1
|
Goncalves KE, Phillips S, Shah DSH, Athey D, Przyborski SA. Application of biomimetic surfaces and 3D culture technology to study the role of extracellular matrix interactions in neurite outgrowth and inhibition. BIOMATERIALS ADVANCES 2022; 144:213204. [PMID: 36434926 DOI: 10.1016/j.bioadv.2022.213204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The microenvironment that cells experience during in vitro culture can often be far removed from the native environment they are exposed to in vivo. To recreate the physiological environment that developing neurites experience in vivo, we combine a well-established model of human neurite development with, functionalisation of both 2D and 3D growth substrates with specific extracellular matrix (ECM) derived motifs displayed on engineered scaffold proteins. Functionalisation of growth substrates provides biochemical signals more reminiscent of the in vivo environment and the combination of this technology with 3D cell culture techniques, further recapitulates the native cellular environment by providing a more physiologically relevant geometry for neurites to develop. This biomaterials approach was used to study interactions between the ECM and developing neurites, along with the identification of specific motifs able to enhance neuritogenesis within this model. Furthermore, this technology was employed to study the process of neurite inhibition that has a detrimental effect on neuronal connectivity following injury to the central nervous system (CNS). Growth substrates were functionalised with inhibitory peptides released from damaged myelin within the injured spinal cord (Nogo & OMgp). This model was then utilised to study the underlying molecular mechanisms that govern neurite inhibition in addition to potential mechanisms of recovery.
Collapse
Affiliation(s)
- K E Goncalves
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - S Phillips
- Orla Protein Technologies Ltd, (now part of Porvair Sciences Ltd), 73 Clywedog Road East, Wrexham Industrial Estate, Wrexham LL13 9XS, UK
| | - D S H Shah
- Orla Protein Technologies Ltd, (now part of Porvair Sciences Ltd), 73 Clywedog Road East, Wrexham Industrial Estate, Wrexham LL13 9XS, UK
| | - D Athey
- Orla Protein Technologies Ltd, (now part of Porvair Sciences Ltd), 73 Clywedog Road East, Wrexham Industrial Estate, Wrexham LL13 9XS, UK
| | - S A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Reprocell Europe Ltd, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, UK.
| |
Collapse
|
2
|
Wilson KL, Pérez SCL, Naffaa MM, Kelly SH, Segura T. Stoichiometric Post-Modification of Hydrogel Microparticles Dictates Neural Stem Cell Fate in Microporous Annealed Particle Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201921. [PMID: 35731241 PMCID: PMC9645378 DOI: 10.1002/adma.202201921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/07/2022] [Indexed: 05/16/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are generated from assembled hydrogel microparticles (microgels). It has been previously demonstrated that MAP scaffold are porous, biocompatible, and recruit neural progenitor cells (NPCs) to the stroke cavity after injection into the stroke core. Here, the goal is to study NPC fate inside MAP scaffolds in vitro. To create plain microgels that can later be converted to contain different types of bioactivities, the inverse electron-demand Diels-Alder reaction between tetrazine and norbornene is utilized, which allows the post-modification of plain microgels stoichiometrically. As a result of adhesive peptide attachment, NPC spreading leads to contractile force generation which can be recorded by tracking microgel displacement. Alternatively, non-adhesive peptide integration results in neurosphere formation that grows within the void space of MAP scaffolds. Although the formed neurospheres do not impose a contractile force on the scaffolds, they are seen to continuously transverse the scaffolds. It is concluded that MAP scaffolds can be engineered to either promote neurogenesis or enhance stemness depending on the chosen post-modifications of the microgels, which can be key in modulating their phenotypes in various applications in vivo.
Collapse
Affiliation(s)
- Katrina L Wilson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Sasha Cai Lesher Pérez
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 28, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
| | - Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA
| | - Sean H Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
- Department of Neurology, Duke University, Durham, NC, 27708-0281, USA
- Department of Dermatology, Duke University, Durham, NC, 27708-0281, USA
| |
Collapse
|
3
|
Mrówczyńska E, Mazur AJ. Integrin-Linked Kinase (ILK) Plays an Important Role in the Laminin-Dependent Development of Dorsal Root Ganglia during Chicken Embryogenesis. Cells 2021; 10:cells10071666. [PMID: 34359835 PMCID: PMC8304069 DOI: 10.3390/cells10071666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Integrin-linked kinase (ILK) is mainly localized in focal adhesions where it interacts and modulates the downstream signaling of integrins affecting cell migration, adhesion, and survival. The interaction of dorsal root ganglia (DRG) cells, being part of the peripheral nervous system (PNS), with the extracellular matrix (ECM) via integrins is crucial for proper PNS development. A few studies have focused on ILK’s role in PNS development, but none of these have focused on chicken. Therefore, we decided to investigate ILK’s role in the development of Gallus gallus domesticus’s DRG. First, using RT-PCR, Western blotting, and in situ hybridization, we show that ILK is expressed in DRG. Next, by immunocytochemistry, we show ILK’s localization both intracellularly and on the cell membrane of DRG neurons and Schwann cell precursors (SCPs). Finally, we describe ILK’s involvement in multiple aspects of DRG development by performing functional experiments in vitro. IgG-mediated interruption of ILK’s action improved DRG neurite outgrowth, modulated their directionality, stimulated SCPs migration, and impacted growth cone morphology in the presence of laminin-1 or laminin-1 mimicking peptide IKVAV. Taken together, our results show that ILK is important for chicken PNS development, probably via its exposure to the ECM.
Collapse
Affiliation(s)
- Ewa Mrówczyńska
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| | - Antonina Joanna Mazur
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| |
Collapse
|
4
|
Debons N, Dems D, Hélary C, Le Grill S, Picaut L, Renaud F, Delsuc N, Schanne-Klein MC, Coradin T, Aimé C. Differentiation of neural-type cells on multi-scale ordered collagen-silica bionanocomposites. Biomater Sci 2020; 8:569-576. [PMID: 31915761 DOI: 10.1039/c9bm01029g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cells respond to biophysical and biochemical signals. We developed a composite filament from collagen and silica particles modified to interact with collagen and/or present a laminin epitope (IKVAV) crucial for cell-matrix adhesion and signal transduction. This combines scaffolding and signaling and shows that local tuning of collagen organization enhances cell differentiation.
Collapse
Affiliation(s)
- Nicolas Debons
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sahab Negah S, Oliazadeh P, Jahanbazi Jahan-Abad A, Eshaghabadi A, Samini F, Ghasemi S, Asghari A, Gorji A. Transplantation of human meningioma stem cells loaded on a self-assembling peptide nanoscaffold containing IKVAV improves traumatic brain injury in rats. Acta Biomater 2019; 92:132-144. [PMID: 31075516 DOI: 10.1016/j.actbio.2019.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) can result in permanent brain function impairment due to the poor regenerative ability of neural tissue. Tissue engineering has appeared as a promising approach to promote nerve regeneration and to ameliorate brain damage. The present study was designed to investigate the effect of transplantation of the human meningioma stem-like cells (hMgSCs) seeded in a promising three-dimensional scaffold (RADA4GGSIKVAV; R-GSIK) on the functional recovery of the brain and neuroinflammatory responses following TBI in rats. After induction of TBI, hMgSCs seeded in R-GSIK was transplanted within the injury site and its effect was compared to several control groups. Application of hMgSCs with R-GSIK improved functional recovery after TBI. A significant higher number of hMgSCs was observed in the brain when transplanted with R-GSIK scaffold compared to the control groups. Application of hMgSCs seeded in R-GSIK significantly decreased the lesion volume, reactive gliosis, and apoptosis at the injury site. Furthermore, treatment with hMgSCs seeded in R-GSIK significantly inhibited the expression of Toll-like receptor 4 and its downstream signaling molecules, including interleukin-1β and tumor necrosis factor. These data revealed the potential for hMgSCs seeded in R-GSIK to improve the functional recovery of the brain after TBI; possibly via amelioration of inflammatory responses. STATEMENT OF SIGNIFICANCE: Tissue engineered scaffolds that mimic the natural extracellular matrix of the brain may modulate stem cell fate and contribute to tissue repair following traumatic brain injury (TBI). Among several scaffolds, self-assembly peptide nanofiber scaffolds markedly promotes cellular behaviors, including cell survival and differentiation. We developed a novel three-dimensional scaffold (RADA16GGSIKVAV; R-GSIK). Transplantation of the human meningioma stem-like cells seeded in R-GSIK in an animal model of TBI significantly improved functional recovery of the brain, possibly via enhancement of stem cell survival as well as reduction of the lesion volume, inflammatory process, and reactive gliosis at the injury site. R-GSIK is a suitable microenvironment for human stem cells and could be a potential biomaterial for the reconstruction of the injured brain after TBI.
Collapse
|
6
|
Farrukh A, Zhao S, Paez JI, Kavyanifar A, Salierno M, Cavalié A, Del Campo A. In Situ, Light-Guided Axon Growth on Biomaterials via Photoactivatable Laminin Peptidomimetic IK(HANBP)VAV. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41129-41137. [PMID: 30387978 DOI: 10.1021/acsami.8b15517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ability to guide the growth of neurites is relevant for reconstructing neural networks and for nerve tissue regeneration. Here, a biofunctional hydrogel that allows light-based directional control of axon growth in situ is presented. The gel is covalently modified with a photoactivatable derivative of the short laminin peptidomimetic IKVAV. This adhesive peptide contains the photoremovable group 2-(4'-amino-4-nitro-[1,1'-biphenyl]-3-yl)propan-1-ol (HANBP) on the Lys rest that inhibits its activity. The modified peptide is highly soluble in water and can be simply conjugated to -COOH containing hydrogels via its terminal -NH2 group. Light exposure allows presentation of the IKVAV adhesive motif on a soft hydrogel at desired concentration and at defined position and time point. The photoactivated gel supports neurite outgrowth in embryonic neural progenitor cells culture and allows site-selective guidance of neurites extension. In situ exposure of cell cultures using a scanning laser allows outgrowth of neurites in desired pathways.
Collapse
Affiliation(s)
- Aleeza Farrukh
- INM-Leibniz Institute for New Materials , Campus D2 2 , 66123 Saarbrücken , Germany
- Max Planck Graduate Center , Forum Universitatis 2 , Building 1111, 55122 Mainz , Germany
| | - Shifang Zhao
- INM-Leibniz Institute for New Materials , Campus D2 2 , 66123 Saarbrücken , Germany
- Chemistry Department , Saarland University , 66123 Saarbrücken , Germany
| | - Julieta I Paez
- INM-Leibniz Institute for New Materials , Campus D2 2 , 66123 Saarbrücken , Germany
| | - Atria Kavyanifar
- Institute of Physiological Chemistry , University Medical Center Johannes Gutenberg University , Hanns-Dieter-Hüsch-Weg 19 , D-55128 Mainz , Germany
| | - Marcelo Salierno
- Institute of Physiological Chemistry , University Medical Center Johannes Gutenberg University , Hanns-Dieter-Hüsch-Weg 19 , D-55128 Mainz , Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology , Saarland University , 66421 Homburg , Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials , Campus D2 2 , 66123 Saarbrücken , Germany
- Chemistry Department , Saarland University , 66123 Saarbrücken , Germany
| |
Collapse
|
7
|
Farrukh A, Ortega F, Fan W, Marichal N, Paez JI, Berninger B, Campo AD, Salierno MJ. Bifunctional Hydrogels Containing the Laminin Motif IKVAV Promote Neurogenesis. Stem Cell Reports 2017; 9:1432-1440. [PMID: 28988991 PMCID: PMC5829305 DOI: 10.1016/j.stemcr.2017.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 10/29/2022] Open
Abstract
Engineering of biomaterials with specific biological properties has gained momentum as a means to control stem cell behavior. Here, we address the effect of bifunctionalized hydrogels comprising polylysine (PL) and a 19-mer peptide containing the laminin motif IKVAV (IKVAV) on embryonic and adult neuronal progenitor cells under different stiffness regimes. Neuronal differentiation of embryonic and adult neural progenitors was accelerated by adjusting the gel stiffness to 2 kPa and 20 kPa, respectively. While gels containing IKVAV or PL alone failed to support long-term cell adhesion, in bifunctional gels, IKVAV synergized with PL to promote differentiation and formation of focal adhesions containing β1-integrin in embryonic cortical neurons. Furthermore, in adult neural stem cell culture, bifunctionalized gels promoted neurogenesis via the expansion of neurogenic clones. These data highlight the potential of synthetic matrices to steer stem and progenitor cell behavior via defined mechano-adhesive properties.
Collapse
Affiliation(s)
- Aleeza Farrukh
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Felipe Ortega
- Biochemistry and Molecular Biology Department IV, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain; Institute of Neurochemistry (IUIN), 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Wenqiang Fan
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Nicolás Marichal
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Julieta I Paez
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Saarland University, Campus Saarbrücken D2 2, 66123 Saarbrücken, Germany
| | - Marcelo J Salierno
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
8
|
Wrobel MR, Sundararaghavan HG. Positive and negative cues for modulating neurite dynamics and receptor expression. Biomed Mater 2017; 12:025016. [DOI: 10.1088/1748-605x/aa61d1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Sur S, Guler MO, Webber MJ, Pashuck ET, Ito M, Stupp SI, Launey T. Synergistic regulation of cerebellar Purkinje neuron development by laminin epitopes and collagen on an artificial hybrid matrix construct. Biomater Sci 2014; 2:903-914. [PMID: 25530849 PMCID: PMC4269166 DOI: 10.1039/c3bm60228a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extracellular matrix (ECM) creates a dynamic environment around the cells in the developing central nervous system, providing them with the necessary biochemical and biophysical signals. Although the functions of many ECM molecules in neuronal development have been individually studied in detail, the combinatorial effects of multiple ECM components are not well characterized. Here we demonstrate that the expression of collagen and laminin-1 (lam-1) are spatially and temporally correlated during embryonic and post-natal development of the cerebellum. These changes in ECM distribution correspond to specific stages of Purkinje neuron (PC) migration, somatic monolayer formation and polarization. To clarify the respective roles of these ECM molecules on PC development, we cultured cerebellar neurons on a hybrid matrix comprised of collagen and a synthetic peptide amphiphile nanofiber bearing a potent lam-1 derived bioactive IKVAV peptide epitope. By systematically varying the concentration and ratio of collagen and the laminin epitope in the matrix, we could demonstrate a synergistic relationship between these two ECM components in controlling multiple aspects of PC maturation. An optimal ratio of collagen and IKVAV in the matrix was found to promote maximal PC survival and dendrite growth, while dendrite penetration into the matrix was enhanced by a high IKVAV to collagen ratio. In addition, the laminin epitope was found to guide PC axon development. By combining our observations in vivo and in vitro, we propose a model of PC development where the synergistic effects of collagen and lam-1 play a key role in migration, polarization and morphological maturation of PCs.
Collapse
Affiliation(s)
- Shantanu Sur
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan
- School of Medical Science and Technology, IIT Kharagpur, 721302, India
- The Institute for Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL 60611, USA
| | - Mustafa O. Guler
- The Institute for Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL 60611, USA
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Matthew J. Webber
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Eugene T. Pashuck
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Masao Ito
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan
| | - Samuel I. Stupp
- The Institute for Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL 60611, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Thomas Launey
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan
- Launey Research Unit for Molecular Neurocybernetics, RIKEN Brain Science Institute, Wako-shi, 351-0198 Saitama, Japan
| |
Collapse
|
10
|
Enhanced proliferation and differentiation of neural stem cells grown on PHA films coated with recombinant fusion proteins. Acta Biomater 2013; 9:7845-54. [PMID: 23639778 DOI: 10.1016/j.actbio.2013.04.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Abstract
Polyhydroxyalkanoates (PHAs) belong to a family of copolyesters with demonstrated biocompatibility. We hypothesize that genetically fusing evolutionarily preserved cell binding motifs, such as RGD or IKVAV, to the PHA-binding protein phasin (PhaP) for surface functionalization of PHA materials could better support the growth and differentiation of neural stem cells (NSCs). This hypothesis is tested on three polyester materials of the same aliphatic family: poly(L-lactic acid) (PLA) and two PHB copolymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PHBVHHx). Experimental results indicate that surface coating of the two fusion proteins, PhaP-RGD and PhaP-IKVAV, provides short-term advantages in promoting the adhesion, proliferation and neural differentiation of rat NSCs compared to the PhaP-coated or uncoated material. Among the tested samples, the combination of coating PhaP-IKVAV on an PHBVHHx surface yields the highest levels in cell adhesion and proliferation, while the PLA film coated with PhaP-IKVAV promotes better neural differentiation and neurite outgrowth in the early stage. Because both PhaP-RGD and PhaP-IKVAV could be produced in an inexpensive manner, our data suggest that PhaP-IKVAV is an ideal nonspecific coating agent to functionalize hydrophobic biomaterials in the application of neural tissue engineering.
Collapse
|
11
|
Activation of ezrin/radixin/moesin mediates attractive growth cone guidance through regulation of growth cone actin and adhesion receptors. J Neurosci 2012; 32:282-96. [PMID: 22219290 DOI: 10.1523/jneurosci.4794-11.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The development of a functioning neural network relies on responses of axonal growth cones to molecular guidance cues that are encountered en route to their target tissue. Nerve growth factor (NGF) and neurotrophin-3 serve as attractive cues for chick embryo sensory growth cones in vitro and in vivo, but little is known about the actin-binding proteins necessary to mediate this response. The evolutionarily conserved ezrin/radixin/moesin (ERM) family of proteins can tether actin filaments to the cell membrane when phosphorylated at a conserved threonine residue. Here we show that acute neurotrophin stimulation rapidly increases active phospho-ERM levels in chick sensory neuron growth cone filopodia, coincident with an increase in filopodial L1 and β-integrin. Disrupting ERM function with a dominant-negative construct (DN-ERM) results in smaller and less motile growth cones with disorganized actin filaments. Previously, we found that NGF treatment increases actin-depolymerizing factor (ADF)/cofilin activity and growth cone F-actin (Marsick et al., 2010). Here, we show this F-actin increase, as well as attractive turning to NGF, is blocked when ERM function is disrupted despite normal activation of ADF/cofilin. We further show that DN-ERM expression disrupts leading edge localization of active ADF/cofilin and free F-actin barbed ends. Moreover, filopodial phospho-ERM levels are increased by incorporation of active ADF/cofilin and reduced by knockdown of L1CAM.Together, these data suggest that ERM proteins organize actin filaments in sensory neuron growth cones and are crucial for neurotrophin-induced remodeling of F-actin and redistribution of adhesion receptors.
Collapse
|
12
|
Krull CE. Neural crest cells and motor axons in avians: Common and distinct migratory molecules. Cell Adh Migr 2011; 4:631-4. [PMID: 20930560 DOI: 10.4161/cam.4.4.13594] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It has long been thought that the same molecules guide both trunk neural crest cells and motor axons as these cell types grow and extend to their target regions in developing embryos. There are common territories that are navigated by these cell types: both cells grow through the rostral portion of the somitic sclerotomes and avoid the caudal half of the sclerotomes. However, these cell types seem to use different molecules to guide them to their target regions. In this review, I will talk about the common and distinct methods of migration taken by trunk neural crest cells and motor axons as they grow and populate their target regions through chick embryos at the level of the trunk.
Collapse
Affiliation(s)
- Catherine E Krull
- University of Michigan, Biologic and Materials Sciences, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Wright JW, Harding JW. Contributions of matrix metalloproteinases to neural plasticity, habituation, associative learning and drug addiction. Neural Plast 2010; 2009:579382. [PMID: 20169175 PMCID: PMC2821634 DOI: 10.1155/2009/579382] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/22/2009] [Accepted: 12/15/2009] [Indexed: 12/13/2022] Open
Abstract
The premise of this paper is that increased expression of matrix metalloproteinases (MMPs) permits the reconfiguration of synaptic connections (i.e., neural plasticity) by degrading cell adhesion molecules (CAMs) designed to provide stability to those extracellular matrix (ECM) proteins that form scaffolding supporting neurons and glia. It is presumed that while these ECM proteins are weakened, and/or detached, synaptic connections can form resulting in new neural pathways. Tissue inhibitors of metalloproteinases (TIMPs) are designed to deactivate MMPs permitting the reestablishment of CAMs, thus returning the system to a reasonably fixed state. This review considers available findings concerning the roles of MMPs and TIMPs in reorganizing ECM proteins thus facilitating the neural plasticity underlying long-term potentiation (LTP), habituation, and associative learning. We conclude with a consideration of the influence of these phenomena on drug addiction, given that these same processes may be instrumental in the formation of addiction and subsequent relapse. However, our knowledge concerning the precise spatial and temporal relationships among the mechanisms of neural plasticity, habituation, associative learning, and memory consolidation is far from complete and the possibility that these phenomena mediate drug addiction is a new direction of research.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| | | |
Collapse
|
14
|
Wolfram T, Spatz JP, Burgess RW. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules. BMC Cell Biol 2008; 9:64. [PMID: 19055842 PMCID: PMC2612657 DOI: 10.1186/1471-2121-9-64] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 12/04/2008] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Molecular spacing is important for cell adhesion in a number of ways, ranging from the ordered arrangement of matrix polymers extracellularly, to steric hindrance of adhesion/signaling complexes intracellularly. This has been demonstrated using nanopatterned RGD peptides, a canonical extracellular matrix ligand for integrin interactions. Cell adhesion was greatly reduced when the RGD-coated nanoparticles were separated by more than 60 nm, indicating a sharp spacing-dependent threshold for this form of cell adhesion. RESULTS Here we show a similar dependence of cell adhesion on the spacing of agrin, a protein that exists as both a secreted, matrix-bound form and a type-2 transmembrane form in vivo. Agrin was presented as a substrate for cell adhesion assays by anchoring recombinant protein to gold nanoparticles that were arrayed at tunable distances onto glass coverslips. Cells adhered well to nanopatterned agrin, and when presented as uniformly coated substrates, adhesion to agrin was comparable to other well-studied adhesion molecules, including N-Cadherin. Adhesion of both mouse primary cortical neurons and rat B35 neuroblastoma cells showed a spacing-dependent threshold, with a sharp drop in adhesion when the space between agrin-coated nanoparticles increased from 60 to 90 nm. In contrast, adhesion to N-Cadherin decreased gradually over the entire range of distances tested (uniform, 30, 60, 90, and 160 nm). The spacing of the agrin nanopattern also influenced cell motility, and peptide competition suggested adhesion was partially integrin dependent. Finally, differences in cell adhesion to C-terminal agrin fragments of different lengths were detected using nanopatterned substrates, and these differences were not evident using uniformly coated substrates. CONCLUSION These results suggest nanopatterned substrates may provide a physiological presentation of adhesive substrates, and are consistent with cells adhering to agrin through a mechanism that more closely resembles an interaction with the extracellular matrix than a transmembrane adhesion molecule.
Collapse
Affiliation(s)
- Tobias Wolfram
- Dept. New Materials and Biosystems, Max-Planck-Institute for Metals Research, University of Heidelberg, Stuttgart, Germany
- Dept. of Biophysical Chemistry, University of Heidelberg, Stuttgart, Germany
- Institute for Molecular Biophysics, Bar Harbor, ME, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Joachim P Spatz
- Dept. New Materials and Biosystems, Max-Planck-Institute for Metals Research, University of Heidelberg, Stuttgart, Germany
- Dept. of Biophysical Chemistry, University of Heidelberg, Stuttgart, Germany
| | - Robert W Burgess
- Institute for Molecular Biophysics, Bar Harbor, ME, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| |
Collapse
|
15
|
Blackmore M, Letourneau PC. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord. ACTA ACUST UNITED AC 2007; 66:1564-83. [PMID: 17058193 DOI: 10.1002/neu.20311] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic birds and mammals are capable of axon regeneration after spinal cord injury, but this ability is lost during a discrete developmental transition. We recently showed that changes within maturing neurons, as opposed to changes solely in the spinal cord environment, significantly restrict axon regeneration during development. The developmental changes within neurons that limit axon regeneration remain unclear. One gap in knowledge is the identity of the adhesive receptors that embryonic neurons use to extend axons in the spinal cord. Here we test the roles of L1/NgCAM, beta1 integrin, and cadherins, using a coculture system in which embryonic chick brainstem neurons regenerate axons into an explant of embryonic spinal cord. By in vivo and in vitro methods, we found that brainstem neurons reduce axonal expression of L1 as they mature. Disrupting either L1 or beta1 integrin function individually in our coculture system partially inhibited growth of brainstem axons in spinal cords, while disrupting cadherin function alone had no effect. However, when all three adhesive receptors were blocked simultaneously, axon growth in the spinal cord was reduced by 90%. Using immunohistochemistry and in situ hybridization we show that during the period when neurons lose their regenerative capacity they reduce expression of mRNA for N-cadherin, and reduce axonal L1/NgCAM protein through a post-transcriptional mechanism. These data show that embryonic neurons use L1/NgCAM, beta1 integrin, and cadherin receptors for axon regeneration in the embryonic spinal cord, and raise the possibility that a reduced expression of these essential receptors may contribute to the low-regenerative capacity of older neurons.
Collapse
Affiliation(s)
- Murray Blackmore
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
16
|
Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem 2006; 96:1227-41. [PMID: 16464240 DOI: 10.1111/j.1471-4159.2005.03565.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rats learning the Morris water maze exhibit hippocampal changes in synaptic morphology and physiology that manifest as altered synaptic efficacy. Learning requires structural changes in the synapse, and multiple cell adhesion molecules appear to participate. The activity of these cell adhesion molecules is, in large part, dependent on their interaction with the extracellular matrix (ECM). Given that matrix metalloproteinases (MMPs) are responsible for transient alterations in the ECM, we predicted that MMP function is critical for hippocampal-dependent learning. In support of this, it was observed that hippocampal MMP-3 and -9 increased transiently during water maze acquisition as assessed by western blotting and mRNA analysis. The ability of the NMDA receptor channel blocker MK801 to attenuate these changes indicated that the transient MMP changes were in large part dependent upon NMDA receptor activation. Furthermore, inhibition of MMP activity with MMP-3 and -9 antisense oligonucleotides and/or MMP inhibitor FN-439 altered long-term potentiation and prevented acquisition in the Morris water maze. The learning-dependent MMP alterations were shown to modify the stability of the actin-binding protein cortactin, which plays an essential role in regulating the dendritic cytoskeleton and synaptic efficiency. Together these results indicate that changes in MMP function are critical to synaptic plasticity and hippocampal-dependent learning.
Collapse
Affiliation(s)
- Starla E Meighan
- Department of Veterinary Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington 99164, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. Oxidative stress affects the integrin-linked kinase signaling pathway after transient focal cerebral ischemia. Stroke 2004; 35:2560-5. [PMID: 15472100 DOI: 10.1161/01.str.0000144653.32853.ed] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The integrin-linked kinase (ILK) signaling pathway contributes to regulation of cellular adhesion, migration, and differentiation, and to apoptotic cell death after a variety of cell death stimuli. We have reported that overexpression of copper/zinc superoxide dismutase (SOD1) reduces apoptotic cell death by promoting the phosphatidylinositol 3-kinase (PI3-K)/Akt survival pathway after transient focal cerebral ischemia (tFCI). However, the role of the ILK pathway after tFCI and the role of oxygen free radicals in regulation of apoptosis remain unclear. METHODS To clarify these issues, we used an in vivo tFCI model with SOD1 transgenic mice and wild-type mice. We administered the PI3-K inhibitor, LY294002, into mouse brains after tFCI and examined the role of PI3-K in the ILK pathway and expression of the ILK/Akt complex by immunohistochemistry, Western blot analysis, and coimmunoprecipitation. RESULTS A transient increase in ILK was detected early after tFCI and was prevented by treatment with LY294002, but promoted by SOD1. Coimmunoprecipitation revealed that the direct reaction of ILK/Akt transiently increased concurrent with the increase in ILK after tFCI. Moreover, the ILK/Akt complex was prevented by LY294002, but promoted by SOD1. CONCLUSIONS These results suggest that the ILK pathway mediated by PI3-K is affected by tFCI and by SOD1.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Calif 94305-5487, USA
| | | | | | | | | |
Collapse
|
18
|
Itoh S, Suzuki M, Yamaguchi I, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J. Development of a nerve scaffold using a tendon chitosan tube. Artif Organs 2004; 27:1079-88. [PMID: 14678421 DOI: 10.1111/j.1525-1594.2003.07208.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bridge grafting (15 mm) into the sciatic nerve of SD rats was carried out using tendon chitosan tubes having either a circular or triangular cross-section, as well as triangular tubes combined with laminin, CDPGYIGSR, or CSRARKQAASIKVAVSAD (n = 15 in each group). As a control, isografting (15 mm) was carried out in the SD rats (n = 7). Specimens were taken after 1, 2, 4, 6, and 8 weeks for histology, and nerve regeneration was evaluated electro-physiologically and histologically after 12 weeks. The mechanical strength of triangular tubes was found to be higher than circular tubes, and the inner volume of a triangular tube tends to be larger than in circular tubes. Nerve tissue regeneration along the tube wall was found in both the laminin and laminin peptide groups. According to the result of percentage neural tissue in relation to evoked action potentials, the consecutive treatments of YIGSR and IKVAV was found to match the effectiveness of intact laminin.
Collapse
Affiliation(s)
- Soichiro Itoh
- Division of Molecular Tissue Engineering, Department of Plastic Surgery, Biomechanical Engineering, Orthopaedic and Spinal Surgery, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gary DS, Milhavet O, Camandola S, Mattson MP. Essential role for integrin linked kinase in Akt-mediated integrin survival signaling in hippocampal neurons. J Neurochem 2003; 84:878-90. [PMID: 12562530 DOI: 10.1046/j.1471-4159.2003.01579.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation of integrin receptors in neurons can promote cell survival and synaptic plasticity, but the underlying signal transduction pathway(s) is unknown. We report that integrin signaling prevents apoptosis of embryonic hippocampal neurons by a mechanism involving integrin-linked kinase (ILK) that activates Akt kinase. Activation of integrins using a peptide containing the amino acid sequence EIKLLIS derived from the alpha chain of laminin protected hippocampal neurons from apoptosis induced by glutamate or staurosporine, and increased Akt activity in a beta1 integrin-dependent manner. Transfection of neurons with a plasmid encoding dominant negative Akt blocked the protective effect of the integrin-activating peptide, as did a chemical inhibitor of Akt. Although inhibitors of phosphoinositide-3 (PI3) kinase blocked the protective effect of the peptide, we found no increase in PI3 kinase activity following integrin stimulation suggesting that PI3 kinase was necessary for Akt activity but was not sufficient for the increase in Akt activity following integrin activation. Instead, we show a requirement for ILK in integrin receptor-induced Akt activation. ILK was activated following integrin stimulation and dominant negative ILK blocked integrin-mediated Akt activation and cell survival. Activation of ILK and Akt were also required for neuroprotection by substrate-associated laminin. These results establish a novel pathway that signals cell survival in neurons in response to integrin receptor activation.
Collapse
Affiliation(s)
- Devin S Gary
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
20
|
Wallquist W, Patarroyo M, Thams S, Carlstedt T, Stark B, Cullheim S, Hammarberg H. Laminin chains in rat and human peripheral nerve: distribution and regulation during development and after axonal injury. J Comp Neurol 2002; 454:284-93. [PMID: 12442319 DOI: 10.1002/cne.10434] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
During nerve growth, axons are dependent upon contact with matrix components, such as laminins, for elongation, guidance, and trophic support. Semiquantitative in situ hybridization histochemistry and immunohistochemistry (IHC) were used to identify laminin chains in normal peripheral nerves, during postnatal development, after sciatic nerve transection (SNT), and after sciatic nerve crush (SNC). Laminin alpha2, alpha4, beta1, beta2, and gamma1 chain mRNAs were all expressed at high levels in newborn rat sciatic nerves with declining levels during later developmental stages. At the adult stage, no laminin chain mRNA was detectable. Of interest, the mRNA levels for alpha4 chain declined faster than those for alpha2. After SNT, laminin alpha2, alpha4, beta1, and gamma1 mRNA levels were up-regulated at the site of the injury, with the most profound reaction in the proximal nerve stump. Laminin alpha2 and alpha4 chains differed in that the mRNA levels of alpha4 were up-regulated earlier and declined quicker, whereas alpha2 had a later onset, with high levels remaining even after 6 weeks. After SNC, there was an initial up-regulation of the same laminin chain mRNAs as after SNT in the nerve, however, less intense, and at 6 weeks after SNC, all laminin mRNA levels studied had returned to normal. IHC of adult human normal and transected peripheral nerves stained positive for laminin alpha2, alpha4, beta1, and gamma1 chains in close relation to neurofilament labeled axons. Laminin alpha3, alpha4, alpha5, beta1, beta2, and gamma1 chains were found in blood vessel-like structures and alpha3, alpha4, alpha5, beta2, and gamma1 in the perineurium. These results and a previously published description of integrin regulation in spinal motoneurons suggest that both laminin-2 (alpha2beta1gamma1) and laminin-8 (alpha4beta1gamma1) are important for the postnatal nerve development and axonal regeneration after injury and that laminin-8 may have important functions especially early postnatally and early after adult nerve lesion.
Collapse
Affiliation(s)
- Wilhelm Wallquist
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The interplay between growing axons and the extracellular substrate is pivotal for directing axonal outgrowth during development and regeneration. Here we show an important role for the neuronal cell adhesion molecule alpha7beta1 integrin during peripheral nerve regeneration. Axotomy led to a strong increase of this integrin on regenerating motor and sensory neurons, but not on the normally nonregenerating CNS neurons. alpha7 and beta1 subunits were present on the axons and their growth cones in the regenerating facial nerve. Transgenic deletion of the alpha7 subunit caused a significant reduction of axonal elongation. The associated delay in the reinnervation of the whiskerpad, a peripheral target of the facial motor neurons, points to an important role for this integrin in the successful execution of axonal regeneration.
Collapse
|
22
|
Kloss CU, Werner A, Klein MA, Shen J, Menuz K, Probst JC, Kreutzberg GW, Raivich G. Integrin family of cell adhesion molecules in the injured brain: regulation and cellular localization in the normal and regenerating mouse facial motor nucleus. J Comp Neurol 1999; 411:162-78. [PMID: 10404114 DOI: 10.1002/(sici)1096-9861(19990816)411:1<162::aid-cne12>3.0.co;2-w] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Integrins are a large family of heterodimeric glycoproteins that play a crucial role in cell adhesion during development, inflammation, and tissue repair. In the current study, we investigated the localization of different integrin subunits in the mouse facial motor nucleus and their regulation after transection of the facial nerve. In the normal mouse brain, there was clear immunoreactivity for alpha5-, alpha6-, and beta1-integrin subunits on blood vessel endothelia and for alphaM- and beta2-subunits on resting parenchymal microglia. Facial nerve transection led to an up-regulation of the beta1-subunit on the axotomized neurons and an increase in the alpha4-, alpha5-, alpha6-, beta1-, alphaM-, alphaX-, and beta2-subunits on the adjacent, activated microglia. Quantification of the microglial integrins revealed two different expression patterns. The subunits alpha5 and alpha6 showed a monophasic increase with a maximum at day 4, the alphaM-subunit a biphasic regulation, with an early peak at day 1 and an elevated plateau between day 14 and 42. At day 14, there was also an influx of lymphocytes immunoreactive for the alpha4beta1- and alphaLbeta2-integrins, which aggregated at sites of neural debris and phagocytotic microglia. This finding was accompanied by a significant increase of the alpha5beta1-integrin on blood vessel endothelia. In summary, facial axotomy is followed by a strong and cell-type-specific expression of integrins on the affected neurons and on surrounding microglia, lymphocytes, and vascular endothelia. The presence of several, strikingly different temporal patterns suggests a selective involvement of these molecules in the different adhesive events during regeneration in the central nervous system.
Collapse
Affiliation(s)
- C U Kloss
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
F-spondin, an extracellular matrix protein, is present in peripheral nerve during embryonic development, but its amount diminishes by birth. Axotomy of adult rat sciatic nerve, however, causes a massive upregulation of both F-spondin mRNA and protein distal to the lesion. F-spondin in the distal stump of axotomized nerve promotes neurite outgrowth of sensory neurons, as revealed by protein neutralization with F-spondin-specific antibodies. Thus, F-spondin is likely to play a role in promoting axonal regeneration after nerve injury.
Collapse
|
24
|
Comparison of neurite outgrowth induced by intact and injured sciatic nerves: a confocal and functional analysis. J Neurosci 1998. [PMID: 9412511 DOI: 10.1523/jneurosci.18-01-00328.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanisms regulating axon growth in the peripheral nervous system have been studied by means of an in vitro bioassay, the tissue section culture, in which regenerating neurons are grown on substrata made up of tissue sections. Sections from intact and degenerated sciatic nerves proved to be different in their ability to support neurite outgrowth of embryonic chick sensory neurons from both qualitative and quantitative points of view. On denervated nerve sections, the total length of neurites elaborated per neuron was almost twice that found on intact nerve sections. In addition, confocal microscopy revealed a striking difference between intact and denervated nerve substrata: on denervated nerve sections, neurites grew inside the internal structures of endoneurial Schwann cell tubes, within the underlying tissue sections, whereas on intact nerve sections neurites extended along endoneurial basal laminae but never entered Schwann cell tubes. Perturbation experiments were used to analyze some of the molecular determinants that control neurite outgrowth in this system. Antibodies directed against the beta1-integrin subunit inhibited neurite extension on both normal and degenerated rat sciatic nerve tissue. Strikingly, however, differential inhibition was observed using antibodies directed against extracellular matrix molecules. Anti-laminin-2 (merosin) antibodies drastically reduced both the percentage of growing neurons and the total length of neurites on denervated nerve sections, but they did not modify these parameters on sections of normal nerve. Taken together, these results suggest that laminin-2/merosin promotes neurite outgrowth in peripheral nerve environments but only after Wallerian degeneration, which is when axons are allowed to extend within endoneurial tubes.
Collapse
|