1
|
Querejeta E, Alatorre A, Ríos A, Barrientos R, Oviedo-Chávez A, Bobadilla-Lugo RA, Delgado A. Striatal input- and rate-dependent effects of muscarinic receptors on pallidal firing. ScientificWorldJournal 2012; 2012:547638. [PMID: 22654627 PMCID: PMC3361291 DOI: 10.1100/2012/547638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/24/2011] [Indexed: 11/30/2022] Open
Abstract
The globus pallidus (GP) plays a key role in the overall basal ganglia (BG) activity. Despite evidence of cholinergic inputs to GP, their role in the spiking activity of GP neurons has not received attention. We examine the effect of local activation and blockade of muscarinic receptors (MRs) in the spontaneous firing of GP neurons both in normal and ipsilateral striatum-lesioned rats. We found that activation of MRs produces heterogeneous responses in both normal and ipsilateral striatum-lesioned rats: in normal rats the response evoked by MRs depends on the predrug basal firing rate; the inhibition evoked by MRs is higher in normal rats than in striatum-lesioned rats; the number of neurons that undergo inhibition is lower in striatum-lesioned rats than in normal rats. Our data suggest that modulation of MRs in the GP depends on the firing rate before their activation and on the integrity of the striato-pallidal pathway.
Collapse
Affiliation(s)
- Enrique Querejeta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México, DF, Mexico.
| | | | | | | | | | | | | |
Collapse
|
2
|
Huang LZ, Grady SR, Quik M. Nicotine reduces L-DOPA-induced dyskinesias by acting at beta2* nicotinic receptors. J Pharmacol Exp Ther 2011; 338:932-41. [PMID: 21665941 PMCID: PMC3164339 DOI: 10.1124/jpet.111.182949] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/09/2011] [Indexed: 12/24/2022] Open
Abstract
L-DOPA-induced dyskinesias or abnormal involuntary movements (AIMs) are a debilitating adverse complication associated with prolonged L-DOPA administration for Parkinson's disease. Few treatments are currently available for dyskinesias. Our recent data showed that nicotine reduced L-DOPA-induced AIMs in parkinsonian animal models. An important question is the nicotinic acetylcholine receptor (nAChR) subtypes through which nicotine exerts this beneficial effect, because such knowledge would allow for the development of drugs that target the relevant receptor population(s). To address this, we used β2 nAChR subunit knockout [β2(-/-)] mice because β2-containing nAChRs are key regulators of nigrostriatal dopaminergic function. All of the mice were lesioned by intracranial injection of 6-hydroxydopamine into the right medial forebrain bundle. Lesioning resulted in a similar degree of nigrostriatal damage and parkinsonism in β2(-/-) and wild-type mice. All of the mice then were injected with L-DOPA (3 mg/kg) plus benserazide (15 mg/kg) once daily for 4 weeks until AIMs were fully developed. L-DOPA-induced AIMs were approximately 40% less in the β2(-/-) mice compared with the wild-type mice. It is interesting to note that nicotine (300 μg/ml in drinking water) reduced L-DOPA-induced AIMs by 40% in wild-type mice but had no effect in β2(-/-) mice with partial nigrostriatal damage. The nicotine-mediated decline in AIMs was much less pronounced in wild-type mice with near-complete degeneration, suggesting that presynaptic nAChRs on dopaminergic terminals have a major influence. These data demonstrate an essential role for β2* nAChRs in the antidyskinetic effect of nicotine and suggest that drugs targeting these subtypes may be useful for the management of L-DOPA-induced dyskinesias in Parkinson's disease.
Collapse
Affiliation(s)
- Luping Z Huang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, California 94025, USA
| | | | | |
Collapse
|
3
|
Bortolanza M, Wietzikoski EC, Boschen SL, Dombrowski PA, Latimer M, Maclaren DAA, Winn P, Da Cunha C. Functional disconnection of the substantia nigra pars compacta from the pedunculopontine nucleus impairs learning of a conditioned avoidance task. Neurobiol Learn Mem 2010; 94:229-39. [PMID: 20595069 DOI: 10.1016/j.nlm.2010.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/26/2010] [Indexed: 01/12/2023]
Abstract
The pedunculopontine tegmental nucleus (PPTg) targets nuclei in the basal ganglia, including the substantia nigra pars compacta (SNc), in which neuronal loss occurs in Parkinson's disease, a condition in which patients show cognitive as well as motor disturbances. Partial loss and functional abnormalities of neurons in the PPTg are also associated with Parkinson's disease. We hypothesized that the interaction of PPTg and SNc might be important for cognitive impairments and so investigated whether disrupting the connections between the PPTg and SNc impaired learning of a conditioned avoidance response (CAR) by male Wistar rats. The following groups were tested: PPTg unilateral; SNc unilateral; PPTg-SNc ipsilateral (ipsilateral lesions in PPTg and SNc); PPTg-SNc contralateral (contralateral lesions in PPTg and SNc); sham lesions (of each type). SNc lesions were made with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine HCl (MPTP, 0.6micromol); PPTg lesions with ibotenate (24nmol). After recovery, all rats underwent 50-trial sessions of 2-way active avoidance conditioning for 3 consecutive days. Rats with unilateral lesions in PPTg or SNc learnt this, however rats with contralateral (but not ipsilateral) combined lesions in both structures presented no sign of learning. This effect was not likely to be due to sensorimotor impairment because lesions did not affect reaction time to the tone or footshock during conditioning. However, an increased number of non-responses were observed in the rats with contralateral lesions. The results support the hypothesis that a functional interaction between PPTg and SNc is needed for CAR learning and performance.
Collapse
Affiliation(s)
- Mariza Bortolanza
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Departamento de Farmacologia, Universidade Federal do Parana (UFPR), C.P. 19031, 81531-980 Curitiba, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Motor activity-induced dopamine release in the substantia nigra is regulated by muscarinic receptors. Exp Neurol 2009; 221:251-9. [PMID: 19944096 DOI: 10.1016/j.expneurol.2009.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/10/2009] [Accepted: 11/15/2009] [Indexed: 11/20/2022]
Abstract
Nigro-striatal neurons release dopamine not only from their axon terminals in the striatum, but also from somata and dendrites in the substantia nigra. Somatodendritic dopamine release in the substantia nigra can facilitate motor function by mechanisms that may act independently of axon terminal dopamine release in the striatum. The dopamine neurons in the substantia nigra receive a cholinergic input from the pedunculopontine nucleus. Despite recent efforts to introduce this nucleus as a potential target for deep brain stimulation to treat motor symptoms in Parkinson's disease; and the well-known antiparkinsonian effects of anticholinergic drugs; the cholinergic influence on somatodendritic dopamine release is not well understood. The aim of this study was to investigate the possible regulation of locomotor-induced dopamine release in the substantia nigra by endogenous acetylcholine release. In intact and 6-OHDA hemi-lesioned animals alike, the muscarinic antagonist scopolamine, when perfused in the substantia nigra, amplified the locomotor-induced somatodendritic dopamine release to approximately 200% of baseline, compared to 120-130% of baseline in vehicle-treated animals. A functional importance of nigral muscarinic receptor activation was demonstrated in hemi-lesioned animals, where motor performance was significantly improved by scopolamine to 82% of pre-lesion performance, as compared to 56% in vehicle-treated controls. The results indicate that muscarinic activity in the substantia nigra is of functional importance in an animal Parkinson's disease model, and strengthen the notion that nigral dopaminergic regulation of motor activity/performance is independent of striatal dopamine release.
Collapse
|
5
|
Sun TT, Paul IA, Ho IK. Motor functions but not learning and memory are impaired upon repeated exposure to sub-lethal doses of methyl parathion. J Biomed Sci 2006; 13:515-23. [PMID: 16645783 DOI: 10.1007/s11373-006-9075-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/26/2006] [Indexed: 10/24/2022] Open
Abstract
Our previous work showed that repeated exposure to methyl parathion (MP) caused a prolonged inhibition of acetylcholinesterase (AChE) activity (approximately 80%) and down-regulation of M(1) and M(2) muscarinic receptors (up to 38%) in rats at brain regions, including frontal cortex, striatum, hippocampus and thalamus. In the present neurobehavioral study, we found this repeated MP treatment had suppressant effects on rat's locomotor activity. However, we observed no evidence of long-term effects of MP on associative learning and memory. Our data demonstrated that repeated exposure to MP caused some functional deficits in CNS, but motor activity and associative learning/memory process might differ in the sensitivity to its toxic effect. The motor dysfunctions in MP-treated rats may be mediated via reciprocal balance between cholinergic and dopaminergic systems at striatum following cholinergic over-stimulation. Our findings also suggest that the CNS deficits induced by repeated exposure to MP or other organophosphate (OP) pesticides cannot be attributed entirely to the inhibition of AChE. To accurately assess the neuro-toxic risk by occupational exposure to sub-lethal doses of MP, novel biomarkers besides in vivo anticholinesterase potency are needed.
Collapse
Affiliation(s)
- Ting-Ting Sun
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | |
Collapse
|
6
|
Miller AD, Blaha CD. Midbrain muscarinic receptor mechanisms underlying regulation of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat. Eur J Neurosci 2005; 21:1837-46. [PMID: 15869479 DOI: 10.1111/j.1460-9568.2005.04017.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laterodorsal (LDT) and pedunculopontine (PPT) tegmental nuclei in the mesopontine project cholinergic inputs to the midbrain ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), respectively, to directly and indirectly influence the activity of dopamine neuronal cells via actions on muscarinic and nicotinic receptors. The present study investigated the role of midbrain muscarinic receptors in the functional modulation of VTA and SNc dopamine cell activity as reflected by alterations in, respectively, nucleus accumbens (NAc) and striataldopamine efflux. In vivo chronoamperometry was used to measure changes in basal dopamine efflux via stearate-graphite paste electrodes implanted unilaterally in the NAc or striatum of urethane-anaesthetized rats, following blockade or activation of, respectively, VTA or SNc muscarinic receptors. Intra-VTA or -SNc infusion of the muscarinic antagonist scopolamine (200 microg/microL) reduced, respectively, NAc and striatal dopamine efflux while infusion of the muscarinic and nicotinic agonist carbachol (0.5 microg/microL) or the prototypical muscarinic agonist muscarine (0.5 microg/microL) increased NAc and striatal dopamine efflux. Transient decreases in dopamine efflux preceded these increases selectively in the striatum, suggesting a reduction in excitatory or increase in inhibitory drive to the SNc by preferential activation of M3 muscarinic receptors on GABA interneurons and glutamatergic inputs. This was confirmed by showing that selective blockade of M3 receptors with p-F-HHSiD (0.5 microg/microL) increased striatal, but not NAc, dopamine efflux. Together, these findings suggest that midbrain muscarinic receptors, probably M5 subtypes on VTA and SNc dopamine neurons, contribute to the tonic excitatory regulation of forebrain basal dopamine transmission whereas presynaptic M3 receptors serve to counter excessive excitation of nigral dopamine cell activity.
Collapse
Affiliation(s)
- Anthony D Miller
- Department of Psychology, Macquarie University, Sydney, NSW 2109, Australia
| | | |
Collapse
|
7
|
Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 2004; 27:585-8. [DOI: 10.1016/j.tins.2004.07.009] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Alvarez-Maya I, Navarro-Quiroga I, Meraz-Ríos MA, Aceves J, Martinez-Fong D. In Vivo Gene Transfer to Dopamine Neurons of Rat Substantia Nigra via the High-Affinity Neurotensin Receptor. Mol Med 2001. [DOI: 10.1007/bf03401952] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Izurieta-Sánchez P, Sarre S, Ebinger G, Michotte Y. Muscarinic antagonists in substantia nigra influence the decarboxylation of L-dopa in striatum. Eur J Pharmacol 2000; 399:151-60. [PMID: 10884514 DOI: 10.1016/s0014-2999(00)00353-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study was designed to investigate whether anticholinergic drugs acting at the level of the substantia nigra can affect basal extracellular dopamine concentrations and the levodopa (L-dopa)-induced increases in dopamine levels in the striatum. Dual probe in vivo microdialysis in freely moving rats was used. One microdialysis probe was implanted in the substantia nigra and the other in the ipsilateral striatum. Muscarinic receptor antagonists were perfused into the substantia nigra and changes in neurotransmitter levels in the substantia nigra and at the axon terminals in the striatum were monitored simultaneously. Nigral perfusion of the non-selective muscarinic receptor antagonist trihexyphenidyl (1 mM) produced an increase in extracellular dopamine and gamma-aminobutyric acid (GABA) levels in the substantia nigra. Perfusion with the muscarinic M(1) receptor antagonist telenzepine (0.1 microM) produced a significant decrease in nigral dopamine and GABA levels in the substantia nigra. The muscarinic M(2) receptor antagonist methoctramine (75 microM) produced an increase in dopamine levels in the substantia nigra. No significant changes in nigral extracellular GABA levels were observed. The L-dopa-induced increases in extracellular dopamine levels in the striatum were clearly attenuated under nigral perfusion of these drugs. This in vivo study demonstrates that anticholinergic drugs perfused at the level of the substantia nigra can modulate dopamine and GABA levels and attenuate the L-dopa decarboxylation in the striatum, possibly via modulation of the nigrostriatal dopaminergic system. We add further evidence that the substantia nigra is an important site of action of antimuscarinic drugs. The attenuation of L-dopa-induced dopamine release in the striatum exerted by nigral perfusion of these antimuscarinic drugs is probably mediated via different mechanisms. This attenuation is regarded as a beneficial effect of the muscarinic antagonists as adjuncts to L-dopa in Parkinson's disease treatment. We postulate that drugs that enhance dopamine release, after L-dopa administration, in a less extreme way than L-dopa administered on its own could prevent further neurodegeneration and dyskinesias thought to result from extremely high extracellular dopamine levels following L-dopa treatment.
Collapse
Affiliation(s)
- P Izurieta-Sánchez
- Department of Pharmaceutical Chemistry and Drug Analysis, Pharmaceutical Institute, Vrije Universiteit Brussel, Laarbeeklaan, 103, B-1090, Brussels, Belgium
| | | | | | | |
Collapse
|
10
|
Grillner P, Berretta N, Bernardi G, Svensson TH, Mercuri NB. Muscarinic receptors depress GABAergic synaptic transmission in rat midbrain dopamine neurons. Neuroscience 2000; 96:299-307. [PMID: 10683570 DOI: 10.1016/s0306-4522(99)00579-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of muscarine and nicotine on evoked and spontaneous release of GABA were studied using intracellular and whole-cell patch-clamp recordings from rat midbrain dopamine neurons in an in vitro slice preparation. Muscarine (30 microM) reversibly depressed the pharmacologically isolated inhibitory postsynaptic potential evoked by local electrical stimulation. The maximal inhibition of the inhibitory postsynaptic potential amplitude was 39.6+/-5%. This depressant effect of muscarine was blocked by the M3/M1 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (100 nM), but was slightly affected by the M1/M3 receptor antagonist pirenzepine (1 microM). In addition, muscarine decreased the frequency of the miniature synaptic currents without any effect on their amplitude. Moreover, muscarine did not change the GABA-induced hyperpolarization, indicating that its effect on the inhibitory postsynaptic potential is mediated by presynaptic receptors. On the contrary, the cholinergic agonist nicotine did not change the frequency or the amplitude of the spontaneous glutamatergic and GABAergic synaptic currents. Our data indicate that a prevalent activation of presynaptic M3 muscarinic receptors inhibits the GABA-mediated synaptic events, while the activation of nicotinic receptors does not affect the release of glutamate and GABA on midbrain dopamine neurons.
Collapse
Affiliation(s)
- P Grillner
- Clinica S. Lucia IRCCS, Via Ardeatina 306, 00179, Rome, Italy
| | | | | | | | | |
Collapse
|
11
|
Grillner P, Bonci A, Svensson TH, Bernardi G, Mercuri NB. Presynaptic muscarinic (M3) receptors reduce excitatory transmission in dopamine neurons of the rat mesencephalon. Neuroscience 1999; 91:557-65. [PMID: 10366013 DOI: 10.1016/s0306-4522(98)00619-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of carbachol (0.01-30 microM) and muscarine (10-30 microM) on the excitatory synaptic potentials were studied using conventional intracellular recordings from dopaminergic neurons in rat mesencephalic slices. Both muscarinic agonists reversibly reduced the excitatory synaptic potentials, evoked by local electrical stimulation. The EC50 for carbachol was determined to be 4.5 microM. The maximal degree of the excitatory synaptic potentials suppression caused by carbachol and muscarine was around 40% of control. This suppression was completely blocked by the non-specific muscarinic antagonist atropine (1 microM) and the selective M3 antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (1 microM). Other antagonists, preferentially acting at M1, M2 and M4 receptors, were not effective. Furthermore, the acetylcholinesterase inhibitor, physostigmine (50 microM), decreased the amplitude of the excitatory synaptic potentials, indicating that ambient acetylcholine can depress this potential. Direct depolarizing responses to glutamate were not changed by muscarine. In addition, muscarine facilitated the second excitatory synaptic potentials during a paired-pulse protocol. Thus, the effect of the muscarinic agonists is attributable to a presynaptic locus of action. The action of muscarine was not mediated by an N-ethylmaleimide-sensitive G-protein since it was not modified by a treatment of the slices with this agent. The calcium channels blockers, omega-conotoxin GIVA, omega-agatoxin IVA and omega-conotoxin MVIIC did not affect the action of muscarine on the excitatory synaptic potentials. When the potassium currents were reduced by extracellular barium and 4-aminopyridine, the muscarinic agonists still depressed the excitatory synaptic potentials. Our data indicate that presynaptically located M3 receptors modulate the excitatory transmission to midbrain dopaminergic neurons via a N-ethylmaleimide-insensitive G-protein which activates mechanisms neither linked to N-, P-, Q-type calcium channels nor to barium- and 4-aminopyridine-sensitive potassium channels.
Collapse
|
12
|
Casas M, Prat G, Robledo P, Barbanoj M, Kulisevsky J, Jané F. Scopolamine prevents tolerance to the effects of caffeine on rotational behavior in 6-hydroxydopamine-denervated rats. Eur J Pharmacol 1999; 366:1-11. [PMID: 10064145 DOI: 10.1016/s0014-2999(98)00911-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Continuous administration of caffeine has been shown to induce tolerance to its psychostimulant effects. In this study, using unilateral 6-hydroxydopamine nigrostriatal denervated rats, we tested the hypothesis that the muscarinic receptor antagonist, scopolamine, would prevent the tolerance to caffeine-induced contralateral rotational behavior. For that purpose we administered either caffeine (40 mg/kg) plus saline or scopolamine (5, 10 and 20 mg/kg) plus saline, as well as caffeine in combination with the various doses of scopolamine for 7 consecutive days, and measured ipsilateral and contralateral rotational behavior. The results showed that acute injections of scopolamine plus saline produced similar levels of both ipsilateral and contralateral turning, while caffeine produced more contralateral than ipsilateral turning. Tolerance to caffeine-induced contralateral turning was observed as of the second administration, while scopolamine plus saline injections did not produce significant changes in rotational behavior with repeated treatment. Scopolamine co-administered with caffeine significantly attenuated the increased contralateral turning produced by acute injections of caffeine plus saline, but significantly prevented the tolerance effects with repeated administration. These findings strongly suggest that muscarinic cholinergic processes may be involved in tolerance to caffeine-induced contralateral turning. The results are interpreted in terms of the possible interactions between dopamine, adenosine and acetylcholine neurotransmitter systems within the basal ganglia circuitry involved in motor behavior.
Collapse
Affiliation(s)
- M Casas
- Institut de Recerca Sant Pau, Departament de Psiquiatria, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Kojima J, Yamaji Y, Matsumura M, Nambu A, Inase M, Tokuno H, Takada M, Imai H. Excitotoxic lesions of the pedunculopontine tegmental nucleus produce contralateral hemiparkinsonism in the monkey. Neurosci Lett 1997; 226:111-4. [PMID: 9159502 DOI: 10.1016/s0304-3940(97)00254-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dopaminergic nigrostriatal neurons, degeneration of which causes Parkinson's disease, are known to receive excitatory input almost exclusively from the pedunculopontine tegmental nucleus (PPN). We report here that excitotoxic lesions of the PPN produce abnormal motor signs relevant to hemiparkinsonism in the macaque monkey. Under the guidance of extracellular unit recordings, the electrophysiologically identified PPN was injected unilaterally with kainic acid. These PPN-lesioned monkeys exhibited mild to moderate levels of flexed posture and hypokinesia in the upper and lower limbs contralateral to the lesion. In most of the monkeys, such pathophysiological events were gradually improved and became stationary in 1-2 weeks. The hemiparkinsonian symptoms observed after PPN destruction might be ascribed to a decrease in nigrostriatal neuron activity due to excitatory input ablation.
Collapse
Affiliation(s)
- J Kojima
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|