972 DOI: 10.1006/exnr.2001.7779] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of neurohypophyseal hormone release reflects the convergence of a large number of afferent pathways on the vasopressin (VP)- and oxytocin-producing neurons. These pathways utilize a broad range of neurotransmitters and neuropeptides. In this review, the mechanisms by which this information is coordinated into appropriate physiological responses is discussed with a focus on the responses to agents that are coreleased from A1 catecholamine nerve terminals in the supraoptic nucleus. The A1 pathway transmits hemodynamic information to the vasopressin neurons by releasing several neuroactive agents including ATP, norepinephrine, neuropeptide Y, and substance P. These substances stimulate VP release from explants of the hypothalamo-neurohypophyseal system and certain combinations of these agents elicit potent but selective synergism. Evaluation of the signal cascades elicited by these agents provides insights into mechanisms underlying these synergistic interactions and suggests mechanisms responsible for coordinated responses of the VP neurons to activation of a range of ion-gated ion channel and G-protein-coupled receptors.
Collapse
Affiliation(s)
- C D Sladek
- Department of Physiology and Biophysics, Finch University of Health Sciences/The Chicago Medical School, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
24
|
Ionotropic histamine receptors and H2 receptors modulate supraoptic oxytocin neuronal excitability and dye coupling. J Neurosci 2001. [PMID: 11312281 DOI: 10.1523/jneurosci.21-09-02974.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Histaminergic neurons of the tuberomammillary nucleus (TM) project monosynaptically to the supraoptic nucleus (SON). This projection remains intact in our hypothalamic slices and permits investigation of both brief synaptic responses and the effects of repetitively activating this pathway. SON oxytocin (OX) neurons respond to single TM stimuli with fast IPSPs, whose kinetics resemble those of GABA(A) or glycine receptors. IPSPs were blocked by the Cl(-) channel blocker picrotoxin, but not by bicuculline or strychnine, and by histamine H(2), but not by H(1) or H(3) receptor antagonists, suggesting the presence of an ionotropic histamine receptor and the possible nonspecificity of currently used H(2) antagonists. G-protein mediation of the IPSPs was ruled out using guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS), pertussis toxin, and Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPs), none of which blocked evoked IPSPs. We also investigated the effects of synaptically released histamine on dye coupling and neuronal excitability. One hundred seventy-three OX neurons were Lucifer yellow-injected in horizontal slices. Repetitive TM stimulation (10 Hz, 5-10 min) reduced coupling, an effect blocked by H(2), but not by H(1) or H(3), receptor antagonists. Because H(2) receptors are linked to activation of adenylyl cyclase, TM-stimulated reduction in coupling was blocked by GDP-betaS, pertussis toxin, and Rp-cAMPs and was mimicked by 8-bromo-cAMP, 3-isobutyl-1-methylxanthine, and Sp-cAMP. Membrane potentials of OX and vasopressin neurons were hyperpolarized, accompanied by decreased conductances, in response to bath application of 8-bromo-cAMP but not the membrane-impermeable cAMP. These results suggest that synaptically released histamine, in addition to evoking fast IPSPs in OX cells, mediates a prolonged decrease in excitability and uncoupling of the neurons.
Collapse
|
25
|
Abstract
Histamine-releasing neurons are located exclusively in the TM of the hypothalamus, from where they project to practically all brain regions, with ventral areas (hypothalamus, basal forebrain, amygdala) receiving a particularly strong innervation. The intrinsic electrophysiological properties of TM neurons (slow spontaneous firing, broad action potentials, deep after hyperpolarisations, etc.) are extremely similar to other aminergic neurons. Their firing rate varies across the sleep-wake cycle, being highest during waking and lowest during rapid-eye movement sleep. In contrast to other aminergic neurons somatodendritic autoreceptors (H3) do not activate an inwardly rectifying potassium channel but instead control firing by inhibiting voltage-dependent calcium channels. Histamine release is enhanced under extreme conditions such as dehydration or hypoglycemia or by a variety of stressors. Histamine activates four types of receptors. H1 receptors are mainly postsynaptically located and are coupled positively to phospholipase C. High densities are found especially in the hypothalamus and other limbic regions. Activation of these receptors causes large depolarisations via blockade of a leak potassium conductance, activation of a non-specific cation channel or activation of a sodium-calcium exchanger. H2 receptors are also mainly postsynaptically located and are coupled positively to adenylyl cyclase. High densities are found in hippocampus, amygdala and basal ganglia. Activation of these receptors also leads to mainly excitatory effects through blockade of calcium-dependent potassium channels and modulation of the hyperpolarisation-activated cation channel. H3 receptors are exclusively presynaptically located and are negatively coupled to adenylyl cyclase. High densities are found in the basal ganglia. These receptors mediated presynaptic inhibition of histamine release and the release of other neurotransmitters, most likely via inhibition of presynaptic calcium channels. Finally, histamine modulates the glutamate NMDA receptor via an action at the polyamine binding site. The central histamine system is involved in many central nervous system functions: arousal; anxiety; activation of the sympathetic nervous system; the stress-related release of hormones from the pituitary and of central aminergic neurotransmitters; antinociception; water retention and suppression of eating. A role for the neuronal histamine system as a danger response system is proposed.
Collapse
Affiliation(s)
- R E Brown
- Institut für Neurophysiologie, Heinrich-Heine-Universität, D-40001, Düsseldorf, Germany.
| | | | | |
Collapse
|
26
|
|
27
|
Bell MI, Richardson PJ, Lee K. Histamine depolarizes cholinergic interneurones in the rat striatum via a H(1)-receptor mediated action. Br J Pharmacol 2000; 131:1135-42. [PMID: 11082121 PMCID: PMC1572445 DOI: 10.1038/sj.bjp.0703692] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Whole-cell patch clamp recordings were made from rat striatal cholinergic interneurones in slices of brain tissue in vitro. Bath application of histamine (EC(50) 6.3 microM) was found to rapidly and reversibly depolarize these neurones through the induction of an inward current at -60 mV. 2. The effects of histamine were mimicked by the H(1) receptor agonist 2-thiazolylethylamine (50 microM) and selectively inhibited by pre-incubation with the H(1) receptor antagonist triprolidine (1 microM). 3. Ion substitution experiments under voltage clamp conditions revealed that the histamine activated current was comprised of two components. One component was sensitive to the concentration of extracellular Na(+), whilst the other component was inhibited by intracellular Cs(+) or extracellular Ba(2+). 4. In situ hybridization experiments revealed that the majority of cholinergic interneurones in the rat striatum express the histamine H(1) receptor but few neurones express H(2) receptors. These findings were confirmed using single cell RT - PCR. 5. It is concluded that histamine depolarizes cholinergic interneurones in the rat striatum via a H(1)-receptor mediated mechanism.
Collapse
Affiliation(s)
- M I Bell
- Parke Davis Neuroscience Research Centre, Cambridge University Forvie Site, Cambridge, CB2 2QB
| | - P J Richardson
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1QJ
| | - K Lee
- Parke Davis Neuroscience Research Centre, Cambridge University Forvie Site, Cambridge, CB2 2QB
- Author for correspondence:
| |
Collapse
|
28
|
Li Z, Hatton GI. Histamine suppresses non-NMDA excitatory synaptic currents in rat supraoptic nucleus neurons. J Neurophysiol 2000; 83:2616-25. [PMID: 10805662 DOI: 10.1152/jn.2000.83.5.2616] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell patch-clamp recordings were obtained from supraoptic neurons to investigate the effects of histamine on excitatory postsynaptic currents evoked by electrical stimulation of areas around the posterior supraoptic nucleus. When cells were voltage-clamped at -70 mV, evoked excitatory postsynaptic currents had amplitudes of 88.4 +/- 9.6 pA and durations of 41.1 +/- 3.0 ms (mean +/- SE; n = 43). With twin stimulus pulses (20 Hz) used, paired-pulse facilitation ratios were 1.93 +/- 0.12. Bath application of 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX) abolished synaptic currents. Histamine at concentrations approximately 0.1-10 microM reversibly suppressed excitatory postsynaptic currents in all supraoptic neurons tested. Within 2 min after application of (10 microM) histamine, current amplitudes and durations decreased by 61. 5 and 31.0%, respectively, with little change in the paired-pulse facilitation ratio. Dimaprit or imetit (H(2) or H(3) receptor agonists) did not reduce synaptic currents, whereas pyrilamine (H(1) receptor antagonist) blocked histamine-induced suppression of synaptic currents. When patch electrodes containing guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S) were used to record cells, histamine still suppressed current amplitudes by 49.1% and durations by 41.9%. Similarly, intracellular diffusion of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) and H(7) did not abolish histamine-induced suppression of synaptic currents, either. Bath perifusion of 8-bromo-quanosine 3',5'-cyclic monophosphate reduced current amplitudes by 32.3% and durations by 27.9%. After bath perfusion of slices with N(omega)-nitro-L-arginine methyl ester (L-NAME), histamine injection decreased current amplitudes only by 31.9%, much less than the inhibition rate in control (P < 0.01). In addition, histamine induced little change in current durations and paired-pulse facilitation ratios, representing a partial blockade of histamine effects on synaptic currents by L-NAME. In supraoptic neurons recorded using electrodes containing BAPTA and perifused with L-NAME, the effects of histamine on synaptic currents were completely abolished. Norepinephrine injection reversibly decreased current amplitudes by 39.1% and duration by 64.5%, with a drop in the paired-pulse facilitation ratio of 47.9%. Bath perifusion of L-NAME, as well as intracellular diffusion of GDP-beta-S, 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine, or BAPTA, failed to block norepinephrine-induced suppression of evoked synaptic currents. The present results suggest that histamine suppresses non-N-methyl-D-aspartate synaptic currents in supraoptic neurons through activation of H(1) receptors. It is possible that histamine first acts at supraoptic cells (perhaps both neuronal and nonneuronal) and induces the production of nitric oxide, which then diffuses to nearby neurons and modulates synaptic transmission by a postsynaptic mechanism.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
29
|
Li Z, Miyata S, Hatton GI. Inositol 1,4,5-trisphosphate-sensitive Ca2+ stores in rat supraoptic neurons: involvement in histamine-induced enhancement of depolarizing afterpotentials. Neuroscience 1999; 93:667-74. [PMID: 10465450 DOI: 10.1016/s0306-4522(99)00168-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Histamine, a putative neuromodulator and neurotransmitter, can depolarize supraoptic neurons and enhance depolarizing afterpotentials that play a key role in determining the excitability of these neurons. This study investigated intracellular signal transduction involved in histamine-induced enhancement of depolarizing afterpotentials utilizing immunohistochemical and electrophysiological methods. Abundant inositol 1,4,5-trisphosphate receptor-related immunostaining was seen in all parts of the supraoptic nucleus, mainly within somata and proximal processes of the magnocellular neurons, but also in astrocytes of the ventral glial lamina. In supraoptic neurons displaying depolarizing afterpotentials, three brief depolarizations evoked a slow inward current. Bath application of histamine (1-2.5 microM) reversibly enhanced this slow inward current in almost all supraoptic neurons tested. Amplitudes and durations of the slow inward current were increased by 68.1% and 22.8%, respectively. Pretreatment of cells with a histamine receptor (subtype 1) antagonist (pyrilamine) or inhibitors of phospholipase C activation (neomycin or U73122) prevented histamine-induced enhancement of the slow inward current. When electrodes containing heparin, an inositol 1,4,5-trisphosphate receptor blocker, were used for recording, histamine had no effect on the slow inward current. Heparin, however, failed to abolish norepinephrine-induced enhancement of the slow inward current. After H7 [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine], an inhibitor of protein kinase C, was infused into supraoptic neurons via the electrodes, histamine-induced enhancement of the slow inward current was also blocked. These results indicate the presence of, and functional roles for, inositol 1,4,5-trisphosphate receptor-sensitive Ca2+ stores in supraoptic neurons. Following activation of histamine receptors (subtype 1) and phospholipase C, Ca2+ mobilization from internal stores participates in mediating histamine-induced enhancement of depolarizing afterpotentials.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California at Riverside, 92521, USA
| | | | | |
Collapse
|
30
|
Nitric oxide stimulates cGMP production and mimics synaptic responses in metacerebral neurons of Aplysia. J Neurosci 1999. [PMID: 10234014 DOI: 10.1523/jneurosci.19-10-03818.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) acts as a neurotransmitter and neuromodulator in the nervous systems of many vertebrates and invertebrates. We investigated the mechanism of NO action at an identified synapse between a mechanoafferent neuron, C2, and the serotonergic metacerebral cell (MCC) in the cerebral ganglion of the mollusc Aplysia californica. Stimulation of C2 produces a decreasing conductance, very slow EPSP in the MCC. C2 is thought to use histamine and NO as cotransmitters at this synapse, because both agents mimic the membrane responses. Now we provide evidence that treatment with NO donors stimulates soluble guanylyl cyclase (sGC) in the MCC, and as a result cGMP increases. S-Nitrosocysteine (SNC, an NO donor) and 8-bromo-cGMP (8-Br-cGMP) both induced the membrane depolarization and increase in input resistance that are characteristic of the very slow EPSP. Two inhibitors of sGC, 6-anilino-5,8-quinolinequinone (LY83583) and 1H-[1,2,4]oxadiazolo[4, 3-a]quinoxaline-1-one (ODQ), suppressed both the very slow EPSP and the membrane responses to SNC but not the histamine membrane responses. NO-induced cGMP production was determined in the MCC using cGMP immunocytochemistry (cGMP-IR). In the presence of 3-isobutyl-1-methylxanthine (IBMX), 10 microM SNC was sufficient to induce cGMP-IR, and the staining intensity increased as the SNC dose was increased. This cGMP-IR was suppressed by ODQ in a dose-dependent manner and completely blocked by 10 microM ODQ. Histamine did not induce cGMP-IR. The results suggest that NO stimulates sGC-dependent cGMP synthesis in the MCC and that cGMP mediates the membrane responses. The cotransmitter histamine induces essentially the same membrane responses but seems to use a separate and distinct second messenger pathway.
Collapse
|
31
|
Leng G, Brown CH, Russell JA. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog Neurobiol 1999; 57:625-55. [PMID: 10221785 DOI: 10.1016/s0301-0082(98)00072-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Magnocellular oxytocin and vasopressin cells are among the most extensively studied neurons in the brain; their large size and high synthetic capacity, their discrete, homogeneous distribution and the anatomical separation of their terminals from their cell bodies, and the ability to determine their neuronal output readily by measurements of hormone concentration in the plasma, combine to make these systems amenable to a wide range of fundamental investigations. While vasopressin cells have intrinsic burst-generating properties, oxytocin cells are organized within local pattern-generating networks. In this review we consider the rôle played by particular afferent pathways in the regulation of the activity of oxytocin and vasopressin cells. For both cell types, the effects of changes in the activity of synaptic input can be complex.
Collapse
Affiliation(s)
- G Leng
- Department of Physiology, University Medical School, Edinburgh, UK.
| | | | | |
Collapse
|
32
|
Hatton GI, Li ZH. Neurophysiology of magnocellular neuroendocrine cells: recent advances. PROGRESS IN BRAIN RESEARCH 1999; 119:77-99. [PMID: 10074782 DOI: 10.1016/s0079-6123(08)61563-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Magnocellular neuroendocrine cells of the hypothalamic paraventricular and supraoptic nuclei are responsible for most of the vasopressin and oxytocin in the peripheral blood as well as for central release of these peptides in selected brain areas. As the principal component of the hypothalamo-neurohypophysial system, these neurons have been a subject of continual study for half a century. The wealth of solid information from decades of in vivo studies has provided a firm basis for in vitro, brain slice and explant investigations of neural mechanisms involved in the control and regulation of vasopressin and oxytocin neurons. In vitro methods have revealed the presence and permitted the study of monosynaptic projections to supraoptic neurons from the olfactory bulbs, the tuberomammillary nuclei of the posterior hypothalamus and from the organum vasculosum of the lamina terminalis. Such methods have also facilitated the elucidation of the various ionic currents controlling neurosecretory cell activity as well as the roles of calcium binding proteins and release of calcium from internal stores. This review summarizes recent advances in our understanding of the afferent inputs that impinge upon these two cell types, and the cellular and molecular mechanisms intrinsic to these neurons that determine their activity patterns and, in part, their responses to incoming stimuli.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA.
| | | |
Collapse
|
33
|
Armstrong WE, Stern JE. Phenotypic and state-dependent expression of the electrical and morphological properties of oxytocin and vasopressin neurones. PROGRESS IN BRAIN RESEARCH 1999; 119:101-13. [PMID: 10074783 DOI: 10.1016/s0079-6123(08)61564-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Oxytocin and vasopressin secreting neurones of the hypothalamic supraoptic nucleus share many membrane characteristics and a roughly similar morphology. However, these two neurone types differ in the relative expression of some intrinsic and synaptic currents, and in the extent of their respective dendritic arbors. Spike depolarizing afterpotentials are present in both types, but more frequently give rise to prolonged burst discharges in vasopressin neurones. Oxytocin, but not vasopressin neurones, are characterized by a depolarization-activated, sustained outward rectifier which turns on near spike threshold, and which can produce prolonged spike frequency adaptation. When this sustained current is deactivated by small hyperpolarizing pulses, a rebound depolarization sufficient to evoke short spike trains follows the offset of these pulses. Both oxytocin and vasopressin neurones exhibit a transient outward rectification underlain by an Ia-type current. This transient rectifier delays spiking to depolarizing stimuli from a relatively hyperpolarized baseline, and is more prominent in vasopressin neurones. As a result, oxytocin neurones may be more reactive to depolarizing inputs. Both cell types receive glutamatergic, excitatory synaptic inputs and both possess R,S- alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subtypes. The AMPA receptor channel on both cell types is characterized by a relatively high calcium permeability and voltage-dependent rectification, characteristic of a diminished presence of the GluR2 AMPA subunit. However, AMPA-mediated synaptic transients are larger, and decay faster, in oxytocin compared with vasopressin neurones, suggesting a potential difference for synaptic integration. The characteristics of NMDA-mediated synaptic transients are similar in oxytocin and vasopressin neurones, but some data suggest NMDA receptors may be less involved in the glutamatergic activation of oxytocin neurones. In both cell types, synaptic release of glutamate often coactivates AMPA and NMDA receptors. The dendritic morphology of oxytocin and vasopressin neurones in female rats differs from one another and exhibits considerable plasticity as a function of endocrine state. In virgin rats, oxytocin neurones have more dendritic branches and a greater total dendritic length compared with lactation, when the arbor is much less extensive. A complementary change occurs in vasopressin dendrites, which are more extensive during lactation. This reorganization suggests that oxytocin neurones may be more electronically compact during lactation. In addition, such dramatic shifts in overall dendritic length imply that significant gains and losses in either the total number of synapses, or in synaptic density, are incurred by both cell types as a function of reproductive state.
Collapse
Affiliation(s)
- W E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, College of Medicine 38163, USA.
| | | |
Collapse
|
34
|
Hatton GI, Li Z. Mechanisms of neuroendocrine cell excitability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 449:79-95. [PMID: 10026788 DOI: 10.1007/978-1-4615-4871-3_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Oxytocin (OT) and vasopressin (VP), two neuronally synthesized nonapeptides, are made in the hypothalamic paraventricular and supraoptic nuclei of mammals and released into their blood, eventually to have profound hormonal actions on peripheral tissues. In the rat both OT and VP neurons fire slowly and irregularly under conditions of low demand for peptide release, but natural or artificial depolarizing stimuli result in differential patterns of activity: either regular continuous firing, strongly associated with OT cells, or phasic bursting, characteristic of VP neurons. Recently published findings offer an explanation for the dominant presence of certain Ca(2+)-dependent membrane potentials that typically lead to phasic firing in VP neurons. Mechanisms of excitability involved in the differential activities of the two cell types, as well as of the same cell type under different physiological conditions, include such factors as Ca2+ binding proteins, voltage- and ligand-gated ion channels, release of Ca2+ from internal stores and gap junctional conductances. The evidence for these factors is reviewed here.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA.
| | | |
Collapse
|
35
|
Ibrahim N, Shibuya I, Kabashima N, Setiadji VS, Ueta Y, Yamashita H. GABAB receptor-mediated inhibition of spontaneous action potential discharge in rat supraoptic neurons in vitro. Brain Res 1998; 813:88-96. [PMID: 9824676 DOI: 10.1016/s0006-8993(98)01009-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the role of GABAB receptors in the regulation of the electrical activity of magnocellular neurons of the supraoptic nucleus (SON), the effects of GABAB agonist and antagonist on the firing rate of spontaneous action potentials were studied in SON slice preparations of rats by extracellular recordings. In the presence of the gamma-amino butyric acid (GABA)-gated chloride channel blocker, picrotoxin, the selective GABAB agonist, baclofen, reduced the firing rate of action potentials in both phasic and non-phasic neurons in a dose-dependent manner. The reduction in the firing rate induced by baclofen was reversed by the selective GABAB antagonist, 2-hydroxy saclofen (2OH-saclofen), also in a dose-dependent manner. In non-phasic neurons, 2OH-saclofen significantly increased the firing rate and the effect was additive to the effect of picrotoxin. In phasic neurons, 2OH-saclofen alone did not increase the firing rate, but it reversed suppression of the firing induced by increasing extracellular Ca2+ concentration to 2.1 mM. Baclofen also reduced the firing rate of non-phasic neurons of virgin and lactating female rats, indicating that the GABAB receptor-mediated inhibition is not confined to SON neurons of male rats. The evidence indicates that activation of GABAB receptors inhibits electrical activity of SON neurons of both male and female rats and that GABAB receptors may play an important role in the inhibitory regulation of the electrical activity of SON neurons by GABA.
Collapse
Affiliation(s)
- N Ibrahim
- Department of Physiology, University of Occupational and Environmental Health School of Medicine, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Hatton GI, Li Z. Intrinsic controls of intracellular calcium and intercellular communication in the regulation of neuroendocrine cell activity. Cell Mol Neurobiol 1998; 18:13-28. [PMID: 9524727 PMCID: PMC11560188 DOI: 10.1023/a:1022519008991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. The magnocellular hypothalamoneurohypophysial system, consisting chiefly of the supraoptic and paraventricular nuclei and their axonal projections to the pituitary neural lobe, has become a model for the study of neuroendocrine cell morphology, function, and plasticity. 2. Decades of research have produced a wealth of knowledge about the physiological conditions that activate this system, the peripheral target tissues affected by its outputs, and its capacity to undergo use-dependent, reversible reorganization. 3. Earlier research on the neural control of this system concentrated largely on the synaptic inputs that influence the activity of these magnocellular neurons and, while that task is still far from completed, methods have now been developed that permit insights to be gained into the control exercised by intrinsic cellular and molecular mechanisms. 4. This article reviews the current state of knowledge of roles played by these intrinsic mechanisms, including influences of intracellular calcium buffering, calcium release from internal stores and intercellular communication through gap junctions, in the control of neuroendocrine cell activity.
Collapse
Affiliation(s)
- G I Hatton
- Department of Neuroscience, University of California, Riverside 92521, USA
| | | |
Collapse
|
38
|
Bourque CW, Kirkpatrick K, Jarvis CR. Extrinsic modulation of spike afterpotentials in rat hypothalamoneurohypophysial neurons. Cell Mol Neurobiol 1998; 18:3-12. [PMID: 9524726 PMCID: PMC11560155 DOI: 10.1023/a:1022566924921] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Magnocellular neurosecretory cells (MNCs) in the rat hypothalamus adopt a phasic pattern of spike discharge under conditions demanding enhanced vasopressin release, such as during dehydration or hemorrhage. The emergence of phasic firing minimizes the occurrence of secretory fatigue from the axon terminals of MNCs, thereby maximizing vasopressin release from the neurohypophysis. 2. Intracellular and whole-cell recordings from hypothalamic slices or explants in vitro have shown that phasic firing is supported by the presence of a plateau potential which arises from the summation of spike depolarizing afterpotentials (DAPs). Modulatory actions of neurotransmitters on the amplitude of the DAP, therefore, represent possible mechanisms by which the expression of phasic firing may be regulated in vivo. 3. Here we review the basis for phasic firing in MNCs of the rat supraoptic nucleus and present recent findings concerning the direct and indirect mechanisms through which selected neurotransmitters have been found to regulate the amplitude of DAPs.
Collapse
Affiliation(s)
- C W Bourque
- Centre for Research in Neuroscience, Montreal General Hospital, P.Q., Canada
| | | | | |
Collapse
|
39
|
Inenaga K, Honda E, Hirakawa T, Nakamura S, Yamashita H. Glutamatergic synaptic inputs to mouse supraoptic neurons in calcium-free medium in vitro. J Neuroendocrinol 1998; 10:1-7. [PMID: 9510053 DOI: 10.1046/j.1365-2826.1998.00662.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of Ca2+-free perfusion medium on excitatory postsynaptic currents (EPSCs) and potentials (EPSPs) were studied by whole-cell recordings from neurons of the supraoptic nucleus (SON) in trimmed slice preparations of mouse hypothalamus. EPSCs evoked with either focal stimulation to the SON or perfusion of slices with high K+-medium, spontaneous EPSCs (sEPSCs) and miniature EPSCs (mEPSCs) recorded from neurons of the SON were blocked by the glutamate receptor antagonist kynurenic acid (1 mM). While EPSCs evoked by focal stimulation were abolished in the presence of Ca2+-free perfusion medium; sEPSCs and mEPSCs remained. Neither the frequency nor the amplitude of the sEPSCs and mEPSCs significantly changed during the application of Ca2+-free perfusion medium. Perfusion of slices with high K+-medium increased the mEPSC frequency compared with that recorded in normal Ca2+-containing perfusion medium. In contrast, mEPSC frequency did not change during perfusion with Ca2+-free high K+-medium. In current-clamp mode sEPSPs were observed during the perfusion with Ca2+-free medium. Some sEPSPs recorded in Ca2+-free medium were sufficiently large to evoke action potentials. These results imply that spontaneous glutamatergic synaptic inputs to the hypothalamic neurosecretory cells exist in Ca2+-free perfusion medium. Thus, the present study suggests that Ca2+-free medium does not always block the synaptic transmission in hypothalamic slice preparations.
Collapse
Affiliation(s)
- K Inenaga
- Department of Physiology, Kyushu Dental College, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
40
|
Li Z, Hatton GI. Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones. J Physiol 1997; 505 ( Pt 1):95-106. [PMID: 9409474 PMCID: PMC1160096 DOI: 10.1111/j.1469-7793.1997.095bc.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Whole-cell patch clamp recordings were obtained from sixty-five rat supraoptic nucleus (SON) neurones in brain slices to investigate ionic mechanisms underlying depolarizing after-potentials (DAPs). When cells were voltage clamped around -58 mV, slow inward currents mediating DAPs (IDAP), evoked by three brief depolarizing pulses, had a peak of 17 +/- 1 pA (mean +/- S.E.M.) and lasted for 2.8 +/- 0.1 s. 2. No significant differences in the amplitude and duration were observed when one to three preceding depolarizing pulses were applied, although there was a tendency for twin pulses to evoke larger IDAP than a single pulse. The IDAP was absent when membrane potentials were more negative than -70 mV. In the range -70 to -50 mV, IDAP amplitudes and durations increased as the membrane became more depolarized, with an activation threshold of -65.7 +/- 0.7 mV. 3. IDAP with normal amplitude and duration could be evoked during the decay of a preceding IDAP. As frequencies of depolarizing pulses rose from 2 to 20 Hz, the times to peak IDAP amplitude were reduced but the amplitudes and durations did not change. 4. A consistent reduction in membrane conductance during the IDAP was observed in all SON neurones tested, and averaged 34.6 +/- 3.3%. Small hyperpolarizing pulses used to measure membrane conductances appeared not to disturb major ionic mechanisms underlying IDAP, since the slope and duration of IDAP with and without test pulses were similar. 5. The IDAP had an averaged reversal potential of -87.4 +/- 1.6 mV, which was close to the K+ equilibrium potential. An elevation in [K+]o reduced or abolished the IDAP, and shifted its reversal potential toward more positive levels. Perifusion of slices with 7.5-10 mM TEA, a K+ channel blocker, reversibly suppressed the IDAP. 6. Both Na+ and Ca2+ currents failed to induce an IDAP-like current during perifusion of slices with media containing high [K+]o or TEA. However, the IDAP was abolished by replacing external Ca2+ with Co2+, or replacing 82% of external Na+ with choline or Li+. Perifusion of slices with media containing 1-2 microM TTX also reduced IDAP by 55.5 +/- 9.0%. 7. These results suggest that the generation of DAPs in SON neurones mainly involves a reduction in outward K+ current(s), which probably has little or no inactivation and can be inhibited by [Ca2+]i transients, due to Ca2+ influx during action potentials and Ca2+ release from internal stores. Na+ influx might provide a permissive influence for Ca(2+)-induced reduction of K+ conductances and/or help to raise [Ca2+]i via reverse-mode Ca(2+)-Na+ exchange. Other conductances, making minor contributions to the IDAP, may also be involved.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California at Riverside 92521, USA
| | | |
Collapse
|
41
|
Yang QZ, Hatton GI. Electrophysiology of excitatory and inhibitory afferents to rat histaminergic tuberomammillary nucleus neurons from hypothalamic and forebrain sites. Brain Res 1997; 773:162-72. [PMID: 9409717 DOI: 10.1016/s0006-8993(97)00932-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Anatomical evidence exists for projections to the tuberomammillary nucleus (TM) from the nucleus of the diagonal band of Broca (DBB) and the lateral preoptic area (LPO). The physiological effects of activating these inputs were studied by recording postsynaptic responses intracellularly from TM cells during both electrical stimulation and local nanodrop application of glutamate in horizontally cut brain slices. Electrical stimulation of the DBB, LPO and anterior lateral hypothalamic area (LH) usually evoked fast IPSPs (approximately 75% of responses) which were blocked by bicuculline or picrotoxin, suggesting GABA(A) mediation. The remaining excitatory responses evoked by stimulation of the LPO and LH were blocked by non-NMDA receptor antagonists (CNQX or NBQX) and the NMDA receptor antagonist, AP-5. Glutamate applied to the above areas induced postsynaptic responses in TM cells similar to those seen with electrical stimulation. Spontaneous firing in TM cells was suppressed by glutamate applied in the DBB. Glutamate applied in the LPO or LH evoked both inhibitory and excitatory responses. Changes in PSPs and firing rates were interpreted to result from glutamate activation of the neurons in the DBB, LPO and LH areas with inhibitory or excitatory connections to recorded TM neurons. These results support previous anatomical findings and suggest that inhibitory and excitatory synaptic control of TM activity is exerted by the DBB, LPO and LH areas.
Collapse
Affiliation(s)
- Q Z Yang
- Department of Neuroscience, University of California, Riverside 92521, USA
| | | |
Collapse
|
42
|
Jafri MS, Moore KA, Taylor GE, Weinreich D. Histamine H1 receptor activation blocks two classes of potassium current, IK(rest) and IAHP, to excite ferret vagal afferents. J Physiol 1997; 503 ( Pt 3):533-46. [PMID: 9379409 PMCID: PMC1159839 DOI: 10.1111/j.1469-7793.1997.533bg.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Intracellular recordings were made in intact and acutely dissociated vagal afferent neurones (nodose ganglion cells) of the ferret to investigate the membrane effects of histamine. 2. In current-clamp or voltage-clamp recordings, histamine (10 microM) depolarized the membrane potential (10 +/- 0.8 mV; mean +/- S.E.M.; n = 27) or produced an inward current of 1.6 +/- 0.35 nA (n = 27) in approximately 80% of the neurones. 3. Histamine (10 microM) also blocked the post-spike slow after-hyperpolarization (AHP slow) present in 80% of these neurones (95 +/- 3.2%; n = 5). All neurones possessing AHPslow in ferret nodose were C fibre neurones; all AHPslow neurones had conduction velocities < or = 1 m s-1 (n = 7). 4. Both the histamine-induced inward current and the block of AHPslow were concentration dependent and each had an estimated EC50 value of 2 microM. These histamine-induced effects were mimicked by the histamine H1 receptor agonist 2-(2-aminoethyl) thiazole dihydrochloride (10 microM) and blocked by the H1 antagonists pyrilamine (100 nM) or diphenhydramine (100 nM). Schild plot analysis of the effect of pyrilamine on the histamine-induced inward current revealed a pA2 value of 9.7, consistent with that expected for an H1 receptor. Neither impromidine (10 microM) nor R(-)-alpha-methylhistamine (10 microM), selective H2 or H3 agonists, respectively, significantly affected the membrane potential, input resistance or AHPslow. 5. The reversal potential (Vrev) for the histamine-induced inward current was -84 +/- 2.1 mV (n = 4). The Vrev for the histamine response shifted in a Nernstian manner with changes in the extracellular potassium concentration. Alterations in the extracellular chloride concentration had no significant effect on the Vrev of the histamine response (n = 3). The Vrev for the AHPslow was -85 +/- 1.7 mV (n = 4). 6. These results indicate that histamine increases the excitability of ferret vagal afferent somata by interfering with two classes of potassium current: the resting or 'leak' potassium current (IK(rest)) and the potassium current underlying a post-spike slow after-hyperpolarization (IAHP). Both these effects can occur in the same neurone and involve activation of the same histamine receptor subtype, the histamine H1 receptor.
Collapse
Affiliation(s)
- M S Jafri
- University of Maryland, School of Medicine, Department of Pharmacology and Experimental Therapeutics, Baltimore 21201-1559, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Nitric oxide is a labile gas which has been implicated in neuronal signalling. The enzyme responsible for the production of this molecule is present in the paraventricular nucleus of the hypothalamus, yet a specific role for nitric oxide in neurotransmission within this nucleus remains unclear. Using whole-cell patch-clamp recordings from paraventricular nucleus neurons in a coronal hypothalamic slice, we have assessed the acute effects of nitric oxide on membrane potential and ionic conductance. Recordings were obtained from 78 neurons with a mean resting membrane potential of -57.8 +/- 0.6 mV and a mean input resistance of 972 +/- 146 M omega. Cells were electrophysiologically classified into Type I or Type II according to previously established criteria. Bath application of nitric oxide (delivered either as a gas dissolved in solution, or liberated from the donor compound, N-acetyl-S-nitroso-D-penicillamine) elicited reversible membrane depolarizations (3 mV) in 14 of the 19 Type II cells tested. These cells also exhibited a decrease in input resistance following nitric oxide application. Similar effects were observed in response to bath application of L-arginine, with 11 of 14 cells displaying depolarizations and accompanying decreases in input resistance. Inhibition of nitric oxide synthase abolished the responses to L-arginine (n=2). The nitric oxide effects persisted when voltage-activated Na+ channels were blocked by tetrodotoxin (n=6). The depolarizations observed in Type II cells were mimicked by bath application of a membrane permeable cyclic GMP analogue (8-bromo-cyclic GMP) (n=8). Furthermore, nitric oxide depolarizations were abolished by pre-treatment of the slice with the guanylate cyclase inhibitor, LY83583 (n=4). Type I cells did not depolarize in response to nitric oxide (n=11). It is concluded that nitric oxide specifically depolarizes parvocellular neurons within the paraventricular nucleus via a mechanism that requires activation of guanylate cyclase and subsequent production of cyclic GMP. These findings provide the first insight into the cellular mechanisms underlying the acute effects of nitric oxide on neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- J S Bains
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
44
|
Luckman SM, Larsen PJ. Evidence for the involvement of histaminergic neurones in the regulation of the rat oxytocinergic system during pregnancy and parturition. J Physiol 1997; 501 ( Pt 3):649-55. [PMID: 9218223 PMCID: PMC1159464 DOI: 10.1111/j.1469-7793.1997.649bm.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Previous studies have shown that histaminergic neurones of the tuberomammillary nucleus project directly to hypothalamic magnocellular nuclei and that intracerebroventricular administration of histamine increases the synthetic activity of magnocellular oxytocin neurones. 2. Histaminergic neurones of the dorsomedial tuberomammillary nucleus that project to the magnocellular region of the paraventricular nucleus are activated during late pregnancy and lactation, as measured by an increase in mRNA for the synthetic enzyme histidine decarboxylase. 3. There is a concomitant increase in oxytocin mRNA in magnocellular neurones of the paraventricular nucleus. This increase in mRNA contributes to an accumulation of oxytocin before birth and to continued oxytocin synthesis during lactation. 4. Intracerebroventricular administration of mepyramine, a specific antagonist of the H1 histamine receptor, causes a delay in the birth of subsequent pups if given to the mother during parturition. Vehicle or the H2 receptor antagonist cimetidine has no effect. Thus, histamine acts centrally, via H1 receptors, during parturition and may have an excitatory effect on oxytocin release. 5. These results suggest that afferent histaminergic neurones show increased activity during pregnancy and may be responsible for the increase of synthesis in magnocellular oxytocin neurones at this time. If, as previously reported, these histamine neurones can reduce the electrical activity of oxytocin neurones via H2 receptors, then they may have a dual effect, increasing the synthesis of oxytocin while inhibiting its premature release. At term, any inhibitory effects of histamine are overcome to allow oxytocin secretion.
Collapse
Affiliation(s)
- S M Luckman
- Department of Neurobiology, Babraham Institute, Cambridge, UK.
| | | |
Collapse
|
45
|
Li Z, Hatton GI. Ca2+ release from internal stores: role in generating depolarizing after-potentials in rat supraoptic neurones. J Physiol 1997; 498 ( Pt 2):339-50. [PMID: 9032683 PMCID: PMC1159205 DOI: 10.1113/jphysiol.1997.sp021862] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Influences of Ca2+ release from internal stores on the generation of depolarizing after-potentials (DAPs) were investigated in magnocellular neurones of rat supraoptic nucleus (SON) using whole-cell patch recording techniques in brain slices. 2. DAPs were recorded from more than half of the cells encountered, and following evoked single spikes had an amplitude of 3.00 +/- 0.19 mV (mean +/- S.E.M.) and lasted for 1.02 +/- 0.06 s. Their sizes usually increased with the number of preceding spikes, but could be reduced or eliminated when intervals between consecutive current pulses evoking tens of spikes were short. 3. DAPs were eliminated by removal of external Ca2+, and significantly reduced by bath application of nifedipine or omega-conotoxin. 4. Blockade of Ca2+ release from internal stores by perifusion with ryanodine or dantrolene, or direct diffusion of Ruthenium Red into cells suppressed DAP amplitudes by approximately 50% and shortened their durations. 5. Depletion of internal Ca2+ stores by perifusion with thapsigargin or cyclopiazonic acid also reduced DAP amplitudes by approximately 50% and eliminated phasic patterns of firing. 6. Caffeine, an agent known to enhance intracellular Ca2+ release, amplified DAPs and promoted phasic firing. 7. These results suggest that Ca2+ influx via high-voltage-activated Ca2+ channels in SON cells triggers ryanodine receptor-mediated Ca2+ release from internal stores. This process enhances DAPs and promotes phasic firing in SON cells, and would thus contribute to vasopressin release.
Collapse
Affiliation(s)
- Z Li
- Department of Neuroscience, University of California at Riverside 92521, USA
| | | |
Collapse
|
46
|
Smith BN, Armstrong WE. The ionic dependence of the histamine-induced depolarization of vasopressin neurones in the rat supraoptic nucleus. J Physiol 1996; 495 ( Pt 2):465-78. [PMID: 8887757 PMCID: PMC1160805 DOI: 10.1113/jphysiol.1996.sp021607] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The ionic basis of the histamine-induced depolarization of immunohistochemically identified neurones in the supraoptic nucleus (SON) was investigated in the hypothalamo-neurohypophysial explant of male rats. Histamine (0.1-100 microM) caused an H1 receptor-mediated, dose-dependent depolarization of fifty of sixty-two vasopressin neurones in the SON. In contrast, twenty-three oxytocin neurones were either depolarized (n = 6), hyperpolarized (n = 4), or unaffected (n = 13) by histamine. Due to the low percentage of responding cells, oxytocin neurones were not further investigated. 2. Chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA; 100-500 mM) blocked the depolarization, whereas blocking Ca2+ influx and synaptic transmission with equimolar Co2+ or elevated (5-20 mM) Mg2+ in nominally Ca(2+)-free solutions was without effect. 3. The amplitude of the histamine-induced depolarization was relatively independent of membrane potential. The input resistance was unaltered by histamine in nine neurones, but in nine other neurones it was decreased and in two neurones it was increased by more than 5%. Neither elevating extracellular K+ nor addition of the K+ channel blockers, apamin, d-tubocurarine, tetraethylammonium (TEA), or intracellular Cs+ decreased the histamine effect. Indeed, broadly blocking K+ currents with TEA and Cs+ significantly increased the depolarization to histamine. 4. Tetrodotoxin (2-3 microM) did not inhibit the histamine-induced depolarization. However, equimolar replacement of approximately 50% of extracellular Na+ with Tris+ or N-methyl-D-glucamine reduced or eliminated the response. 5. The depolarization of vasopressin neurones by histamine thus requires extracellular Na+ and intracellular Ca2+. Activation of a Ca(2+)-activated non-specific cation current or a Ca(2+)-Na+ pump are possible mechanisms for this effect.
Collapse
Affiliation(s)
- B N Smith
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523, USA
| | | |
Collapse
|