1
|
Herrlinger SA, Wang J, Rao BY, Chang J, Gogos JA, Losonczy A, Vitkup D. Rare mutations implicate CGE interneurons as a vulnerable axis of cognitive deficits across psychiatric disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645799. [PMID: 40236134 PMCID: PMC11996443 DOI: 10.1101/2025.03.28.645799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neuropsychiatric disorders such as autism spectrum disorder (ASD) and schizophrenia (SCZ) share genetic risk factors, including rare high penetrance single nucleotide variants and copy number variants (CNVs), and exhibit both overlapping and distinct clinical phenotypes. Cognitive deficits and intellectual disability-critical predictors of long-term outcomes-are common to both conditions. To investigate shared and disorder-specific neurobiological impact of highly penetrant rare mutations in ASD and SCZ, we analyzed human single-nucleus whole-brain sequencing data to identify strongly affected brain cell types. Our analysis revealed Caudal Ganglionic Eminence (CGE)-derived GABAergic interneurons as a key nexus for cognitive deficits across these disorders. Notably, genes within 22q11.2 deletions, known to confer a high risk of SCZ, ASD, and cognitive impairment, showed a strong expression bias toward vasoactive intestinal peptide-expressing cells (VIP+) among CGE subtypes. To explore VIP+ GABAergic interneuron perturbations in the 22q11.2 deletion syndrome in vivo , we examined their activity in the Df(16)A +/- mouse model during a spatial navigation task and observed reduced activity along with altered responses to random rewards. At the population level, VIP+ interneurons exhibited impaired spatial encoding and diminished subtype-specific activity suggesting deficient disinhibition in CA1 microcircuits in the hippocampus, a region essential for learning and memory. Overall, these results demonstrate the crucial role of CGE-derived interneurons in mediating cognitive processes that are disrupted across a range of psychiatric and neurodevelopmental disorders.
Collapse
|
2
|
Kipiani EE, Burjanadze MA, Dashniani MG, Chkhikvishvili NC, Naneishvili TL, Chighladze MR, Nozadze BG, Beselia GV. Medial septum deep brain stimulation enhances memory and hippocampal neurogenesis in the D-galactose induced rat model of aging: behavioral and immunohistochemical study. Exp Brain Res 2025; 243:95. [PMID: 40100345 DOI: 10.1007/s00221-025-07051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
One of the cardinal features of aging is brain aging, which manifests itself in impaired cognitive functions. Experimental data suggest that deep brain stimulation (DBS) can improve memory functions when stimulating specific brain regions. In present study we tested the hypothesis that medial septum (MS) DBS enhances memory function by modulating the hippocampal neurogenesis in the D-galactose (D-gal) induced rat model of aging. Rats were randomly assigned to four experimental groups: (1) control, (2) administration of D-gal, (3) administration of D-gal and electrode implantation and (4) administration of D-gal, electrode implantation and stimulation. Our results showed that MS DBS significantly enhanced the memory functions in an animal model of aging induced by D-gal administration, which impaired long-term spatial memory in the Morris water maze and impaired spatial and object novelty recognition memory in the open field. The immunohistochemical studies showed that in the Dentate Gyrus (DG) of rats with D-gal administration or D-gal combined with electrode implantation, the number of NeuN (neuronal nuclear antigen) or Doublecortin-immunopositive cells decreased (Doublecortin - a biomarker for the post-mitotic phase of cells); MS stimulation increases the number of these cells in the DG to levels comparable to the control group. Thus, MS-DBS restores the level of hippocampal neurogenesis. The present data demonstrate for the first time that chronic DBS of the MS restores memory functions in a D-gal-induced animal model of aging, and that one of the important underlying mechanisms is mediated by enhanced neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Ekaterine E Kipiani
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
- Teaching University Geomedi LLC, King Solomon II str,4, Tbilisi, 0114, Georgia
| | - Maia A Burjanadze
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Manana G Dashniani
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Nino C Chkhikvishvili
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Temur L Naneishvili
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Mariam R Chighladze
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Barbare G Nozadze
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia
| | - Gela V Beselia
- Department of Behavior and Cognitive Function, Ivane Beritashvili Center of Experimental Biomedicine, Gotua14, Tbilisi, 0160, Georgia.
- Department of Physiology and Pharmacology, Petre Shotadze Tbilisi Medical Academy, Ketevan Dedofali Ave51/2, Tbilisi, 0144, Georgia.
| |
Collapse
|
3
|
Dellal S, Zurita H, Valero M, Abad-Perez P, Kruglikov I, Meng J, Prönneke A, Hanson JL, Mir E, Ongaro M, Wang XJ, Buzsáki G, Machold R, Rudy B. Inhibitory and disinhibitory VIP IN-mediated circuits in neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640383. [PMID: 40060562 PMCID: PMC11888407 DOI: 10.1101/2025.02.26.640383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Cortical GABAergic interneurons (INs) are comprised of distinct types that provide tailored inhibition to pyramidal cells (PCs) and other INs, thereby enabling precise control of cortical circuit activity. INs expressing the neuropeptide vasoactive-intestinal peptide (VIP) have attracted attention recently following the discovery that they predominantly function by inhibiting dendritic-targeting somatostatin (SST) expressing INs, thereby disinhibiting PCs. This VIP-SST disinhibitory circuit motif is observed throughout the neocortex from mice to humans, and serves as a key mechanism for top-down (feedback) and context-dependent information processing. Thus, VIP IN-mediated disinhibition has been found to play an important role in sensory processing, control of executive functions, attention, sensorimotor integration and other cortico-cortical and thalamocortical feedback interactions. Furthermore, VIP INs have been implicated in mediating the effects of reinforcement signals, both reward and aversive, via their responsiveness to neuromodulators such as acetylcholine (ACh), and in facilitating synaptic plasticity and learning. While it is evident from transcriptomic analyses that VIP INs are a molecularly heterogeneous group, the physiological significance of this diversity is unclear at present. Here, we have characterized the functional diversity of VIP INs in the primary somatosensory cortex by leveraging intersectional genetic approaches to study distinct VIP IN subtypes. We found that VIP INs can be divided into four different populations: a group that expresses the Ca2+-binding protein calretinin (CR), two distinct groups that express the neuropeptide cholecystokinin (CCK), and a group that does not express either CR or CCK (non-CCK non-CR; or nCCK nCR). VIP neurons in each group exhibit different laminar distributions, axonal and dendritic arbors, intrinsic electrophysiological properties, and efferent connectivity, VIP/CR INs target almost exclusively SST INs, VIP/nCCK nCR INs also mainly target SST INs but also have connections to parvalbumin (PV) expressing INs. These two groups have essentially no connectivity to pyramidal cells (PCs). On the other hand, the two types of VIP/CCK INs target PCs, but differ in the degree to which synaptic release from each type is modulated by endocannabinoids. We also found that long-range inputs differentially recruit distinct VIP IN groups. Intriguingly, we find that distinct VIP IN populations target distinct SST INs subtypes in turn, indicating the presence of specialized VIP-SST disinhibitory subcircuits. Activation of distinct VIP IN subpopulations in vivo results in differential effects on the cortical network, thus providing evidence for modularity in VIP IN-mediated actions during cortical information processing.
Collapse
Affiliation(s)
- Shlomo Dellal
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Hector Zurita
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Manuel Valero
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Pablo Abad-Perez
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| | - Ilya Kruglikov
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - John Meng
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Center for Neural Science, NYU, New York, NY, 10003
| | - Alvar Prönneke
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Jessica L. Hanson
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Ema Mir
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Marina Ongaro
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Xiao-Jing Wang
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Center for Neural Science, NYU, New York, NY, 10003
| | - György Buzsáki
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016
| | - Robert Machold
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Bernardo Rudy
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU School of Medicine, New York, NY, 10016
| |
Collapse
|
4
|
Nassar M, Richevaux L, Lim D, Tayupo D, Martin E, Fricker D. Presubicular VIP expressing interneurons receive facilitating excitation from anterior thalamus. Neuroscience 2024:S0306-4522(24)00484-6. [PMID: 39322037 DOI: 10.1016/j.neuroscience.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
The presubiculum is part of the parahippocampal cortex and plays a fundamental role for orientation in space. Many principal neurons of the presubiculum signal head direction, and show persistent firing when the head of an animal is oriented in a specific preferred direction. GABAergic neurons of the presubiculum control the timing, sensitivity and selectivity of head directional signals from the anterior thalamic nuclei. However, the role of vasoactive intestinal peptide (VIP) expressing interneurons in the presubicular microcircuit has not yet been addressed. Here, we examined the intrinsic properties of VIP interneurons as well as their input connectivity following photostimulation of anterior thalamic axons. We show that presubicular VIP interneurons are more densely distributed in superficial than in deep layers. They are highly excitable. Three groups emerged from the unsupervised cluster analysis of their electrophysiological properties. We demonstrate a frequency dependent recruitment of VIP cells by thalamic afferences and facilitating synaptic input dynamics. Our data provide initial insight into the contribution of VIP interneurons for the integration of thalamic head direction information in the presubiculum.
Collapse
Affiliation(s)
- Mérie Nassar
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France.
| | - Louis Richevaux
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Dongkyun Lim
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Dario Tayupo
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Erwan Martin
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Desdemona Fricker
- Université Paris Cité, CNRS UMR 8002, Integrative Neuroscience and Cognition Center, F-75006 Paris, France.
| |
Collapse
|
5
|
Chamberland S, Grant G, Machold R, Nebet ER, Tian G, Stich J, Hanani M, Kullander K, Tsien RW. Functional specialization of hippocampal somatostatin-expressing interneurons. Proc Natl Acad Sci U S A 2024; 121:e2306382121. [PMID: 38640347 PMCID: PMC11047068 DOI: 10.1073/pnas.2306382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 02/27/2024] [Indexed: 04/21/2024] Open
Abstract
Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single-cell transcriptome analyses have provided a comprehensive Sst-IN subpopulations census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.
Collapse
Affiliation(s)
- Simon Chamberland
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Gariel Grant
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Robert Machold
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Erica R. Nebet
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Guoling Tian
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Joshua Stich
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Monica Hanani
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Department of Neuroscience and Physiology, New York University, New York, NY10016
| | - Klas Kullander
- Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Uppsala län752 37, Sweden
| | - Richard W. Tsien
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York University, New York, NY10016
- Center for Neural Science, New York University, New York, NY10003
| |
Collapse
|
6
|
Tamboli S, Singh S, Topolnik D, El Amine Barkat M, Radhakrishnan R, Guet-McCreight A, Topolnik L. Mouse hippocampal CA1 VIP interneurons detect novelty in the environment and support recognition memory. Cell Rep 2024; 43:114115. [PMID: 38607918 DOI: 10.1016/j.celrep.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.
Collapse
Affiliation(s)
- Suhel Tamboli
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Sanjay Singh
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Dimitry Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Mohamed El Amine Barkat
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Risna Radhakrishnan
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | | | - Lisa Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada.
| |
Collapse
|
7
|
Gil M, Caulino-Rocha A, Bento M, Rodrigues NC, Silva-Cruz A, Ribeiro JA, Cunha-Reis D. Postweaning Development Influences Endogenous VPAC 1 Modulation of LTP Induced by Theta-Burst Stimulation: A Link to Maturation of the Hippocampal GABAergic System. Biomolecules 2024; 14:379. [PMID: 38540797 PMCID: PMC10968312 DOI: 10.3390/biom14030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 11/11/2024] Open
Abstract
Long-term potentiation (LTP) induced by theta-burst stimulation (TBS) undergoes postweaning developmental changes partially linked to GABAergic circuit maturation. Endogenous vasoactive intestinal peptide (VIP) acting on its VPAC1 receptor strongly influences LTP induced by theta-burst stimulation (TBS), an effect dependent on GABAergic transmission. Although VPAC1 receptor levels are developmentally regulated during embryogenesis, their variation along postweaning development is unknown, as is the VPAC1 modulation of LTP or its relation to hippocampal GABAergic circuit maturation. As such, we investigated how VPAC1 modulation of LTP adjusts from weaning to adulthood along with GABAergic circuit maturation. As described, LTP induced by mild TBS (5 bursts, 4 pulses delivered at 100 Hz) was increasingly greater from weaning to adulthood. The influence of the VPAC1 receptor antagonist PG 97-269 (100 nM) on TBS-induced LTP was much larger in juvenile (3-week-old) than in young adult (6-7-week-old) or adult (12-week-old) rats. This effect was not associated with a developmental decrease in synaptic VPAC1 receptor levels. However, an increase in pre and post-synaptic GABAergic synaptic markers suggests an increase in the number of GABAergic synaptic contacts that is more prominent than the one observed in glutamatergic connections during this period. Conversely, endogenous VPAC2 receptor activation did not significantly influence TBS-induced LTP. VPAC2 receptor levels enhance pronouncedly during postweaning development, but not at synaptic sites. Given the involvement of VIP interneurons in several aspects of hippocampal-dependent learning, neurodevelopmental disorders, and epilepsy, this could provide important insights into the role of VIP modulation of hippocampal synaptic plasticity during normal and altered brain development potentially contributing to epileptogenesis.
Collapse
Affiliation(s)
- Marta Gil
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Marta Bento
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Nádia C. Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Armando Silva-Cruz
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
| | - Joaquim A. Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Diana Cunha-Reis
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal (J.A.R.)
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Juarez P, Salcedo-Arellano MJ, Dufour B, Martinez-Cerdeño V. Fragile X cortex is characterized by decreased parvalbumin-expressing interneurons. Cereb Cortex 2024; 34:bhae103. [PMID: 38521994 PMCID: PMC10960956 DOI: 10.1093/cercor/bhae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024] Open
Abstract
Fragile X syndrome is a genetic neurodevelopmental disorder caused by a mutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene in the X chromosome. Many fragile X syndrome cases present with autism spectrum disorder and fragile X syndrome cases account for up to 5% of all autism spectrum disorder cases. The cellular composition of the fragile X syndrome cortex is not well known. We evaluated alterations in the number of Calbindin, Calretinin, and Parvalbumin expressing interneurons across 5 different cortical areas, medial prefrontal cortex (BA46), primary somatosensory cortex (BA3), primary motor cortex (BA4), superior temporal cortex (BA22), and anterior cingulate cortex (BA24) of fragile X syndrome and neurotypical brains. Compared with neurotypical cases, fragile X syndrome brains displayed a significant reduction in the number of PV+ interneurons in all areas and of CR+ interneurons in BA22 and BA3. The number of CB+ interneurons did not differ. These findings are the first to demonstrate that fragile X syndrome brains are characterized by cortical wide PV+ interneuron deficits across multiple cortical areas. These add to the idea that deficits in PV+ interneurons could disrupt the cortical balance and promote clinical deficits in fragile X syndrome patients and help to develop novel therapies for neurodevelopmental disorders like fragile X syndrome and autism spectrum disorder.
Collapse
Affiliation(s)
- Pablo Juarez
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
| | - Maria Jimena Salcedo-Arellano
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| | - Brett Dufour
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern CaliforniaSacramento, CA 95817, United States
- MIND Institute, University of California, Davis, Sacramento, CA 95817, United States
| |
Collapse
|
9
|
Takács V, Bardóczi Z, Orosz Á, Major A, Tar L, Berki P, Papp P, Mayer MI, Sebők H, Zsolt L, Sos KE, Káli S, Freund TF, Nyiri G. Synaptic and dendritic architecture of different types of hippocampal somatostatin interneurons. PLoS Biol 2024; 22:e3002539. [PMID: 38470935 PMCID: PMC10959371 DOI: 10.1371/journal.pbio.3002539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/22/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
GABAergic inhibitory neurons fundamentally shape the activity and plasticity of cortical circuits. A major subset of these neurons contains somatostatin (SOM); these cells play crucial roles in neuroplasticity, learning, and memory in many brain areas including the hippocampus, and are implicated in several neuropsychiatric diseases and neurodegenerative disorders. Two main types of SOM-containing cells in area CA1 of the hippocampus are oriens-lacunosum-moleculare (OLM) cells and hippocampo-septal (HS) cells. These cell types show many similarities in their soma-dendritic architecture, but they have different axonal targets, display different activity patterns in vivo, and are thought to have distinct network functions. However, a complete understanding of the functional roles of these interneurons requires a precise description of their intrinsic computational properties and their synaptic interactions. In the current study we generated, analyzed, and make available several key data sets that enable a quantitative comparison of various anatomical and physiological properties of OLM and HS cells in mouse. The data set includes detailed scanning electron microscopy (SEM)-based 3D reconstructions of OLM and HS cells along with their excitatory and inhibitory synaptic inputs. Combining this core data set with other anatomical data, patch-clamp electrophysiology, and compartmental modeling, we examined the precise morphological structure, inputs, outputs, and basic physiological properties of these cells. Our results highlight key differences between OLM and HS cells, particularly regarding the density and distribution of their synaptic inputs and mitochondria. For example, we estimated that an OLM cell receives about 8,400, whereas an HS cell about 15,600 synaptic inputs, about 16% of which are GABAergic. Our data and models provide insight into the possible basis of the different functionality of OLM and HS cell types and supply essential information for more detailed functional models of these neurons and the hippocampal network.
Collapse
Affiliation(s)
- Virág Takács
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Bardóczi
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Áron Orosz
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Abel Major
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Luca Tar
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Berki
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Péter Papp
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Márton I. Mayer
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Hunor Sebők
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Luca Zsolt
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin E. Sos
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Szabolcs Káli
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Tamás F. Freund
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
10
|
Qiu S, Hu Y, Huang Y, Gao T, Wang X, Wang D, Ren B, Shi X, Chen Y, Wang X, Wang D, Han L, Liang Y, Liu D, Liu Q, Deng L, Chen Z, Zhan L, Chen T, Huang Y, Wu Q, Xie T, Qian L, Jin C, Huang J, Deng W, Jiang T, Li X, Jia X, Yuan J, Li A, Yan J, Xu N, Xu L, Luo Q, Poo MM, Sun Y, Li CT, Yao H, Gong H, Sun YG, Xu C. Whole-brain spatial organization of hippocampal single-neuron projectomes. Science 2024; 383:eadj9198. [PMID: 38300992 DOI: 10.1126/science.adj9198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mapping single-neuron projections is essential for understanding brain-wide connectivity and diverse functions of the hippocampus (HIP). Here, we reconstructed 10,100 single-neuron projectomes of mouse HIP and classified 43 projectome subtypes with distinct projection patterns. The number of projection targets and axon-tip distribution depended on the soma location along HIP longitudinal and transverse axes. Many projectome subtypes were enriched in specific HIP subdomains defined by spatial transcriptomic profiles. Furthermore, we delineated comprehensive wiring diagrams for HIP neurons projecting exclusively within the HIP formation (HPF) and for those projecting to both intra- and extra-HPF targets. Bihemispheric projecting neurons generally projected to one pair of homologous targets with ipsilateral preference. These organization principles of single-neuron projectomes provide a structural basis for understanding the function of HIP neurons.
Collapse
Affiliation(s)
- Shou Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yachuang Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Taosha Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Danying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luyao Han
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yikai Liang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingxu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoqin Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lijie Zhan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tianzhi Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuzhe Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingge Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liuqin Qian
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenxi Jin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiawen Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Xiangning Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Jing Yuan
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ninglong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
12
|
Lodge DJ, Elam HB, Boley AM, Donegan JJ. Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons. Nat Commun 2023; 14:6653. [PMID: 37863893 PMCID: PMC10589277 DOI: 10.1038/s41467-023-42484-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
People with schizophrenia show hyperactivity in the ventral hippocampus (vHipp) and we have previously demonstrated distinct behavioral roles for vHipp cell populations. Here, we test the hypothesis that parvalbumin (PV) and somatostatin (SST) interneurons differentially innervate and regulate hippocampal pyramidal neurons based on their projection target. First, we use eGRASP to show that PV-positive interneurons form a similar number of synaptic connections with pyramidal cells regardless of their projection target while SST-positive interneurons preferentially target nucleus accumbens (NAc) projections. To determine if these anatomical differences result in functional changes, we used in vivo opto-electrophysiology to show that SST cells also preferentially regulate the activity of NAc-projecting cells. These results suggest vHipp interneurons differentially regulate that vHipp neurons that project to the medial prefrontal cortex (mPFC) and NAc. Characterization of these cell populations may provide potential molecular targets for the treatment schizophrenia and other psychiatric disorders associated with vHipp dysfunction.
Collapse
Affiliation(s)
- Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Angela M Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, TX, USA
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Department of Psychiatry and Behavioral Sciences and Center for Early Life Adversity, Department of Neuroscience, Dell Medical School at the University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
13
|
Hilscher MM, Mikulovic S, Perry S, Lundberg S, Kullander K. The alpha2 nicotinic acetylcholine receptor, a subunit with unique and selective expression in inhibitory interneurons associated with principal cells. Pharmacol Res 2023; 196:106895. [PMID: 37652281 DOI: 10.1016/j.phrs.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play crucial roles in various human disorders, with the α7, α4, α6, and α3-containing nAChR subtypes extensively studied in relation to conditions such as Alzheimer's disease, Parkinson's disease, nicotine dependence, mood disorders, and stress disorders. In contrast, the α2-nAChR subunit has received less attention due to its more restricted expression and the scarcity of specific agonists and antagonists for studying its function. Nevertheless, recent research has shed light on the unique expression pattern of the Chrna2 gene, which encodes the α2-nAChR subunit, and its involvement in distinct populations of inhibitory interneurons. This review highlights the structure, pharmacology, localization, function, and disease associations of α2-containing nAChRs and points to the unique expression pattern of the Chrna2 gene and its role in different inhibitory interneuron populations. These populations, including the oriens lacunosum moleculare (OLM) cells in the hippocampus, Martinotti cells in the neocortex, and Renshaw cells in the spinal cord, share common features and contribute to recurrent inhibitory microcircuits. Thus, the α2-nAChR subunit's unique expression pattern in specific interneuron populations and its role in recurrent inhibitory microcircuits highlight its importance in various physiological processes. Further research is necessary to uncover the comprehensive functionality of α2-containing nAChRs, delineate their specific contributions to neuronal circuits, and investigate their potential as therapeutic targets for related disorders.
Collapse
Affiliation(s)
- Markus M Hilscher
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sanja Mikulovic
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Leibniz Institute for Neurobiology, Cognition & Emotion Laboratory, Magdeburg, Germany; German Center for Mental Health(DZPG), Germany
| | - Sharn Perry
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Stina Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden.
| |
Collapse
|
14
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
15
|
Ferguson KA, Salameh J, Alba C, Selwyn H, Barnes C, Lohani S, Cardin JA. VIP interneurons regulate cortical size tuning and visual perception. Cell Rep 2023; 42:113088. [PMID: 37682710 PMCID: PMC10618959 DOI: 10.1016/j.celrep.2023.113088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Cortical circuit function is regulated by extensively interconnected, diverse populations of GABAergic interneurons that may play key roles in shaping circuit operation according to behavioral context. A specialized population of interneurons that co-express vasoactive intestinal peptides (VIP-INs) are activated during arousal and innervate other INs and pyramidal neurons (PNs). Although state-dependent modulation of VIP-INs has been extensively studied, their role in regulating sensory processing is less well understood. We examined the impact of VIP-INs in the primary visual cortex of awake behaving mice. Loss of VIP-IN activity alters the behavioral state-dependent modulation of somatostatin-expressing INs (SST-INs) but not PNs. In contrast, reduced VIP-IN activity globally disrupts visual feature selectivity for stimulus size. Moreover, the impact of VIP-INs on perceptual behavior varies with context and is more acute for small than large visual cues. VIP-INs thus contribute to both state-dependent modulation of cortical activity and sensory context-dependent perceptual performance.
Collapse
Affiliation(s)
- Katie A Ferguson
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jenna Salameh
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Christopher Alba
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hannah Selwyn
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Clayton Barnes
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
16
|
Ferguson KA, Salameh J, Alba C, Selwyn H, Barnes C, Lohani S, Cardin JA. VIP interneurons regulate cortical size tuning and visual perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532664. [PMID: 37162871 PMCID: PMC10168200 DOI: 10.1101/2023.03.14.532664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Local cortical circuit function is regulated by diverse populations of GABAergic interneurons with distinct properties and extensive interconnectivity. Inhibitory-to-inhibitory interactions between interneuron populations may play key roles in shaping circuit operation according to behavioral context. A specialized population of GABAergic interneurons that co-express vasoactive intestinal peptide (VIP-INs) are activated during arousal and locomotion and innervate other local interneurons and pyramidal neurons. Although modulation of VIP-IN activity by behavioral state has been extensively studied, their role in regulating information processing and selectivity is less well understood. Using a combination of cellular imaging, short and long-term manipulation, and perceptual behavior, we examined the impact of VIP-INs on their synaptic target populations in the primary visual cortex of awake behaving mice. We find that loss of VIP-IN activity alters the behavioral state-dependent modulation of somatostatin-expressing interneurons (SST-INs) but not pyramidal neurons (PNs). In contrast, reduced VIP-IN activity disrupts visual feature selectivity for stimulus size in both populations. Inhibitory-to inhibitory interactions thus directly shape the selectivity of GABAergic interneurons for sensory stimuli. Moreover, the impact of VIP-IN activity on perceptual behavior varies with visual context and is more acute for small than large visual cues. VIP-INs thus contribute to both state-dependent modulation of cortical circuit activity and sensory context-dependent perceptual performance.
Collapse
Affiliation(s)
- Katie A Ferguson
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Jenna Salameh
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Christopher Alba
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Hannah Selwyn
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Clayton Barnes
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| |
Collapse
|
17
|
Chamberland S, Grant G, Machold R, Nebet ER, Tian G, Hanani M, Kullander K, Tsien RW. Functional specialization of hippocampal somatostatin-expressing interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538511. [PMID: 37162922 PMCID: PMC10168348 DOI: 10.1101/2023.04.27.538511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single cell transcriptome analyses have provided a comprehensive Sst-IN subtype census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were both necessary and sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare (OLM) INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.
Collapse
Affiliation(s)
- Simon Chamberland
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Gariel Grant
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Robert Machold
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Erica R. Nebet
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Guoling Tian
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Monica Hanani
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Klas Kullander
- Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala 752 37, Uppsala län, Sweden
| | - Richard W. Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
18
|
Chamberland S, Nebet ER, Valero M, Hanani M, Egger R, Larsen SB, Eyring KW, Buzsáki G, Tsien RW. Brief synaptic inhibition persistently interrupts firing of fast-spiking interneurons. Neuron 2023; 111:1264-1281.e5. [PMID: 36787751 PMCID: PMC10121938 DOI: 10.1016/j.neuron.2023.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/06/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Neurons perform input-output operations that integrate synaptic inputs with intrinsic electrical properties; these operations are generally constrained by the brevity of synaptic events. Here, we report that sustained firing of CA1 hippocampal fast-spiking parvalbumin-expressing interneurons (PV-INs) can be persistently interrupted for several hundred milliseconds following brief GABAAR-mediated inhibition in vitro and in vivo. A single presynaptic neuron could interrupt PV-IN firing, occasionally with a single action potential (AP), and reliably with AP bursts. Experiments and computational modeling reveal that the persistent interruption of firing maintains neurons in a depolarized, quiescent state through a cell-autonomous mechanism. Interrupted PV-INs are strikingly responsive to Schaffer collateral inputs. The persistent interruption of firing provides a disinhibitory circuit mechanism favoring spike generation in CA1 pyramidal cells. Overall, our results demonstrate that neuronal silencing can far outlast brief synaptic inhibition owing to the well-tuned interplay between neurotransmitter release and postsynaptic membrane dynamics, a phenomenon impacting microcircuit function.
Collapse
Affiliation(s)
- Simon Chamberland
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA.
| | - Erica R Nebet
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Manuel Valero
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Monica Hanani
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Samantha B Larsen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Katherine W Eyring
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - György Buzsáki
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
19
|
Mosleh M, Javan M, Fathollahi Y. The properties of long-term potentiation at SC-CA1/ TA-CA1 hippocampal synaptic pathways depends upon their input pathway activation patterns. IBRO Neurosci Rep 2023; 14:358-365. [PMID: 37020855 PMCID: PMC10067737 DOI: 10.1016/j.ibneur.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Long-term potentiation (LTP) has been considered as a cellular mechanism of memory. Since the Schaffer collateral (SC) and temporoammonic (TA) inputs to CA1 are distinct synaptic pathways that could mediate different cognitive functions, this study was therefore aimed to separately study and compare the properties of LTP of these two synaptic pathways. In the current study we used slice electrophysiological methods to compare various properties of these two synaptic pathways in response to single, paired pulse stimulation, and to three standard protocols for inducing LTP: the high frequency electrical stimulation (HFS), theta-burst (TBS), and primed burst (PBs) stimulation. We found that the SC-CA1 synapses could produce bigger maximum synaptic responses than TA-CA1 synapses. In addition, we showed that paired-pulse ratios of the SC-CA1 synapses were higher than TA-CA1 synapses at certain inter-pulses intervals. Finally, we showed a higher LTP% was induced by PBs or TBS at the SC-CA1 synapse than the TA-CA1 synapse. Briefly, our findings suggest the differential basal synaptic transmission, paired-pulse evoked synaptic responses, and LTP exhibition of the hippocampal SC-CA1/ TA-CA1 synaptic pathways, which may rely on spontaneous and evoked activity pattern at the local circuit level.
Collapse
|
20
|
Lukacs IP, Francavilla R, Field M, Hunter E, Howarth M, Horie S, Plaha P, Stacey R, Livermore L, Ansorge O, Tamas G, Somogyi P. Differential effects of group III metabotropic glutamate receptors on spontaneous inhibitory synaptic currents in spine-innervating double bouquet and parvalbumin-expressing dendrite-targeting GABAergic interneurons in human neocortex. Cereb Cortex 2023; 33:2101-2142. [PMID: 35667019 PMCID: PMC9977385 DOI: 10.1093/cercor/bhac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022] Open
Abstract
Diverse neocortical GABAergic neurons specialize in synaptic targeting and their effects are modulated by presynaptic metabotropic glutamate receptors (mGluRs) suppressing neurotransmitter release in rodents, but their effects in human neocortex are unknown. We tested whether activation of group III mGluRs by L-AP4 changes GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in 2 distinct dendritic spine-innervating GABAergic interneurons recorded in vitro in human neocortex. Calbindin-positive double bouquet cells (DBCs) had columnar "horsetail" axons descending through layers II-V innervating dendritic spines (48%) and shafts, but not somata of pyramidal and nonpyramidal neurons. Parvalbumin-expressing dendrite-targeting cell (PV-DTC) axons extended in all directions innervating dendritic spines (22%), shafts (65%), and somata (13%). As measured, 20% of GABAergic neuropil synapses innervate spines, hence DBCs, but not PV-DTCs, preferentially select spine targets. Group III mGluR activation paradoxically increased the frequency of sIPSCs in DBCs (to median 137% of baseline) but suppressed it in PV-DTCs (median 92%), leaving the amplitude unchanged. The facilitation of sIPSCs in DBCs may result from their unique GABAergic input being disinhibited via network effect. We conclude that dendritic spines receive specialized, diverse GABAergic inputs, and group III mGluRs differentially regulate GABAergic synaptic transmission to distinct GABAergic cell types in human cortex.
Collapse
Affiliation(s)
- Istvan P Lukacs
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Martin Field
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Emily Hunter
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Michael Howarth
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Sawa Horie
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Laurent Livermore
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Gabor Tamas
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
21
|
Bilash OM, Chavlis S, Johnson CD, Poirazi P, Basu J. Lateral entorhinal cortex inputs modulate hippocampal dendritic excitability by recruiting a local disinhibitory microcircuit. Cell Rep 2023; 42:111962. [PMID: 36640337 DOI: 10.1016/j.celrep.2022.111962] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The lateral entorhinal cortex (LEC) provides multisensory information to the hippocampus, directly to the distal dendrites of CA1 pyramidal neurons. LEC neurons perform important functions for episodic memory processing, coding for contextually salient elements of an environment or experience. However, we know little about the functional circuit interactions between the LEC and the hippocampus. We combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory VIP interneuron microcircuit. Our circuit mapping and modeling further reveal that LEC inputs also recruit CCK interneurons that may act as strong suppressors of dendritic spikes. These results highlight a cortically driven GABAergic microcircuit mechanism that gates nonlinear dendritic computations, which may support compartment-specific coding of multisensory contextual features within the hippocampus.
Collapse
Affiliation(s)
- Olesia M Bilash
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece
| | - Cara D Johnson
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete 70013, Greece.
| | - Jayeeta Basu
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychiatry, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
22
|
Kupferschmidt DA, Cummings KA, Joffe ME, MacAskill A, Malik R, Sánchez-Bellot C, Tejeda HA, Yarur Castillo H. Prefrontal Interneurons: Populations, Pathways, and Plasticity Supporting Typical and Disordered Cognition in Rodent Models. J Neurosci 2022; 42:8468-8476. [PMID: 36351822 PMCID: PMC9665918 DOI: 10.1523/jneurosci.1136-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Prefrontal cortex (PFC) inhibitory microcircuits regulate the gain and timing of pyramidal neuron firing, coordinate neural ensemble interactions, and gate local and long-range neural communication to support adaptive cognition and contextually tuned behavior. Accordingly, perturbations of PFC inhibitory microcircuits are thought to underlie dysregulated cognition and behavior in numerous psychiatric diseases and relevant animal models. This review, based on a Mini-Symposium presented at the 2022 Society for Neuroscience Meeting, highlights recent studies providing novel insights into: (1) discrete medial PFC (mPFC) interneuron populations in the mouse brain; (2) mPFC interneuron connections with, and regulation of, long-range mPFC afferents; and (3) circuit-specific plasticity of mPFC interneurons. The contributions of such populations, pathways, and plasticity to rodent cognition are discussed in the context of stress, reward, motivational conflict, and genetic mutations relevant to psychiatric disease.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 20892
| | - Kirstie A Cummings
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35233
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Andrew MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
| | - Ruchi Malik
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, 94158
| | - Candela Sánchez-Bellot
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
- Laboratorio de Circuitos Neuronales, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 28002
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| | - Hector Yarur Castillo
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| |
Collapse
|
23
|
Jung K, Choi Y, Kwon HB. Cortical control of chandelier cells in neural codes. Front Cell Neurosci 2022; 16:992409. [PMID: 36299494 PMCID: PMC9588934 DOI: 10.3389/fncel.2022.992409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Various cortical functions arise from the dynamic interplay of excitation and inhibition. GABAergic interneurons that mediate synaptic inhibition display significant diversity in cell morphology, electrophysiology, plasticity rule, and connectivity. These heterogeneous features are thought to underlie their functional diversity. Emerging attention on specific properties of the various interneuron types has emphasized the crucial role of cell-type specific inhibition in cortical neural processing. However, knowledge is still limited on how each interneuron type forms distinct neural circuits and regulates network activity in health and disease. To dissect interneuron heterogeneity at single cell-type precision, we focus on the chandelier cell (ChC), one of the most distinctive GABAergic interneuron types that exclusively innervate the axon initial segments (AIS) of excitatory pyramidal neurons. Here we review the current understanding of the structural and functional properties of ChCs and their implications in behavioral functions, network activity, and psychiatric disorders. These findings provide insights into the distinctive roles of various single-type interneurons in cortical neural coding and the pathophysiology of cortical dysfunction.
Collapse
|
24
|
Enkephalin release from VIP interneurons in the hippocampal CA2/3a region mediates heterosynaptic plasticity and social memory. Mol Psychiatry 2022; 27:2879-2900. [PMID: 33990774 PMCID: PMC8590711 DOI: 10.1038/s41380-021-01124-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/22/2022]
Abstract
The hippocampus contains a diverse array of inhibitory interneurons that gate information flow through local cortico-hippocampal circuits to regulate memory storage. Although most studies of interneurons have focused on their role in fast synaptic inhibition mediated by GABA release, different classes of interneurons express unique sets of neuropeptides, many of which have been shown to exert powerful effects on neuronal function and memory when applied pharmacologically. However, relatively little is known about whether and how release of endogenous neuropeptides from inhibitory cells contributes to their behavioral role in regulating memory formation. Here we report that vasoactive intestinal peptide (VIP)-expressing interneurons participate in social memory storage by enhancing information transfer from hippocampal CA3 pyramidal neurons to CA2 pyramidal neurons. Notably, this action depends on release of the neuropeptide enkephalin from VIP neurons, causing long-term depression of feedforward inhibition onto CA2 pyramidal cells. Moreover, VIP neuron activity in the CA2 region is increased selectively during exploration of a novel conspecific. Our findings, thus, enhance our appreciation of how GABAergic neurons can regulate synaptic plasticity and mnemonic behavior by demonstrating that such actions can be mediated by release of a specific neuropeptide, rather than through classic fast inhibitory transmission.
Collapse
|
25
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
26
|
Malik R, Li Y, Schamiloglu S, Sohal VS. Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition. Cell 2022; 185:1602-1617.e17. [PMID: 35487191 PMCID: PMC10027400 DOI: 10.1016/j.cell.2022.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Prefrontal cortex (PFC) is postulated to exert "top-down control" on information processing throughout the brain to promote specific behaviors. However, pathways mediating top-down control remain poorly understood. In particular, knowledge about direct prefrontal connections that might facilitate top-down control of hippocampal information processing remains sparse. Here we describe monosynaptic long-range GABAergic projections from PFC to hippocampus. These preferentially inhibit vasoactive intestinal polypeptide-expressing interneurons, which are known to disinhibit hippocampal microcircuits. Indeed, stimulating prefrontal-hippocampal GABAergic projections increases hippocampal feedforward inhibition and reduces hippocampal activity in vivo. The net effect of these actions is to specifically enhance the signal-to-noise ratio for hippocampal encoding of object locations and augment object-induced increases in spatial information. Correspondingly, activating or inhibiting these projections promotes or suppresses object exploration, respectively. Together, these results elucidate a top-down prefrontal pathway in which long-range GABAergic projections target disinhibitory microcircuits, thereby enhancing signals and network dynamics underlying exploratory behavior.
Collapse
Affiliation(s)
- Ruchi Malik
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Yi Li
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Selin Schamiloglu
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
Caulino-Rocha A, Rodrigues NC, Ribeiro JA, Cunha-Reis D. Endogenous VIP VPAC 1 Receptor Activation Modulates Hippocampal Theta Burst Induced LTP: Transduction Pathways and GABAergic Mechanisms. BIOLOGY 2022; 11:biology11050627. [PMID: 35625355 PMCID: PMC9138116 DOI: 10.3390/biology11050627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Regulation of synaptic plasticity through control of disinhibition is an important process in the prevention of excessive plasticity in both physiological and pathological conditions. Interneuron-selective interneurons, such as the ones expressing VIP in the hippocampus, may play a crucial role in this process. In this paper we showed that endogenous activation of VPAC1—not VPAC2 receptors—exerts an inhibitory control of long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in the hippocampus, through a mechanism dependent on GABAergic transmission. This suggests that VPAC1-mediated modulation of synaptic transmission at GABAergic synapses to interneurons will ultimately influence NMDA-dependent LTP expression by modulating inhibitory control of pyramidal cell dendrites and postsynaptic depolarization during LTP induction. Accordingly, the transduction pathways mostly involved in this effect were the ones involved in TBS-induced LTP expression like NMDA receptor activation and CaMKII activity. In addition, the actions of endogenous VIP through VPAC1 receptors may indirectly influence the control of dendritic excitability by Kv4.2 channels. Abstract Vasoactive intestinal peptide (VIP), acting on both VPAC1 and VPAC2 receptors, is a key modulator of hippocampal synaptic transmission, pyramidal cell excitability and long-term depression (LTD), exerting its effects partly through modulation GABAergic disinhibitory circuits. Yet, the role of endogenous VIP and its receptors in modulation of hippocampal LTP and the involvement of disinhibition in this modulation have scarcely been investigated. We studied the modulation of CA1 LTP induced by TBS via endogenous VIP release in hippocampal slices from young-adult Wistar rats using selective VPAC1 and VPAC2 receptor antagonists, evaluating its consequence for the phosphorylation of CamKII, GluA1 AMPA receptor subunits and Kv4.2 potassium channels in total hippocampal membranes obtained from TBS stimulated slices. Endogenous VIP, acting on VPAC1 (but not VPAC2) receptors, inhibited CA1 hippocampal LTP induced by TBS in young adult Wistar rats and this effect was dependent on GABAergic transmission and relied on the integrity of NMDA and CaMKII-dependent LTP expression mechanisms but not on PKA and PKC activity. Furthermore, it regulated the autophosphorylation of CaMKII and the expression and Ser438 phosphorylation of Kv4.2 potassium channels responsible for the A-current while inhibiting phosphorylation of Kv4.2 on Thr607. Altogether, this suggests that endogenous VIP controls the expression of hippocampal CA1 LTP by regulating disinhibition through activation of VPAC1 receptors in interneurons. This may impact the autophosphorylation of CaMKII during LTP, as well as the expression and phosphorylation of Kv4.2 K+ channels at hippocampal pyramidal cell dendrites.
Collapse
Affiliation(s)
- Ana Caulino-Rocha
- Departamento de Química e Bioquímica Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Nádia Carolina Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
| | - Joaquim Alexandre Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Cunha-Reis
- Departamento de Química e Bioquímica Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
- Correspondence:
| |
Collapse
|
28
|
Georgiou C, Kehayas V, Lee KS, Brandalise F, Sahlender DA, Blanc J, Knott G, Holtmaat A. A subpopulation of cortical VIP-expressing interneurons with highly dynamic spines. Commun Biol 2022; 5:352. [PMID: 35418660 PMCID: PMC9008030 DOI: 10.1038/s42003-022-03278-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Structural synaptic plasticity may underlie experience and learning-dependent changes in cortical circuits. In contrast to excitatory pyramidal neurons, insight into the structural plasticity of inhibitory neurons remains limited. Interneurons are divided into various subclasses, each with specialized functions in cortical circuits. Further knowledge of subclass-specific structural plasticity of interneurons is crucial to gaining a complete mechanistic understanding of their contribution to cortical plasticity overall. Here, we describe a subpopulation of superficial cortical multipolar interneurons expressing vasoactive intestinal peptide (VIP) with high spine densities on their dendrites located in layer (L) 1, and with the electrophysiological characteristics of bursting cells. Using longitudinal imaging in vivo, we found that the majority of the spines are highly dynamic, displaying lifetimes considerably shorter than that of spines on pyramidal neurons. Using correlative light and electron microscopy, we confirmed that these VIP spines are sites of excitatory synaptic contacts, and are morphologically distinct from other spines in L1.
Collapse
Affiliation(s)
- Christina Georgiou
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,The Lemanic Neuroscience Graduate School, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Vassilis Kehayas
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Crete, Greece
| | - Kok Sin Lee
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,The Lemanic Neuroscience Graduate School, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Federico Brandalise
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Bioscience, University of Milan, Milan, Italy
| | | | - Jerome Blanc
- Ecole Polytechnique Federale Lausanne, Lausanne, Switzerland
| | - Graham Knott
- Ecole Polytechnique Federale Lausanne, Lausanne, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences and the Center for Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
29
|
Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ. Long-Range GABAergic Projections of Cortical Origin in Brain Function. Front Syst Neurosci 2022; 16:841869. [PMID: 35392440 PMCID: PMC8981584 DOI: 10.3389/fnsys.2022.841869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The study of long-range GABAergic projections has traditionally been focused on those with subcortical origin. In the last few years, cortical GABAergic neurons have been shown to not only mediate local inhibition, but also extend long-range axons to remote cortical and subcortical areas. In this review, we delineate the different types of long-range GABAergic neurons (LRGNs) that have been reported to arise from the hippocampus and neocortex, paying attention to the anatomical and functional circuits they form to understand their role in behavior. Although cortical LRGNs are similar to their interneuron and subcortical counterparts, they comprise distinct populations that show specific patterns of cortico-cortical and cortico-fugal connectivity. Functionally, cortical LRGNs likely induce timed disinhibition in target regions to synchronize network activity. Thus, LRGNs are emerging as a new element of cortical output, acting in concert with long-range excitatory projections to shape brain function in health and disease.
Collapse
Affiliation(s)
- Jocelyn Urrutia-Piñones
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Morales-Moraga
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicole Sanguinetti-González
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Angelica P. Escobar
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisiopatología Integrativa, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q. Chiu
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
30
|
Apicella AJ, Marchionni I. VIP-Expressing GABAergic Neurons: Disinhibitory vs. Inhibitory Motif and Its Role in Communication Across Neocortical Areas. Front Cell Neurosci 2022; 16:811484. [PMID: 35221922 PMCID: PMC8867699 DOI: 10.3389/fncel.2022.811484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
GABAergic neurons play a crucial role in shaping cortical activity. Even though GABAergic neurons constitute a small fraction of cortical neurons, their peculiar morphology and functional properties make them an intriguing and challenging task to study. Here, we review the basic anatomical features, the circuit properties, and the possible role in the relevant behavioral task of a subclass of GABAergic neurons that express vasoactive intestinal polypeptide (VIP). These studies were performed using transgenic mice in which the VIP-expressing neurons can be recognized using fluorescent proteins and optogenetic manipulation to control (or regulate) their electrical activity. Cortical VIP-expressing neurons are more abundant in superficial cortical layers than other cortical layers, where they are mainly studied. Optogenetic and paired recordings performed in ex vivo cortical preparations show that VIP-expressing neurons mainly exert their inhibitory effect onto somatostatin-expressing (SOM) inhibitory neurons, leading to a disinhibitory effect onto excitatory pyramidal neurons. However, this subclass of GABAergic neurons also releases neurotransmitters onto other GABAergic and non-GABAergic neurons, suggesting other possible circuit roles than a disinhibitory effect. The heterogeneity of VIP-expressing neurons also suggests their involvement and recruitment during different functions via the inhibition/disinhibition of GABAergic and non-GABAergic neurons locally and distally, depending on the specific local circuit in which they are embedded, with potential effects on the behavioral states of the animal. Although VIP-expressing neurons represent only a tiny fraction of GABAergic inhibitory neurons in the cortex, these neurons’ selective activation/inactivation could produce a relevant behavioral effect in the animal. Regardless of the increasing finding and discoveries on this subclass of GABAergic neurons, there is still a lot of missing information, and more studies should be done to unveil their role at the circuit and behavior level in different cortical layers and across different neocortical areas.
Collapse
Affiliation(s)
- Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, United States
| | - Ivan Marchionni
- Department of Biomedical Sciences, University of Padova, Padua, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| |
Collapse
|
31
|
Lack of Hyperinhibition of Oriens Lacunosum-Moleculare Cells by Vasoactive Intestinal Peptide-Expressing Cells in a Model of Temporal Lobe Epilepsy. eNeuro 2021; 8:ENEURO.0299-21.2021. [PMID: 34819310 PMCID: PMC8721516 DOI: 10.1523/eneuro.0299-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Temporal lobe epilepsy remains a common disorder with no cure and inadequate treatments, potentially because of an incomplete understanding of how seizures start. CA1 pyramidal cells and many inhibitory interneurons increase their firing rate in the seconds-minutes before a spontaneous seizure in epileptic rats. However, some interneurons fail to do so, including those identified as putative interneurons with somata in oriens and axons targeting lacunosum-moleculare (OLM cells). Somatostatin-containing cells, including OLM cells, are the primary target of inhibitory vasoactive intestinal polypeptide and calretinin-expressing (VIP/CR) bipolar interneuron-selective interneurons, type 3 (ISI-3). The objective of this study was to test the hypothesis that in epilepsy inhibition of OLM cells by ISI-3 is abnormally increased, potentially explaining the failure of OLM recruitment when needed most during the ramp up of activity preceding a seizure. Stereological quantification of VIP/CR cells in a model of temporal lobe epilepsy demonstrated that they survive in epileptic mice, despite a reduction in their somatostatin-expressing (Som) cell targets. Paired recordings of unitary IPSCs (uIPSCs) from ISI-3 to OLM cells did not show increased connection probability or increased connection strength, and failure rate was unchanged. When miniature postsynaptic currents in ISI-3 were compared, only mIPSC frequency was increased in epileptic hippocampi. Nevertheless, spontaneous and miniature postsynaptic potentials were unchanged in OLM cells of epileptic mice. These results are not consistent with the hypothesis of hyperinhibition from VIP/CR bipolar cells impeding recruitment of OLM cells in advance of a seizure.
Collapse
|
32
|
Dudok B, Klein PM, Soltesz I. Toward Understanding the Diverse Roles of Perisomatic Interneurons in Epilepsy. Epilepsy Curr 2021; 22:54-60. [PMID: 35233202 PMCID: PMC8832350 DOI: 10.1177/15357597211053687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epileptic seizures are associated with excessive neuronal spiking. Perisomatic
γ-aminobutyric acid (GABA)ergic interneurons specifically innervate the subcellular
domains of postsynaptic excitatory cells that are critical for spike generation. With a
revolution in transcriptomics-based cell taxonomy driving the development of novel
transgenic mouse lines, selectively monitoring and modulating previously elusive
interneuron types is becoming increasingly feasible. Emerging evidence suggests that the
three types of hippocampal perisomatic interneurons, axo-axonic cells, along with
parvalbumin- and cholecystokinin-expressing basket cells, each follow unique activity
patterns in vivo, suggesting distinctive roles in regulating epileptic networks.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Peter M. Klein
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Racine AS, Michon FX, Laplante I, Lacaille JC. Somatostatin contributes to long-term potentiation at excitatory synapses onto hippocampal somatostatinergic interneurons. Mol Brain 2021; 14:130. [PMID: 34429141 PMCID: PMC8385910 DOI: 10.1186/s13041-021-00830-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 04/13/2023] Open
Abstract
Somatostatin-expressing interneurons (SOM-INs) are a major subpopulation of GABAergic cells in CA1 hippocampus that receive excitation from pyramidal cells (PCs), and, in turn, provide feedback inhibition onto PC dendrites. Excitatory synapses onto SOM-INs show a Hebbian long-term potentiation (LTP) mediated by type 1a metabotropic glutamate receptors (mGluR1a) that is implicated in hippocampus-dependent learning. The neuropeptide somatostatin (SST) is also critical for hippocampal long-term synaptic plasticity, as well as learning and memory. SST effects on hippocampal PCs are well documented, but its actions on inhibitory interneurons remain largely undetermined. In the present work, we investigate the involvement of SST in long-term potentiation of CA1 SOM-IN excitatory synapses using pharmacological approaches targeting the somatostatinergic system and whole cell recordings in slices from transgenic mice expressing eYFP in SOM-INs. We report that application of exogenous SST14 induces long-term potentiation of excitatory postsynaptic potentials in SOM-INs via somatostatin type 1–5 receptors (SST1-5Rs) but does not affect synapses of PC or parvalbumin-expressing interneurons. Hebbian LTP in SOM-INs was prevented by inhibition of SSTRs and by depletion of SST by cysteamine treatment, suggesting a critical role of endogenous SST in LTP. LTP of SOM-IN excitatory synapses induced by SST14 was independent of NMDAR and mGluR1a, activity-dependent, and prevented by blocking GABAA receptor function. Our results indicate that endogenous SST may contribute to Hebbian LTP at excitatory synapses of SOM-INs by controlling GABAA inhibition, uncovering a novel role for SST in regulating long-term synaptic plasticity in somatostatinergic cells that may be important for hippocampus-dependent memory processes.
Collapse
Affiliation(s)
- Anne-Sophie Racine
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, QC, H3C 3J7, Canada
| | - François-Xavier Michon
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, QC, H3C 3J7, Canada
| | - Isabel Laplante
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, QC, H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Centre for Interdisciplinary Research on Brain and Learning, Research Group on the Central Nervous System, Department of Neurosciences, Université de Montréal, P.O. Box 6128, Station Downtown, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
34
|
Guet-McCreight A, Skinner FK. Deciphering how interneuron specific 3 cells control oriens lacunosum-moleculare cells to contribute to circuit function. J Neurophysiol 2021; 126:997-1014. [PMID: 34379493 DOI: 10.1152/jn.00204.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The wide diversity of inhibitory cells across the brain makes them suitable to contribute to network dynamics in specialized fashions. However, the contributions of a particular inhibitory cell type in a behaving animal are challenging to untangle as one needs to both record cellular activities and identify the cell type being recorded. Thus, using computational modeling and theory to predict and hypothesize cell-specific contributions is desirable. Here, we examine potential contributions of interneuron-specific 3 (I-S3) cells - an inhibitory interneuron found in CA1 hippocampus that only targets other inhibitory interneurons - during simulated theta rhythms. We use previously developed multi-compartment models of oriens lacunosum-moleculare (OLM) cells, the main target of I-S3 cells, and explore how I-S3 cell inputs during in vitro and in vivo scenarios contribute to theta. We find that I-S3 cells suppress OLM cell spiking, rather than engender its spiking via post-inhibitory rebound mechanisms, and contribute to theta frequency spike resonance during simulated in vivo scenarios. To elicit recruitment similar to in vitro experiments, inclusion of disinhibited pyramidal cell inputs is necessary, implying that I-S3 cell firing broadens the window for pyramidal cell disinhibition. Using in vivo virtual networks, we show that I-S3 cells contribute to a sharpening of OLM cell recruitment at theta frequencies. Further, shifting the timing of I-S3 cell spiking due to external modulation shifts the timing of the OLM cell firing and thus disinhibitory windows. We propose a specialized contribution of I-S3 cells to create temporally precise coordination of modulation pathways.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Frances K Skinner
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Wei YT, Wu JW, Yeh CW, Shen HC, Wu KP, Vida I, Lien CC. Morpho-physiological properties and connectivity of vasoactive intestinal polypeptide-expressing interneurons in the mouse hippocampal dentate gyrus. J Comp Neurol 2021; 529:2658-2675. [PMID: 33484471 DOI: 10.1002/cne.25116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 11/08/2022]
Abstract
The hippocampus is a key brain structure for cognitive and emotional functions. Among the hippocampal subregions, the dentate gyrus (DG) is the first station that receives multimodal sensory information from the cortex. Local-circuit inhibitory GABAergic interneurons (INs) regulate the excitation-inhibition balance in the DG principal neurons (PNs) and therefore are critical for information processing. Similar to PNs, GABAergic INs also receive distinct inhibitory inputs. Among various classes of INs, vasoactive intestinal polypeptide-expressing (VIP+ ) INs preferentially target other INs in several brain regions and thereby directly modulate the GABAergic system. However, the morpho-physiological characteristics and postsynaptic targets of VIP+ INs in the DG are poorly understood. Here, we report that VIP+ INs in the mouse DG are highly heterogeneous based on their morpho-physiological characteristics. In approximately two-thirds of morphologically reconstructed cells, their axons ramify in the hilus. The remaining cells project their axons exclusively to the molecular layer (15%), to both the molecular layer and hilus (10%), or throughout the entire DG layers (8%). Generally, VIP+ INs display variable intrinsic properties and discharge patterns without clear correlation with their morphologies. Finally, VIP+ INs are recruited with a long latency in response to theta-band cortical inputs and preferentially innervate GABAergic INs over glutamatergic PNs. In summary, VIP+ INs in the DG are composed of highly diverse subpopulations and control the DG output via disinhibition.
Collapse
Affiliation(s)
- Yu-Ting Wei
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Jei-Wei Wu
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Wei Yeh
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Chang Shen
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
36
|
Pancotti L, Topolnik L. Cholinergic Modulation of Dendritic Signaling in Hippocampal GABAergic Inhibitory Interneurons. Neuroscience 2021; 489:44-56. [PMID: 34129910 DOI: 10.1016/j.neuroscience.2021.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Dendrites represent the "reception hub" of the neuron as they collect thousands of different inputs and send a coherent response to the cell body. A considerable portion of these signals, especially in vivo, arises from neuromodulatory sources, which affect dendritic computations and cellular activity. In this context, acetylcholine (ACh) exerts a coordinating role of different brain structures, contributing to goal-driven behaviors and sleep-wake cycles. Specifically, cholinergic neurons from the medial septum-diagonal band of Broca complex send numerous projections to glutamatergic principal cells and GABAergic inhibitory neurons in the hippocampus, differentially entraining them during network oscillations. Interneurons display abundant expression of cholinergic receptors and marked responses to stimulation by ACh. Nonetheless, the precise localization of ACh inputs is largely unknown, and evidence for cholinergic modulation of interneuronal dendritic signaling remains elusive. In this article, we review evidence that suggests modulatory effects of ACh on dendritic computations in three hippocampal interneuron subtypes: fast-spiking parvalbumin-positive (PV+) cells, somatostatin-expressing (SOM+) oriens lacunosum moleculare cells and vasoactive intestinal polypeptide-expressing (VIP+) interneuron-selective interneurons. We consider the distribution of cholinergic receptors on these interneurons, including information about their specific somatodendritic location, and discuss how the action of these receptors can modulate dendritic Ca2+ signaling and activity of interneurons. The implications of ACh-dependent Ca2+ signaling for dendritic plasticity are also discussed. We propose that cholinergic modulation can shape the dendritic integration and plasticity in interneurons in a cell type-specific manner, and the elucidation of these mechanisms will be required to understand the contribution of each cell type to large-scale network activity.
Collapse
Affiliation(s)
- Luca Pancotti
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Canada; Neuroscience Axis, CRCHUQ, Laval University, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Canada; Neuroscience Axis, CRCHUQ, Laval University, Canada.
| |
Collapse
|
37
|
Hájos N. Interneuron Types and Their Circuits in the Basolateral Amygdala. Front Neural Circuits 2021; 15:687257. [PMID: 34177472 PMCID: PMC8222668 DOI: 10.3389/fncir.2021.687257] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
The basolateral amygdala (BLA) is a cortical structure based on its cell types, connectivity features, and developmental characteristics. This part of the amygdala is considered to be the main entry site of processed and multisensory information delivered via cortical and thalamic afferents. Although GABAergic inhibitory cells in the BLA comprise only 20% of the entire neuronal population, they provide essential control over proper network operation. Previous studies have uncovered that GABAergic cells in the basolateral amygdala are as diverse as those present in other cortical regions, including the hippocampus and neocortex. To understand the role of inhibitory cells in various amygdala functions, we need to reveal the connectivity and input-output features of the different types of GABAergic cells. Here, I review the recent achievements in uncovering the diversity of GABAergic cells in the basolateral amygdala with a specific focus on the microcircuit organization of these inhibitory cells.
Collapse
Affiliation(s)
- Norbert Hájos
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
38
|
Kullander K, Topolnik L. Cortical disinhibitory circuits: cell types, connectivity and function. Trends Neurosci 2021; 44:643-657. [PMID: 34006387 DOI: 10.1016/j.tins.2021.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
The concept of a dynamic excitation/inhibition balance tuned by circuit disinhibition, which can shape information flow during complex behavioral tasks, has arisen as an important and conserved information-processing motif. In cortical circuits, different subtypes of GABAergic inhibitory interneurons are connected to each other, offering an anatomical foundation for disinhibitory processes. Moreover, a subpopulation of GABAergic cells that express vasoactive intestinal polypeptide (VIP) preferentially innervates inhibitory interneurons, highlighting their central role in disinhibitory modulation. We discuss inhibitory neuron subtypes involved in disinhibition, with a focus on local circuits and long-range synaptic connections that drive disinhibitory function. We highlight multiple layers of disinhibition across cortical circuits that regulate behavior and serve to maintain an excitation/inhibition balance.
Collapse
Affiliation(s)
- Klas Kullander
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, Canada; Neuroscience Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Laval University, Québec, QC, Canada.
| |
Collapse
|
39
|
Cunha-Reis D, Caulino-Rocha A. Corrigendum: VIP Modulation of Hippocampal Synaptic Plasticity: A Role for VIP Receptors as Therapeutic Targets in Cognitive Decline and Mesial Temporal Lobe Epilepsy. Front Cell Neurosci 2021; 15:691978. [PMID: 34054434 PMCID: PMC8161509 DOI: 10.3389/fncel.2021.691978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fncel.2020.00153.].
Collapse
Affiliation(s)
- Diana Cunha-Reis
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
40
|
Total Number and Ratio of GABAergic Neuron Types in the Mouse Lateral and Basal Amygdala. J Neurosci 2021; 41:4575-4595. [PMID: 33837051 DOI: 10.1523/jneurosci.2700-20.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022] Open
Abstract
GABAergic neurons are key circuit elements in cortical networks. Despite growing evidence showing that inhibitory cells play a critical role in the lateral (LA) and basal (BA) amygdala functions, neither the number of GABAergic neurons nor the ratio of their distinct types has been determined in these amygdalar nuclei. Using unbiased stereology, we found that the ratio of GABAergic neurons in the BA (22%) is significantly higher than in the LA (16%) in both male and female mice. No difference was observed between the right and left hemispheres in either sex. In addition, we assessed the ratio of the major inhibitory cell types in both amygdalar nuclei. Using transgenic mice and a viral strategy for visualizing inhibitory cells combined with immunocytochemistry, we estimated that the following cell types together compose the vast majority of GABAergic cells in the LA and BA: axo-axonic cells (5.5%-6%), basket cells expressing parvalbumin (17%-20%) or cholecystokinin (7%-9%), dendrite-targeting inhibitory cells expressing somatostatin (10%-16%), NPY-containing neurogliaform cells (14%-15%), VIP and/or calretinin-expressing interneuron-selective interneurons (29%-38%), and GABAergic projection neurons expressing somatostatin and neuronal nitric oxide synthase (5.5%-8%). Our results show that these amygdalar nuclei contain all major GABAergic neuron types as found in other cortical regions. Furthermore, our data offer an essential reference for future studies aiming to reveal changes in GABAergic cell number and in inhibitory cell types typically observed under different pathologic conditions, and to model functioning amygdalar networks in health and disease.SIGNIFICANCE STATEMENT GABAergic cells in cortical structures, as in the lateral and basal nucleus of the amygdala, have a determinant role in controlling circuit operation. In this study, we provide the first estimate for the total number of inhibitory cells in these two amygdalar nuclei. In addition, our study is the first to define the ratio of the major GABAergic cell types present in these cortical networks. Taking into account that hyperexcitability in the amygdala, arising from the imbalance between excitation and inhibition typifies many altered brain functions, including anxiety, post-traumatic stress disorder, schizophrenia, and autism, uncovering the number and ratio of distinct amygdalar inhibitory cell types offers a solid base for comparing the changes in inhibition in pathologic brain states.
Collapse
|
41
|
Goff KM, Goldberg EM. A Role for Vasoactive Intestinal Peptide Interneurons in Neurodevelopmental Disorders. Dev Neurosci 2021; 43:168-180. [PMID: 33794534 PMCID: PMC8440337 DOI: 10.1159/000515264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
GABAergic inhibitory interneurons of the cerebral cortex expressing vasoactive intestinal peptide (VIP-INs) are rapidly emerging as important regulators of network dynamics and normal circuit development. Several recent studies have also identified VIP-IN dysfunction in models of genetically determined neurodevelopmental disorders (NDDs). In this article, we review the known circuit functions of VIP-INs and how they may relate to accumulating evidence implicating VIP-INs in the mechanisms of prominent NDDs. We highlight recurring VIP-IN-mediated circuit motifs that are shared across cerebral cortical areas and how VIP-IN activity can shape sensory input, development, and behavior. Ultimately, we extract a set of themes that inform our understanding of how VIP-INs influence pathogenesis of NDDs. Using publicly available single-cell RNA sequencing data from the Allen Institute, we also identify several underexplored disease-associated genes that are highly expressed in VIP-INs. We survey these genes and their shared related disease phenotypes that may broadly implicate VIP-INs in autism spectrum disorder and intellectual disability rather than epileptic encephalopathy. Finally, we conclude with a discussion of the relevance of cell type-specific investigations and therapeutics in the age of genomic diagnosis and targeted therapeutics.
Collapse
Affiliation(s)
- Kevin M Goff
- Medical Scientist Training Program (MSTP), The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ethan M Goldberg
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Epilepsy NeuroGenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Departments of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Departments of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Cunha-Reis D, Caulino-Rocha A, Correia-de-Sá P. VIPergic neuroprotection in epileptogenesis: challenges and opportunities. Pharmacol Res 2021; 164:105356. [DOI: 10.1016/j.phrs.2020.105356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
|
43
|
Anastasiades PG, Collins DP, Carter AG. Mediodorsal and Ventromedial Thalamus Engage Distinct L1 Circuits in the Prefrontal Cortex. Neuron 2021; 109:314-330.e4. [PMID: 33188733 PMCID: PMC7855187 DOI: 10.1016/j.neuron.2020.10.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 09/03/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
Interactions between the thalamus and prefrontal cortex (PFC) play a critical role in cognitive function and arousal. Here, we use anatomical tracing, electrophysiology, optogenetics, and 2-photon Ca2+ imaging to determine how ventromedial (VM) and mediodorsal (MD) thalamus target specific cell types and subcellular compartments in layer 1 (L1) of mouse PFC. We find thalamic inputs make distinct connections in L1, where VM engages neuron-derived neurotrophic factor (NDNF+) cells in L1a and MD drives vasoactive intestinal peptide (VIP+) cells in L1b. These separate populations of L1 interneurons participate in different inhibitory networks in superficial layers by targeting either parvalbumin (PV+) or somatostatin (SOM+) interneurons. NDNF+ cells also inhibit the apical dendrites of L5 pyramidal tract (PT) cells to suppress action potential (AP)-evoked Ca2+ signals. Lastly, NDNF+ cells mediate a unique form of thalamus-evoked inhibition at PT cells, selectively blocking VM-evoked dendritic Ca2+ spikes. Together, our findings reveal how two thalamic nuclei differentially communicate with the PFC through distinct L1 micro-circuits.
Collapse
Affiliation(s)
- Paul G Anastasiades
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - David P Collins
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Adam G Carter
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
44
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
45
|
Geiller T, Vancura B, Terada S, Troullinou E, Chavlis S, Tsagkatakis G, Tsakalides P, Ócsai K, Poirazi P, Rózsa BJ, Losonczy A. Large-Scale 3D Two-Photon Imaging of Molecularly Identified CA1 Interneuron Dynamics in Behaving Mice. Neuron 2020; 108:968-983.e9. [PMID: 33022227 PMCID: PMC7736348 DOI: 10.1016/j.neuron.2020.09.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 01/26/2023]
Abstract
Cortical computations are critically reliant on their local circuit, GABAergic cells. In the hippocampus, a large body of work has identified an unprecedented diversity of GABAergic interneurons with pronounced anatomical, molecular, and physiological differences. Yet little is known about the functional properties and activity dynamics of the major hippocampal interneuron classes in behaving animals. Here we use fast, targeted, three-dimensional (3D) two-photon calcium imaging coupled with immunohistochemistry-based molecular identification to retrospectively map in vivo activity onto multiple classes of interneurons in the mouse hippocampal area CA1 during head-fixed exploration and goal-directed learning. We find examples of preferential subtype recruitment with quantitative differences in response properties and feature selectivity during key behavioral tasks and states. These results provide new insights into the collective organization of local inhibitory circuits supporting navigational and mnemonic functions of the hippocampus.
Collapse
Affiliation(s)
- Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Bert Vancura
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Eirini Troullinou
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
- Department of Computer Science, University of Crete, Heraklion, 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, 700 13, Greece
| | | | - Panagiotis Tsakalides
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, 70013, Greece
- Department of Computer Science, University of Crete, Heraklion, 70013, Greece
| | - Katalin Ócsai
- Faculty of Information Technology, Pázmány Péter University, Budapest
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, 700 13, Greece
| | - Balázs J Rózsa
- Faculty of Information Technology, Pázmány Péter University, Budapest
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
46
|
Albrecht A, Redavide E, Regev-Tsur S, Stork O, Richter-Levin G. Hippocampal GABAergic interneurons and their co-localized neuropeptides in stress vulnerability and resilience. Neurosci Biobehav Rev 2020; 122:229-244. [PMID: 33188820 DOI: 10.1016/j.neubiorev.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Studies in humans and rodents suggest a critical role for the hippocampal formation in cognition and emotion, but also in the adaptation to stressful events. Successful stress adaptation promotes resilience, while its failure may lead to stress-induced psychopathologies such as depression and anxiety disorders. Hippocampal architecture and physiology is shaped by its strong control of activity via diverse classes of inhibitory interneurons that express typical calcium binding proteins and neuropeptides. Celltype-specific opto- and chemogenetic intervention strategies that take advantage of these biochemical markers have bolstered our understanding of the distinct role of different interneurons in anxiety, fear and stress adaptation. Moreover, some of the signature proteins of GABAergic interneurons have a potent impact on emotion and cognition on their own, making them attractive targets for interventions. In particular, neuropeptide Y is a promising endogenous agent for mediating resilience against severe stress. In this review, we evaluate the role of the major types of interneurons across hippocampal subregions in the adaptation to chronic and acute stress and to emotional memory formation.
Collapse
Affiliation(s)
- Anne Albrecht
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Elisa Redavide
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Institute of Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Stav Regev-Tsur
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel.
| | - Oliver Stork
- Center for Behavioral Brain Science, Universitätsplatz 2, 39106 Magdeburg, Germany; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Psychology Department, University of Haifa199 Aba-Hushi Avenue, 3498838 Haifa, Israel.
| |
Collapse
|
47
|
Francavilla R, Guet-McCreight A, Amalyan S, Hui CW, Topolnik D, Michaud F, Marino B, Tremblay MÈ, Skinner FK, Topolnik L. Alterations in Intrinsic and Synaptic Properties of Hippocampal CA1 VIP Interneurons During Aging. Front Cell Neurosci 2020; 14:554405. [PMID: 33173468 PMCID: PMC7591401 DOI: 10.3389/fncel.2020.554405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Learning and memory deficits are hallmarks of the aging brain, with cortical neuronal circuits representing the main target in cognitive deterioration. While GABAergic inhibitory and disinhibitory circuits are critical in supporting cognitive processes, their roles in age-related cognitive decline remain largely unknown. Here, we examined the morphological and physiological properties of the hippocampal CA1 vasoactive intestinal peptide/calretinin-expressing (VIP+/CR+) type 3 interneuron-specific (I-S3) cells across mouse lifespan. Our data showed that while the number and morphological features of I-S3 cells remained unchanged, their firing and synaptic properties were significantly altered in old animals. In particular, the action potential duration and the level of steady-state depolarization were significantly increased in old animals in parallel with a significant decrease in the maximal firing frequency. Reducing the fast-delayed rectifier potassium or transient sodium conductances in I-S3 cell computational models could reproduce the age-related changes in I-S3 cell firing properties. However, experimental data revealed no difference in the activation properties of the Kv3.1 and A-type potassium currents, indicating that transient sodium together with other ion conductances may be responsible for the observed phenomena. Furthermore, I-S3 cells in aged mice received a stronger inhibitory drive due to concomitant increase in the amplitude and frequency of spontaneous inhibitory currents. These age-associated changes in the I-S3 cell properties occurred in parallel with an increased inhibition of their target interneurons and were associated with spatial memory deficits and increased anxiety. Taken together, these data indicate that VIP+/CR+ interneurons responsible for local circuit disinhibition survive during aging but exhibit significantly altered physiological properties, which may result in the increased inhibition of hippocampal interneurons and distorted mnemonic functions.
Collapse
Affiliation(s)
- Ruggiero Francavilla
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Alexandre Guet-McCreight
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sona Amalyan
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Chin Wai Hui
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Dimitry Topolnik
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Félix Michaud
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Beatrice Marino
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Frances K. Skinner
- Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC, Canada
- Neuroscience Axis, Centre Hospitalier Universitaire (CHU) de Québec Research Center – Université Laval, Québec, QC, Canada
| |
Collapse
|
48
|
Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex 2020; 132:258-280. [PMID: 33007640 DOI: 10.1016/j.cortex.2020.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| | - Fani Koukouli
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France
| | - Alberto Bacci
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
49
|
Anastasiades PG, Boada C, Carter AG. Cell-Type-Specific D1 Dopamine Receptor Modulation of Projection Neurons and Interneurons in the Prefrontal Cortex. Cereb Cortex 2020; 29:3224-3242. [PMID: 30566584 DOI: 10.1093/cercor/bhy299] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 11/14/2022] Open
Abstract
Dopamine modulation in the prefrontal cortex (PFC) mediates diverse effects on neuronal physiology and function, but the expression of dopamine receptors at subpopulations of projection neurons and interneurons remains unresolved. Here, we examine D1 receptor expression and modulation at specific cell types and layers in the mouse prelimbic PFC. We first show that D1 receptors are enriched in pyramidal cells in both layers 5 and 6, and that these cells project to intratelencephalic targets including contralateral cortex, striatum, and claustrum rather than to extratelencephalic structures. We then find that D1 receptors are also present in interneurons and enriched in superficial layer VIP-positive (VIP+) interneurons that coexpresses calretinin but absent from parvalbumin-positive (PV+) and somatostatin-positive (SOM+) interneurons. Finally, we determine that D1 receptors strongly and selectively enhance action potential firing in only a subset of these corticocortical neurons and VIP+ interneurons. Our findings define several novel subpopulations of D1+ neurons, highlighting how modulation via D1 receptors can influence both excitatory and disinhibitory microcircuits in the PFC.
Collapse
Affiliation(s)
- Paul G Anastasiades
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Christina Boada
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| | - Adam G Carter
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
| |
Collapse
|
50
|
Cunha-Reis D, Caulino-Rocha A. VIP Modulation of Hippocampal Synaptic Plasticity: A Role for VIP Receptors as Therapeutic Targets in Cognitive Decline and Mesial Temporal Lobe Epilepsy. Front Cell Neurosci 2020; 14:153. [PMID: 32595454 PMCID: PMC7303298 DOI: 10.3389/fncel.2020.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is an important modulatory peptide throughout the CNS acting as a neurotransmitter, neurotrophic or neuroprotective factor. In the hippocampus, a brain area implicated in learning and memory processes, VIP has a crucial role in the control of GABAergic transmission and pyramidal cell activity in response to specific network activity by either VIP-containing basket cells or interneuron-selective (IS) interneurons and this appears to have a differential impact in hippocampal-dependent cognition. At the cellular level, VIP regulates synaptic transmission by either promoting disinhibition, through activation of VPAC1 receptors, or enhancing pyramidal cell excitability, through activation of VPAC2 receptors. These actions also control several important synaptic plasticity phenomena such as long-term potentiation (LTP) and long-term depression (LTD). This paper reviews the current knowledge on the activation and multiple functions of VIP expressing cells in the hippocampus and their role in controlling synaptic transmission, synaptic plasticity and learning and memory processes, discussing also the role of VPAC1 and VPAC2 VIP receptors in the regulation of these different processes. Furthermore, we address the current knowledge regarding changes in VIP mediated neurotransmission in epileptogenesis and mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), and discuss the therapeutic opportunities of using selective VIP receptor ligands to prevent epileptogenesis and cognitive decline in MTLE-HS.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|