1
|
Liu D, Zinski A, Mishra A, Noh H, Park GH, Qin Y, Olorife O, Park JM, Abani CP, Park JS, Fung J, Sawaqed F, Coyle JT, Stahl E, Bendl J, Fullard JF, Roussos P, Zhang X, Stanton PK, Yin C, Huang W, Kim HY, Won H, Cho JH, Chung S. Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development. Mol Psychiatry 2022; 27:4218-4233. [PMID: 35701597 DOI: 10.1038/s41380-022-01654-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci's influence on gene expression have employed tissues with mixed cell compositions that can obscure cell-specific effects. Furthermore, enriched SCZ heritability in the fetal brain underscores the need to study the impact of SCZ risk loci in specific developing neurons. MGE-derived cortical interneurons (cINs) are consistently affected in SCZ brains and show enriched SCZ heritability in human fetal brains. We identified SCZ GWAS risk genes that are dysregulated in iPSC-derived homogeneous populations of developing SCZ cINs. These SCZ GWAS loci differential expression (DE) genes converge on the PKC pathway. Their disruption results in PKC hyperactivity in developing cINs, leading to arborization deficits. We show that the fine-mapped GWAS locus in the ATP2A2 gene of the PKC pathway harbors enhancer marks by ATACseq and ChIPseq, and regulates ATP2A2 expression. We also generated developing glutamatergic neurons (GNs), another population with enriched SCZ heritability, and confirmed their functionality after transplantation into the mouse brain. Then, we identified SCZ GWAS risk genes that are dysregulated in developing SCZ GNs. GN-specific SCZ GWAS loci DE genes converge on the ion transporter pathway, distinct from those for cINs. Disruption of the pathway gene CACNA1D resulted in deficits of Ca2+ currents in developing GNs, suggesting compromised neuronal function by GWAS loci pathway deficits during development. This study allows us to identify cell type-specific and developmental stage-specific mechanisms of SCZ risk gene function, and may aid in identifying mechanism-based novel therapeutic targets.
Collapse
Affiliation(s)
- Dongxin Liu
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Amy Zinski
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Akanksha Mishra
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Haneul Noh
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Gun-Hoo Park
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Yiren Qin
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Oshoname Olorife
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - James M Park
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Chiderah P Abani
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Joy S Park
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Janice Fung
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Farah Sawaqed
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Joseph T Coyle
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA
| | - Eli Stahl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - John F Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Xiaolei Zhang
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Patric K Stanton
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Changhong Yin
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Weihua Huang
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Hae-Young Kim
- Department of Public Health, New York Medical College, Valhalla, NY, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jun-Hyeong Cho
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Sangmi Chung
- Department of Cell biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Psychiatry, McLean Hospital/Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
2
|
Astrocytic IGF-IRs Induce Adenosine-Mediated Inhibitory Downregulation and Improve Sensory Discrimination. J Neurosci 2021; 41:4768-4781. [PMID: 33911021 DOI: 10.1523/jneurosci.0005-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) signaling plays a key role in learning and memory processes. While the effects of IGF-I on neurons have been studied extensively, the involvement of astrocytes in IGF-I signaling and the consequences on synaptic plasticity and animal behavior remain unknown. We have found that IGF-I induces long-term potentiation (LTPIGFI) of the postsynaptic potentials that is caused by a long-term depression of inhibitory synaptic transmission in mice. We have demonstrated that this long-lasting decrease in the inhibitory synaptic transmission is evoked by astrocytic activation through its IGF-I receptors (IGF-IRs). We show that LTPIGFI not only increases the output of pyramidal neurons, but also favors the NMDAR-dependent LTP, resulting in the crucial information processing at the barrel cortex since specific deletion of IGF-IR in cortical astrocytes impairs the whisker discrimination task. Our work reveals a novel mechanism and functional consequences of IGF-I signaling on cortical inhibitory synaptic plasticity and animal behavior, revealing that astrocytes are key elements in these processes.SIGNIFICANCE STATEMENT Insulin-like growth factor-I (IGF-I) signaling plays key regulatory roles in multiple processes of brain physiology, such as learning and memory. Yet, the underlying mechanisms remain largely undefined. Here we demonstrate that astrocytes respond to IGF-I signaling, elevating their intracellular Ca2+ and stimulating the release of ATP/adenosine, which triggers the LTD of cortical inhibitory synapses, thus regulating the behavioral task performance related to cortical sensory information processing. Therefore, the present work represents a major conceptual advance in our knowledge of the cellular basis of IGF-I signaling in brain function, by including for the first time astrocytes as key mediators of IGF-I actions on synaptic plasticity, cortical sensory information discrimination and animal behavior.
Collapse
|
3
|
Maglio LE, Noriega-Prieto JA, Maroto IB, Martin-Cortecero J, Muñoz-Callejas A, Callejo-Móstoles M, Fernández de Sevilla D. IGF-1 facilitates extinction of conditioned fear. eLife 2021; 10:e67267. [PMID: 33792539 PMCID: PMC8043742 DOI: 10.7554/elife.67267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) plays a key role in synaptic plasticity, spatial learning, and anxiety-like behavioral processes. While IGF-1 regulates neuronal firing and synaptic transmission in many areas of the central nervous system, its signaling and consequences on excitability, synaptic plasticity, and animal behavior dependent on the prefrontal cortex remain unexplored. Here, we show that IGF-1 induces a long-lasting depression of the medium and slow post-spike afterhyperpolarization (mAHP and sAHP), increasing the excitability of layer 5 pyramidal neurons of the rat infralimbic cortex. Besides, IGF-1 mediates a presynaptic long-term depression of both inhibitory and excitatory synaptic transmission in these neurons. The net effect of this IGF-1-mediated synaptic plasticity is a long-term potentiation of the postsynaptic potentials. Moreover, we demonstrate that IGF-1 favors the fear extinction memory. These results show novel functional consequences of IGF-1 signaling, revealing IGF-1 as a key element in the control of the fear extinction memory.
Collapse
Affiliation(s)
- Laura E Maglio
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
- Departamento de Ciencias Médicas Básicas (Fisiología) and Instituto de Tecnologías Biomédicas (ITB), Universidad de La LagunaTenerifeSpain
| | - José A Noriega-Prieto
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
- Department of Neuroscience, University of MinnesotaMinneapolisUnited States
| | - Irene B Maroto
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto Universitario de Investigación Neuroquímica (IUIN), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de MadridMadridSpain
| | - Jesús Martin-Cortecero
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
- Institute of Physiology and Pathophysiology, Medical Biophysic, Heidelberg UniversityHeidelbergGermany
| | - Antonio Muñoz-Callejas
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
| | - Marta Callejo-Móstoles
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
| | - David Fernández de Sevilla
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
4
|
Camargo G, Elizalde A, Trujillo X, Montoya-Pérez R, Mendoza-Magaña ML, Hernandez-Chavez A, Hernandez L. Inactivation of GABAA receptor is related to heat shock stress response in organism model Caenorhabditis elegans. Cell Stress Chaperones 2016; 21:763-72. [PMID: 27230213 PMCID: PMC5003793 DOI: 10.1007/s12192-016-0701-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/29/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.
Collapse
Affiliation(s)
- Gabriela Camargo
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias dela Salud, Universidad de Guadalajara, Sierra Mojada # 950, Guadalajara, 44340, Jalisco, Mexico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Av. 25 de Julio # 965, Colima, 28045, Colima, Mexico
- Laboratorio de Biotecnología, Departamento de Botánica y Zoología, Centro Universitariode Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez # 2100, Zapopan, 45110, Jalisco, Mexico
| | - Alejandro Elizalde
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Av. 25 de Julio # 965, Colima, 28045, Colima, Mexico
| | - Xochitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Av. 25 de Julio # 965, Colima, 28045, Colima, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Mújica S/N, Morelia, 58030, Michoacán, Mexico
| | - María Luisa Mendoza-Magaña
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias dela Salud, Universidad de Guadalajara, Sierra Mojada # 950, Guadalajara, 44340, Jalisco, Mexico
| | - Abel Hernandez-Chavez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, SierraMojada # 950, Guadalajara, 44340, Jalisco, Mexico
| | - Leonardo Hernandez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Centro Universitario de Ciencias dela Salud, Universidad de Guadalajara, Sierra Mojada # 950, Guadalajara, 44340, Jalisco, Mexico.
| |
Collapse
|
5
|
Grönbladh A, Johansson J, Nyberg F, Hallberg M. Recombinant human growth hormone affects the density and functionality of GABAB receptors in the male rat brain. Neuroendocrinology 2013; 97:203-11. [PMID: 22710737 DOI: 10.1159/000339821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 05/27/2012] [Indexed: 11/19/2022]
Abstract
The beneficial effects of growth hormone (GH) on memory and learning have previously been confirmed in both humans and in animal models. An important role of GABAB receptors for multiple forms of learning and memory has also been reported. In this study, we examined the effect of GH on the density and functionality of the metabotropic GABAB receptors in the rat brain. Male Sprague-Dawley rats (n = 24) divided into 3 groups were injected twice daily with recombinant human GH (0.07 or 0.7 IU/kg) for 7 days. The effects of the hormone were determined by quantitative autoradiography and by GABAB stimulated [(35)S]-GTPγS binding using the selective GABAB receptor agonist baclofen. The results demonstrate moderate but significant alterations in both receptor density and functionality in a number of brain regions. For example, a dose-dependent upregulation of GABAB receptors was found in the cingulate cortex, primary motor cortex and caudate putamen, whereas attenuation in the receptor density was encountered in, for example, the medial geniculate nucleus. Although the GH-induced effects on the GABAB receptor in brain areas associated with cognition were fairly pronounced, they were significant and we propose that the physiological responses observed after GH administration at least partly can be mediated through a mechanism involving GABAB receptors.
Collapse
Affiliation(s)
- Alfhild Grönbladh
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
6
|
Lohof AM, Mariani J, Sherrard RM. Afferent-target interactions during olivocerebellar development: transcommissural reinnervation indicates interdependence of Purkinje cell maturation and climbing fibre synapse elimination. Eur J Neurosci 2005; 22:2681-8. [PMID: 16324102 DOI: 10.1111/j.1460-9568.2005.04493.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have used a model of postlesional reinnervation to observe the interactions between synaptic partners during neosynaptogenesis to determine how the developmental states of the pre- and postsynaptic cells influence circuit maturation. After unilateral transection of the neonatal rat olivocerebellar pathway (pedunculotomy), axons from the remaining ipsilateral inferior olive grow into the denervated hemicerebellum and develop climbing fibre (CF) terminal arbors on Purkinje cells (PCs) at a later stage of development than normal. However, the significance of delayed CF-PC interactions on subsequent circuit maturation remains poorly defined. To examine this question, we recorded CF-induced currents in PCs and analysed PC morphology during the first two postnatal weeks in control animals and following left unilateral inferior cerebellar pedunculotomy on postnatal day (P)3. Our results show that transcommissural olivary axons multiply-reinnervate PCs in the denervated hemisphere over 4 days following pedunculotomy. Each PC received fewer CFs than did age-matched controls and the maximal multi-reinnervation was reached on P7, 2 days later than in controls. Consequently, the onset of CF synapse elimination in reinnervated PCs was delayed, but then proceeded in parallel with controls so that all PCs were monoinnervated by P15. Furthermore, reinnervated PCs had delayed dendritic maturation and subsequent dendritic abnormalities consistent with the role of CF innervation in PC dendritic growth. Thus, within the olivocerebellar system, our data suggest that target neurons depend upon sufficient afferent investment arriving at the correct time for their normal development, and maturation of the target neuron regulates afferent selection and therefore circuit maturation.
Collapse
Affiliation(s)
- Ann M Lohof
- Laboratoire Développement et Vieillissement du Système Nerveux, UMR 7102 Neurobiologie des Processus Adaptatifs, CNRS et Université Pierre et Marie Curie, Case courrier 14, 9 quai Saint-Bernard, 75005 Paris, France.
| | | | | |
Collapse
|
7
|
Nagano I, Shiote M, Murakami T, Kamada H, Hamakawa Y, Matsubara E, Yokoyama M, Moritaz K, Shoji M, Abe K. Beneficial effects of intrathecal IGF-1 administration in patients with amyotrophic lateral sclerosis. Neurol Res 2005; 27:768-72. [PMID: 16197815 DOI: 10.1179/016164105x39860] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES There is currently no effective pharmacological treatment for amyotrophic lateral sclerosis (ALS). In a transgenic mouse model of ALS, intrathecal infusion of insulin-like growth factor (IGF)-1 showed a promising increase in survival. We performed a double-blind clinical trial to assess the effect of intrathecal administration of IGF-1 on disease progression in patients with ALS. METHODS Nine patients with ALS were randomly assigned to receive either a high dose (3 microg/kg of body weight) or low dose (0.5 microg/kg of body weight) of IGF-1 every 2 weeks for 40 weeks. The outcome measurements were the rate of decline of bulbar and limb functions (Norris scales) and forced vital capacity. RESULTS The high-dose treatment slowed a decline of motor functions of the ALS patients in total Norris and limb Norris scales, but not in bulbar Norris or vital capacity. The intrathecal administration of IGF-1 had a modest but significant beneficial effect in ALS patients without any serious adverse effects. DISCUSSION Intrathecal IGF-1 treatment could provide an effective choice for ALS although further studies in more patients are needed to confirm its efficacy and optimize dosages of IGF-1.
Collapse
Affiliation(s)
- Isao Nagano
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nagano I, Ilieva H, Shiote M, Murakami T, Yokoyama M, Shoji M, Abe K. Therapeutic benefit of intrathecal injection of insulin-like growth factor-1 in a mouse model of Amyotrophic Lateral Sclerosis. J Neurol Sci 2005; 235:61-8. [PMID: 15990113 DOI: 10.1016/j.jns.2005.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 02/16/2005] [Accepted: 04/05/2005] [Indexed: 11/22/2022]
Abstract
Insulin-like growth factor (IGF)-1 has been shown to have a protective effect on motor neurons both in vitro and in vivo, but has limited efficacy in patients with amyotrophic lateral sclerosis (ALS) when given subcutaneously. To examine the possible effectiveness of IGF-1 in a mouse model of familial ALS, transgenic mice expressing human Cu/Zn superoxide dismutase (SOD1) with a G93A mutation were treated by continuous IGF-1 delivery into the intrathecal space of the lumbar spinal cord. We found that the intrathecal administration of IGF-1 improved motor performance, delayed the onset of clinical disease, and extended survival in the G93A transgenic mice. Furthermore, it increased the expression of phosphorylated Akt and ERK in spinal motor neurons, and partially prevented motor neuron loss in these mice. Taken together, the results suggest that direct administration of IGF-1 into the intrathecal space may have a therapeutic benefit for ALS.
Collapse
Affiliation(s)
- Isao Nagano
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Seto D, Zheng WH, McNicoll A, Collier B, Quirion R, Kar S. Insulin-like growth factor-I inhibits endogenous acetylcholine release from the rat hippocampal formation: possible involvement of GABA in mediating the effects. Neuroscience 2003; 115:603-12. [PMID: 12421625 DOI: 10.1016/s0306-4522(02)00450-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Evidence suggests that insulin-like growth factor-I (IGF-I) plays an important role during brain development and in the maintenance of normal as well as activity-dependent functioning of the adult brain. Apart from its trophic effects, IGF-I has also been implicated in the regulation of brain neurotransmitter release thus indicating a neuromodulatory role for this growth factor in the central nervous system. Using in vitro slice preparations, we have earlier reported that IGF-I potently inhibits K(+)-evoked endogenous acetylcholine (ACh) release from the adult rat hippocampus and cortex but not from the striatum. The effects of IGF-I on hippocampal ACh release was sensitive to the Na(+) channel blocker tetrodotoxin, suggesting that IGF-I might act indirectly via the release of other transmitters/modulators. In the present study, we have characterized the possible involvement of GABA in IGF-I-mediated inhibition of ACh release and measured the effects of this growth factor on choline acetyltransferase (ChAT) activity and high-affinity choline uptake in the hippocampus of the adult rat brain. Prototypical agonists of GABA(A) and GABA(B) receptors (i.e. 10 microM muscimol and 10 microM baclofen) inhibited, whereas the antagonists of the respective receptors (i.e. 10 microM bicuculline and 10 microM phaclofen) potentiated K(+)-evoked ACh release from rat hippocampal slices. IGF-I (10 nM) inhibited K(+)- as well as veratridine-evoked ACh release from rat hippocampal slices and the effect is possibly mediated via the activation of a typical IGF-I receptor and the subsequent phosphorylation of the insulin receptor substrate-1 (IRS-1). The inhibitory effects of IGF-I on hippocampal ACh release were not additive to those of either muscimol or baclofen, but were attenuated by GABA antagonists, bicuculline and phaclofen. Additionally, in contrast to ACh release, IGF-I did not alter either the activity of the enzyme ChAT or the uptake of choline in the hippocampus. These results, taken together, indicate that IGF-I, under acute conditions, can decrease hippocampal ACh release by acting on the typical IGF-I/IRS receptor complex while having no direct effect on ChAT activity or the uptake of choline. Furthermore, the evidence that effects of IGF-I could be modulated, at least in part, by GABA antagonists suggest that the release of GABA and the activation of its receptors may possibly be involved in mediating the inhibitory effects of IGF-I on hippocampal ACh release.
Collapse
Affiliation(s)
- D Seto
- Douglas Hospital Research Center, Department of Psychiatry, 6875 La Salle Boulevard, Verdun, QC, Canada H4H 1R3
| | | | | | | | | | | |
Collapse
|
10
|
Ostlund P, Lindegren H, Pettersson C, Bedecs K. Up-regulation of functionally impaired insulin-like growth factor-1 receptor in scrapie-infected neuroblastoma cells. J Biol Chem 2001; 276:36110-5. [PMID: 11461928 DOI: 10.1074/jbc.m105710200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growing body of evidence suggests that an altered level or function of the neurotrophic insulin-like growth factor-1 receptor (IGF-1R), which supports neuronal survival, may underlie neurodegeneration. This study has focused on the expression and function of the IGF-1R in scrapie-infected neuroblastoma cell lines. Our results show that scrapie infection induces a 4-fold increase in the level of IGF-1R in two independently scrapie-infected neuroblastomas, ScN2a and ScN1E-115 cells, and that the increased IGF-1R level was accompanied by increased IGF-1R mRNA levels. In contrast to the elevated IGF-1R expression in ScN2a, receptor binding studies revealed an 80% decrease in specific (125)I-IGF-1-binding sites compared with N2a cells. This decrease in IGF-1R-binding sites was shown to be caused by a 7-fold decrease in IGF-1R affinity. Furthermore, ScN2a showed no significant difference in IGF-1 induced proliferative response, despite the noticeable elevated IGF-1R expression, putatively explained by the reduced IGF-1R binding affinity. Additionally, IGF-1 stimulated IGF-1Rbeta tyrosine phosphorylation showed no major change in the dose-response between the cell types, possibly due to altered tyrosine kinase signaling in scrapie-infected neuroblastoma cells. Altogether these data indicate that scrapie infection affects the expression, binding affinity, and signal transduction mediated by the IGF-1R in neuroblastoma cells. Altered IGF-1R expression and function may weaken the trophic support in scrapie-infected neurons and thereby contribute to neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- P Ostlund
- Department of Neurochemistry and Neurotoxicology, University of Stockholm, Svante Arrhenius v. 21A, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
11
|
Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81:1143-95. [PMID: 11427694 DOI: 10.1152/physrev.2001.81.3.1143] [Citation(s) in RCA: 597] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
Collapse
Affiliation(s)
- M Ito
- Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
12
|
Samosudova NV, Reutov VP, Larionova NP, Chailakhyan LM. The possible role of nitric oxide in interaction between neurons. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2001; 378:213-6. [PMID: 12918331 DOI: 10.1023/a:1019298204394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- N V Samosudova
- Institute of Problems of Information Transmission, Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, Moscow, 101447 Russia
| | | | | | | |
Collapse
|
13
|
Zheng WH, Kar S, Doré S, Quirion R. Insulin-like growth factor-1 (IGF-1): a neuroprotective trophic factor acting via the Akt kinase pathway. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:261-72. [PMID: 11205145 DOI: 10.1007/978-3-7091-6301-6_17] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor-I (IGF-I) is a pleiotropic polypeptide with a wide range of actions in both central and peripheral nervous sytems. Over the past few years, we studied the trophic as well as neuromodulatory roles of IGF-I in the brain. Accumulated evidence indicates that IGF-I, apart from regulating growth and development, protects neurons against cell death induced by amyloidogenic derivatives, glucose or serum deprivation via the activation of intracellular pathways implicating phosphatidylinositide 3/Akt kinase, winged-helix family of transcription factor FKHRL1 phosphorylation or production of free radicals. The effects of IGF-I on neuroprotection, glucose metabolism and activity-dependent plasticity suggest the potential usefulness of this growth factor or related mimetics in the treatment of Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- W H Zheng
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
14
|
Wang YT, Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 2000; 25:635-47. [PMID: 10774731 DOI: 10.1016/s0896-6273(00)81066-1] [Citation(s) in RCA: 373] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cerebellar long-term depression (LTD) is a cellular model system of information storage that may underlie certain forms of motor learning. While cerebellar LTD is expressed as a selective modification of postsynaptic AMPA receptors, this might involve changes in receptor number/distribution, unitary conductance, kinetics, or glutamate affinity. The observation that GluR2-containing synaptic AMPA receptors could be internalized by regulated clathrin-mediated endocytosis suggested that this process could underlie LTD expression. To test this hypothesis, we postsynaptically applied dynamin and amphiphysin peptides that interfere with the clathrin endocytotic complex and found that they blocked LTD expression in cultured Purkinje neurons. In addition, induction of LTD and attenuation of AMPA responses by stimulation of clathrin-mediated endocytosis occluded each other. These findings suggest that the expression of cerebellar LTD requires clathrin-mediated internalization of postsynaptic AMPA receptors.
Collapse
Affiliation(s)
- Y T Wang
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
Doré S, Kar S, Zheng WH, Quirion R. Rediscovering good old friend IGF-I in the new millenium: possible usefulness in Alzheimer's disease and stroke. PHARMACEUTICA ACTA HELVETIAE 2000; 74:273-80. [PMID: 10812969 DOI: 10.1016/s0031-6865(99)00037-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Much research has been done over the past two decades on the role of insulin-like growth factors I and II (IGF) in the maintenance of normal body homeostasis, especially in regard to various endocrine functions, growth and aging. For example, IGF-I is a well established promoter of tissue growth and has been used in the clinics for the treatment of growth related disorders, even being abused by athletes to enhance performance in competitions. In contrast, comparatively limited attention has been given to the potential significance of the IGFs in the central nervous system. Over the past few years, we have studied the trophic as well as neuromodulatory roles of the IGFs in the brain. IGF-I and IGF-II are potent modulators of acetylcholine release, IGF-I inhibiting release while IGF-II is a potent stimulant. Moreover, only the internalization of the IGF-I receptor complex was blocked by an inhibitor of phosphotyrosylation. This is in accordance with the differential nature of the IGF-I and IGF-II receptors, the former being a tyrosine kinase receptor while the later is a single transmembrane domain protein bearing binding sites for 6-mannose phosphate containing residues. The activation of IGF-I receptors protected neurons against cell death induced by amyloidogenic derivatives likely by an intracellular mechanism distinct from those involved in the regulation of acetylcholine release and neuronal growth. The stimulation of IGF-I receptors can activate intracellular pathways implicating a PI3/Akt kinase and CREB phosphorylation or modulate the production of free radicals. The effects, particularly those of IGF-I on key markers of the Alzheimer's (AD) brains namely cholinergic dysfunction, neuronal amyloid toxicity, tau phosphorylation and glucose metabolism suggest the potential usefulness of this growth factor in the treatment of neurodegenerative diseases. However, the poor bioavailability, enzymatic stability and brain penetration of IGF-I hamper progress in this regard. The recent development of a small, non-peptidyl mimetic of insulin able to directly activate the insulin receptor [Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y., Royo, I., Vilella, D., Diez, M.T., Pelaez, F., Ruby, C., Kendall, R.L., Mao, X., Griffin, P., Calaycay, J., Zierath, J.R., Heck, J. V., Smith, R.G., Moller, D.E., 1999. Science, 284, 974-977] suggests that a similar strategy could be used for IGF-I and the IGF-I receptor leading to the characterization of IGF-I mimics of potential clinical usefulness.
Collapse
Affiliation(s)
- S Doré
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
16
|
Kar S, Seto D, Doré S, Hanisch U, Quirion R. Insulin-like growth factors-I and -II differentially regulate endogenous acetylcholine release from the rat hippocampal formation. Proc Natl Acad Sci U S A 1997; 94:14054-9. [PMID: 9391151 PMCID: PMC28431 DOI: 10.1073/pnas.94.25.14054] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1997] [Accepted: 09/17/1997] [Indexed: 02/05/2023] Open
Abstract
Insulin-like growth factors-I and -II (IGF-I and -II) are structurally related mitogenic polypeptides with potent growth promoting effects. These peptides and their corresponding IGF-I and -II receptors are selectively localized in the brain. To date, most of the effects of IGFs are believed to be mediated by IGF-I receptors whereas the significance of IGF-II receptor in mediating biological responses remains unclear. In the present study, we characterized the distribution of IGF-I and IGF-II receptor sites and investigated the effects of both factors on endogenous acetylcholine (ACh) release in adult rat hippocampus. [125I]IGF-I receptor binding sites are recognized by IGF-I> IGF-II> insulin, whereas [125I]IGF-II binding was competed potently by IGF-II> IGF-I but not by insulin. At the cellular level, IGF-I receptor sites were primarily noted in the molecular layer of the dentate gyrus and the CA2-CA3 subfields of the Ammon's horn whereas IGF-II sites were localized predominantly in the pyramidal cell layer of the CA1-CA3 subfields and in the granular cell layer of the dentate gyrus. IGF-I (10(-14)-10(-8) M) and des(1-3) IGF-I (10(-10)-10(-8) M) were found to inhibit whereas IGF-II (10(-14)-10(-8) M) potentiated K+-evoked ACh release from hippocampal slices. Tetrodotoxin altered the effects of IGF-I but not those of IGF-II suggesting that IGF-I acts indirectly via the release of other modulators whereas IGF-II acts directly on or in close proximity to the cholinergic terminals. The inhibitory effects of IGF-I were also observed in the frontal cortex but not in the striatum. In contrast, the stimulatory effects of IGF-II were evident both in the frontal cortex and striatum. Taken together, these results reveal the differential localization of IGF-I and IGF-II receptor sites in the hippocampal formation and the opposite role for these growth factors in the acute regulation of ACh release likely via two distinct mechanisms. Additionally, these data provide the first evidence for a direct role for IGF-II and its receptors in the regulation of transmitter release in the central nervous system.
Collapse
Affiliation(s)
- S Kar
- Douglas Hospital Research Center, Departments of Psychiatry, McGill University, Montreal, PQ, Canada H4H 1R3
| | | | | | | | | |
Collapse
|
17
|
D'Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G. The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 1996; 13:227-55. [PMID: 8989772 DOI: 10.1007/bf02740625] [Citation(s) in RCA: 336] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increasing evidence strongly supports a role for insulin-like growth factor-I (IGF-I) in central nervous system (CNS) development. IGF-I, IGF-II, the type IIGF receptor (the cell surface tyrosine kinase receptor that mediates IGF signals), and some IGF binding proteins (IGFBPs; secreted proteins that modulate IGF actions) are expressed in many regions of the CNS beginning in utero. The expression pattern of IGF system proteins during brain growth suggests highly regulated and developmentally timed IGF actions on specific neural cell populations. IGF-I expression is predominantly in neurons and, in many brain regions, peaks in a fashion temporally coincident with periods in development when neuron progenitor proliferation and/or neuritic outgrowth occurs. In contrast, IGF-II expression is confined mainly to cells of mesenchymal and neural crest origin. While expression of type I IGF receptors appears ubiquitous, that of IGFBPs is characterized by regional and developmental specificity, and often occurs coordinately with peaks of IGF expression. In vitro IGF-I has been shown to stimulate the proliferation of neuron progenitors and/or the survival of neurons and oligodendrocytes, and in some cultured neurons, to stimulate function. Transgenic (Tg) mice that overexpress IGF-I in the brain exhibit postnatal brain overgrowth without anatomic abnormality (20-85% increases in weight, depending on the magnitude of expression). In contrast, Tg mice that exhibit ectopic brain expression of IGFBP-1, an inhibitor of IGF action when present in molar excess, manifest postnatal brain growth retardation, and mice with ablated IGF-I gene expression, accomplished by homologous recombination, have brains that are 60% of normal size as adults. Taken together, these in vivo studies indicate that IGF-I can influence the development of most, if not all, brain regions, and suggest that the cerebral cortex and cerebellum are especially sensitive to IGF-I actions. IGF-I's growth-promoting in vivo actions result from its capacity to increase neuron number, at least in certain populations, and from its potent stimulation of myelination. These IGF-I actions, taken together with its neuroprotective effects following CNS and peripheral nerve injury, suggest that it may be of therapeutic benefit in a wide variety of disorders affecting the nervous system.
Collapse
Affiliation(s)
- A J D'Ercole
- Department of Pediatrics CB# 7220, University of North Carolina, Chapel Hill 27599-7220, USA
| | | | | | | |
Collapse
|