1
|
Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr Polym 2022; 280:118875. [PMID: 35027118 DOI: 10.1016/j.carbpol.2021.118875] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute for Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
2
|
Hofmann S, Bellmann-Sickert K, Beck-Sickinger AG. Chemical modification of neuropeptide Y for human Y1 receptor targeting in health and disease. Biol Chem 2019; 400:299-311. [PMID: 30653463 DOI: 10.1515/hsz-2018-0364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
As a very abundant neuropeptide in the brain and widely distributed peptide hormone in the periphery, neuropeptide Y (NPY) appears to be a multisignaling key peptide. Together with peptide YY, pancreatic polypeptide and the four human G protein-coupled receptor subtypes hY1R, hY2R, hY4R and hY5R it forms the NPY/hYR multiligand/multireceptor system, which is involved in essential physiological processes as well as in human diseases. In particular, NPY-induced hY1R signaling plays a central role in the regulation of food intake and stress response as well as in obesity, mood disorders and cancer. Thus, several hY1R-preferring NPY analogs have been developed as versatile tools to unravel the complex NPY/hY1R signaling in health and disease. Further, these peptides provide basic lead structures for the development of innovative drugs. Here, the current research is summarized focusing on the development of differently sized hY1R-preferring NPY analogs as well as their advances with respect to hY1R profiling, potential therapeutic applications and targeted cancer imaging and therapy. Finally, major limitations and innovative strategies for next generation hY1R-preferring NPY analogs are addressed.
Collapse
Affiliation(s)
- Sven Hofmann
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
3
|
Controllable mouse epidermal growth factor (mEGF) release by photo-encapsulation using azidophenyl chitosan derivative and its wound healing effect. Macromol Res 2016. [DOI: 10.1007/s13233-016-4125-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
The synthesis of boronic-imine structured compounds and identification of their anticancer, antimicrobial and antioxidant activities. J Pharm Anal 2015; 6:39-48. [PMID: 29403961 PMCID: PMC5762445 DOI: 10.1016/j.jpha.2015.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 11/24/2022] Open
Abstract
Boronic acid compounds with different substituted groups were handled to synthesize various ligands encoded as B1, B2, B3, B4, B5, B6, B7 and B8. B5 and B7 were tested for the cytotoxic activity against the prostate cancer cells and it was found that the cell viability of cancer cells was decreased while most of the healthy cells could still be viable. 5 µM solutions of B5 and B7 decreased the cell viability to 33% and 44% whereas healthy cells were 71% and 95%, respectively, after treatment. Antimicrobial properties were explored against the bacterial and fungal microorganisms with B1, B5 and B7. The inhibition zones were evaluated for all boronic structures, and the growth inhibition zones were determined in a range of 7–13 mm diameter for different microorganism species. Staphylococcus aureus was the common microorganism that three boronic compounds with imine ligands showed the activity. Antioxidant features of B2, B3, B4, B5, B6, B7 and B8 were investigated by different processes such as Beta-carotene bleaching (BCB), 2,2-diphenyl picryl hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and CUPric reducing antioxidant capacity (CUPRAC) methods. Significant antioxidant activity was achieved by the phenyl boronic based ligands and these compounds demonstrated as much activity as standards (α-Toc and BHT). In addition, all structures were applied properly without any decomposition during the experiments. They were rather stable both in aqueous media and solid state.
Collapse
|
5
|
Kramer-Marek G, Longmire MR, Choyke PL, Kobayashi H. Recent advances in optical cancer imaging of EGF receptors. Curr Med Chem 2013; 19:4759-66. [PMID: 22873662 DOI: 10.2174/092986712803341584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/14/2011] [Accepted: 04/06/2012] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor (EGF) receptors are commonly expressed on the cell membrane of cancer cells and activity of these receptors results in accelerated cell growth and carcinogenesis. A variety of targeted molecules have been developed to block ligand binding and/or inhibit the function of these receptor tyrosine kinases, and several have proven therapeutic benefits. Along with the advent of new therapeutic agents comes a need for non-invasive tools to diagnose, characterize, and monitor tumor responsiveness to therapy. Imaging EGF receptors with radionuclides has been performed for decades. However, recently this area has advanced considerably with the development of EGF receptor-targeted optical imaging probes. Herein, we review recent advances in molecular imaging of the EGF receptor family, focusing specifically on optical imaging. Such agents provide the opportunity for earlier diagnosis, improved tumor characterization, and the ability to measure and monitor tumor responsiveness to anti-EGF receptor treatment strategies.
Collapse
|
6
|
Waerzeggers Y, Monfared P, Viel T, Faust A, Kopka K, Schäfers M, Tavitian B, Winkeler A, Jacobs A. Specific biomarkers of receptors, pathways of inhibition and targeted therapies: pre-clinical developments. Br J Radiol 2012; 84 Spec No 2:S168-78. [PMID: 22433827 DOI: 10.1259/bjr/66405626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A deeper understanding of the role of specific genes, proteins, pathways and networks in health and disease, coupled with the development of technologies to assay these molecules and pathways in patients, promises to revolutionise the practice of clinical medicine. Especially the discovery and development of novel drugs targeted to disease-specific alterations could benefit significantly from non-invasive imaging techniques assessing the dynamics of specific disease-related parameters. Here we review the application of imaging biomarkers in the management of patients with brain tumours, especially malignant glioma. In our other review we focused on imaging biomarkers of general biochemical and physiological processes related with tumour growth such as energy, protein, DNA and membrane metabolism, vascular function, hypoxia and cell death. In this part of the review, we will discuss the use of imaging biomarkers of specific disease-related molecular genetic alterations such as apoptosis, angiogenesis, cell membrane receptors and signalling pathways and their application in targeted therapies.
Collapse
Affiliation(s)
- Y Waerzeggers
- European Institute for Molecular Imaging, Westfaelische Wilhelms-University, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Of the three closo-carborane isomers (C(2)B(10)H(12)), closo-1,2-carborane has been used most widely in the synthesis of carboranyl amines. However, closo-1,2-carboranes are prone to deboronation to nido-7,8-carborane under various conditions including attack by basic amino groups. In order to overcome this problem, closo-1,7-carboranyl ethyl-, propyl-, and butylamine were synthesized, which should be more stable towards basic deboronation than their closo-1,2-carboranyl counterparts. These closo-1,7-carboranyl amines (5, 18 and 19) were synthesized using two different methods, both starting from the corresponding closo-1,7-carboranyl alkyl iodides (3, 14 and 15). One of the carboranyl alkyl amine (5) was conjugated with folic acid to form a closo-1,7-carborane-folic acid bioconjugate (20).
Collapse
Affiliation(s)
- Hitesh K. Agarwal
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | - Benjamin Buszek
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | - Kevin G. Ricks
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | - Werner Tjarks
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Sivaev IB, Bregadze VV. Polyhedral Boranes for Medical Applications: Current Status and Perspectives. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900003] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Igor B. Sivaev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow 119991, Russia, Fax: +7‐499‐1355085
| | - Vladimir V. Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow 119991, Russia, Fax: +7‐499‐1355085
| |
Collapse
|
9
|
Cai W, Niu G, Chen X. Multimodality imaging of the HER-kinase axis in cancer. Eur J Nucl Med Mol Imaging 2007; 35:186-208. [PMID: 17846765 DOI: 10.1007/s00259-007-0560-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases controls critical pathways involved in epithelial cell differentiation, growth, division, and motility. Alterations and disruptions in the function of the HER-kinase axis can lead to malignancy. Many therapeutic agents targeting the HER-kinase axis are approved for clinical use or are in preclinical/clinical development. The ability to quantitatively image the HER-kinase axis in a noninvasive manner can aid in lesion detection, patient stratification, new drug development/validation, dose optimization, and treatment monitoring. This review summarizes the current status in multimodality imaging of the HER-kinase axis using PET, SPECT, optical, and MR imaging. The targeting ligands used include small-molecule tyrosine kinase inhibitors, peptides, proteins, antibodies, and engineered antibody fragments. EGFR and HER2 imaging have been well documented in the past, and imaging of HER3, HER4, HER heterodimers, and HER-kinase mutants deserves significant research effort in the future. Successful development of new HER-kinase-targeted imaging agents with optimal in vivo stability, targeting efficacy, and desirable pharmacokinetics for clinical translation will enable maximum benefit in cancer patient management.
Collapse
Affiliation(s)
- Weibo Cai
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, 1201 Welch Rd, P095, Stanford, CA 94305-5484, USA.
| | | | | |
Collapse
|
10
|
Abstract
Abstract
The fundamental principle of radiosurgery is the focusing of energy within a restricted target volume. In examining the history of radiosurgery, various strategies for addressing this issue of energy containment become apparent. This is the first in a series of articles that reviews the evolution of radiosurgery through the development of instruments for beam generation and delivery for improved conformal therapy.
In this first part of the series, we focus specifically on beam generation and the development of particle beams as the initial approach in radiosurgery for focused radiation treatment. We examine the physical characteristics and biological effects of particles and the unique advantage they confer for radiosurgery. We consider clinical studies and treatment of neurological diseases with particles and also assess boron neutron capture therapy as a strategy for selectively targeting neutron beams.
Later in this series, we explore methods of beam delivery with the development of stereotactic radiosurgery. Finally, we introduce new concepts and applications in radiosurgery such as nanotechnology, radiation enhancement, ultrasound, near infrared, and free electron lasers.
The elaboration of these efforts sets the stage for neurosurgeons to further explore new ideas, develop innovative technology, and advance the practice of radiosurgery.
Collapse
Affiliation(s)
- Daniel J Hoh
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Carr MJ, Franken A, Macías R, Kennedy JD. Twelve-vertex polyhedral carbaborane chemistry. Isostructural cations and anions: The ‘globule–globule’ salt [H3NCH2C2B10H11][H3CCH2CB11H11]. Polyhedron 2006. [DOI: 10.1016/j.poly.2005.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Kullberg EB, Wei Q, Capala J, Giusti V, Malmström PU, Gedda L. EGF-receptor targeted liposomes with boronated acridine: growth inhibition of cultured glioma cells after neutron irradiation. Int J Radiat Biol 2005; 81:621-9. [PMID: 16298943 DOI: 10.1080/09553000500332137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To study survival of cultured U-343MGaCl 2:6 glioma cells after incubation with boron-containing liposomes targeting the epidermal growth factor receptor following neutron irradiation. MATERIALS AND METHODS Epidermal growth factor-tagged liposomes were loaded with water-soluble boronated acridine developed for boron neutron capture therapy, (BNCT). Cellular uptake and distribution were studied. Further, cells were placed at 3 cm depth in a phantom and exposed to an epithermal neutron beam to study clonogenic cell survival. RESULTS The cellular uptake of boron reached 90 ppm and it was determined by subcellular fractionation that most of the cell-associated boron was located outside of the nucleus. For clonogenic survival, the cells were incubated with epidermal growth factor receptor-targeted liposomes for 4 hours resulting in a cellular concentration of 55 ppm boron (11 ppm 10B). At a fluence of 3 x 10(12) neutrons/cm2 the cell killing effect of the boron-containing epidermal growth factor-liposomes was about ten times higher than for neutrons only. Furthermore, theoretical calculation of the survival by enriched compound (55 ppm 10B), using the parameters from non-enriched compound (11 ppm 10B), shows that the killing effect in this case would be approximately five orders of magnitude higher than for neutrons only. CONCLUSION The results in this study show that epidermal growth factor-receptor targeted liposomes are suitable as tumor-cell delivery agents of boron for BNCT and support further studies to demonstrate their effectiveness in vivo.
Collapse
Affiliation(s)
- Erika Bohl Kullberg
- Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Barth RF, Coderre JA, Vicente MGH, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 2005; 11:3987-4002. [PMID: 15930333 DOI: 10.1158/1078-0432.ccr-05-0035] [Citation(s) in RCA: 677] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with low-energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high-grade gliomas and either cutaneous primaries or cerebral metastases of melanoma, most recently, head and neck and liver cancer. Neutron sources for BNCT currently are limited to nuclear reactors and these are available in the United States, Japan, several European countries, and Argentina. Accelerators also can be used to produce epithermal neutrons and these are being developed in several countries, but none are currently being used for BNCT. BORON DELIVERY AGENTS Two boron drugs have been used clinically, sodium borocaptate (Na(2)B(12)H(11)SH) and a dihydroxyboryl derivative of phenylalanine called boronophenylalanine. The major challenge in the development of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations ( approximately 20 microg/g tumor) sufficient to deliver therapeutic doses of radiation to the tumor with minimal normal tissue toxicity. Over the past 20 years, other classes of boron-containing compounds have been designed and synthesized that include boron-containing amino acids, biochemical precursors of nucleic acids, DNA-binding molecules, and porphyrin derivatives. High molecular weight delivery agents include monoclonal antibodies and their fragments, which can recognize a tumor-associated epitope, such as epidermal growth factor, and liposomes. However, it is unlikely that any single agent will target all or even most of the tumor cells, and most likely, combinations of agents will be required and their delivery will have to be optimized. CLINICAL TRIALS Current or recently completed clinical trials have been carried out in Japan, Europe, and the United States. The vast majority of patients have had high-grade gliomas. Treatment has consisted first of "debulking" surgery to remove as much of the tumor as possible, followed by BNCT at varying times after surgery. Sodium borocaptate and boronophenylalanine administered i.v. have been used as the boron delivery agents. The best survival data from these studies are at least comparable with those obtained by current standard therapy for glioblastoma multiforme, and the safety of the procedure has been established. CONCLUSIONS Critical issues that must be addressed include the need for more selective and effective boron delivery agents, the development of methods to provide semiquantitative estimates of tumor boron content before treatment, improvements in clinical implementation of BNCT, and a need for randomized clinical trials with an unequivocal demonstration of therapeutic efficacy. If these issues are adequately addressed, then BNCT could move forward as a treatment modality.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
14
|
Nichol AM, Warde P, Bristow RG. Optimal treatment of intermediate-risk prostate carcinoma with radiotherapy. Cancer 2005; 104:891-905. [PMID: 16007687 DOI: 10.1002/cncr.21257] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The clinical heterogeneity of intermediate-risk prostate carcinoma presents a challenge to urologic oncology in terms of prognosis and management. There is controversy regarding whether patients with intermediate-risk prostate carcinoma should be treated with dose-escalated external beam radiotherapy (EBRT) (e.g., doses > 74 gray [Gy]), or conventional-dose EBRT (e.g., doses < 74 Gy) combined with androgen deprivation (AD). Data for this review were identified through searches for articles in MEDLINE and in conference proceedings, indexed from 1966 to 2004. Currently, the intermediate-risk prostate carcinoma grouping is defined on the basis of prostate-specific antigen (PSA), tumor classification (T classification), and Gleason score. Emerging evidence suggests that additional prognostic information may be derived from the percentage of positive core needle biopsies at the time of diagnosis and/or from the pretreatment PSA doubling time. Novel prognostic biomarkers include protein expression relating to cell cycle control, cell death, DNA repair, and intracellular signal transduction. Preclinical data support dose escalation or combined AD with radiation as a means to increase prostate carcinoma cell kill. There is Level I evidence that patients with intermediate-risk prostate carcinoma benefit from dose-escalated EBRT or AD plus conventional-dose EBRT. However, clinical evidence is lacking to support the uniform use of AD plus dose-escalated EBRT. Patients in the intermediate-risk group should be entered into well designed, randomized clinical trials of dose-escalated EBRT and AD with sufficient power to address biochemical failure and cause-specific survival endpoints. These studies should be stratified by novel prognostic markers and accompanied by strong translational endpoints to address clinical heterogeneity and to allow for individualized treatment.
Collapse
Affiliation(s)
- Alan M Nichol
- Department of Radiation Oncology, University of Toronto and the Princess Margaret Hospital-University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
15
|
Boron neutron capture therapy. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0169-3158(06)80006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
16
|
Li YC, Xu WY, Tan TZ, He S. 131I-recombinant human EGF has antitumor effects against MCF-7 human breast cancer xenografts with low levels of EGFR. Nucl Med Biol 2004; 31:435-40. [PMID: 15093813 DOI: 10.1016/j.nucmedbio.2003.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study investigated the inhibitory action of (131)I-recombinant human EGF ((131)I-rhEGF) on MCF-7 human breast cancer tumor development in nude mice. The activity and tumor uptake of (131)I-rhEGF was measured by tissue distribution assay, and its effect on tumor growth was measured by monitoring tumor size after treatment with (131)I-rhEGF. Changes in tumor cell ultrastructure were observed by transmission electron microscopy (TEM), and pathological changes in tumor tissue were observed by light microscopy. The tissue distribution assay revealed that (131)I-rhEGF was markedly absorbed by the tumor and reached its maximal uptake rate (16.73%ID. g(-1)) at 120 hours at which point the drug concentration in the tumor was 11.1-fold, 8.1-fold, and 6.6-fold higher than that in blood, liver, and kidneys, respectively. Tumor size measurements showed that tumor development was significantly inhibited by intravenously and intratumorally injected (131)I-rhEGF. Tumor inhibition rates (82.0% and 80.7%, respectively) were significantly higher than those of tumors treated with (131)I (7.49%) and (131)I-HSA (6.91%; P < 0.05). TEM and light microscopy revealed that intravenous and intratumoral injection of (131)I-rhEGF could significantly damage and ultimately kill tumor cells. Our results suggest that (131)I-rhEGF suppresses development of xenografted breast cancer cells in nude mice, providing a novel candidate for receptor-mediated targeted radiotherapy.
Collapse
Affiliation(s)
- Yun Chun Li
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China.
| | | | | | | |
Collapse
|
17
|
Wu G, Barth RF, Yang W, Chatterjee M, Tjarks W, Ciesielski MJ, Fenstermaker RA. Site-Specific Conjugation of Boron-Containing Dendrimers to Anti-EGF Receptor Monoclonal Antibody Cetuximab (IMC-C225) and Its Evaluation as a Potential Delivery Agent for Neutron Capture Therapy. Bioconjug Chem 2004; 15:185-94. [PMID: 14733599 DOI: 10.1021/bc0341674] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gene encoding EGFR often is amplified in human gliomas, and the receptor itself has been considered as a potential target for the specific delivery of therapeutic agents to brain tumors. The purpose of the present study was to investigate the use of the chimeric MoAb cetuximab (IMC-C225), which is directed against EGFR and EGFRvIII, as a boron delivery agent for neutron capture therapy (NCT) of brain tumors. As determined by 125I-cetuximab radioligand binding assays, F98 rat glioma cells, which had been transfected with the gene encoding EGFR (F98EGFR), expressed 1.60 +/- 0.13 x 10(5) receptor sites/cell with a Ka = 1.64 +/- 0.32 x 10(8) M-1). F98 cells transfected with the gene encoding a mutant form of EGFR, designated the F98EGFRvIII glioma, expressed 1.07 +/- 0.10 x 10(5) receptor sites/cell with a Ka = 2.18 +/- 0.54 x 10(9) M-1 compared to background levels expressed on F98 wild-type cells (F98WT). A heavily boronated, fifth generation polyamidoamine (PAMAM or "starburst") dendrimer, G5-B1100, was linked to oligosaccharide moieties, which were distant from antigen binding sites of cetuximab, by means of the heterobifunctional reagents N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) and N-(k-maleimidoundecanoic acid) hydrazide (KMUH). The resulting bioconjugate, designated C225-G5-B1100, was separated from the unconjugated dendrimer using a Sephacryl S-300 column. On the basis of the relative concentration ratios of boron and protein, there were approximately 1100 boron atoms per molecule of cetuximab with only a slight reduction of Ka. The localization of C225-G5-B1100 or G5-B1100 in rats bearing intracerebral implants of either F98EGFR or F98WT gliomas was determined 24 h following direct intratumoral (i.t.) injection at which time 92.3 +/- 23.3 micrograms B/g tumor was localized in F98EGFR gliomas versus 36.5 +/- 18.8 micrograms B/g tumor in F98WT gliomas and 13.4 +/- 6.1 micrograms in normal brain. In contrast, only 6.7 +/- 3.6 micrograms B/g tumor of G5-B1100 was localized in F98EGFR gliomas following i.t. injection, thereby demonstrating specific molecular targeting of EGFR. Based on these data, BNCT studies will be initiated in F98EGFR glioma bearing rats to evaluate C225-G5-B1100 for the treatment of intracerebral brain tumors.
Collapse
Affiliation(s)
- Gong Wu
- Department of Pathology and College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Barth RF, Yang W, Coderre JA. Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation. J Neurooncol 2003; 62:61-74. [PMID: 12749703 DOI: 10.1007/bf02699934] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Development of any therapeutic modality can be facilitated by the use of the appropriate animal models to assess its efficacy. This report primarily will focus on our studies using the F98 and 9L rat glioma models to evaluate the effectiveness of boron neutron capture therapy (BNCT) of brain tumors. Following intracerebral implantation the biological behavior of each tumor resembles that of human high grade gliomas in a number of ways. In both models, glioma cells were implanted intracerebrally into syngeneic Fischer rats and approximately 10-14 days later BNCT was initiated at the Brookhaven National Laboratory Medical Research Reactor. Two low molecular weight (M(r) < 210Da) 10B-containing drugs, boronophenylalanine (BPA) and/or sodium borocaptate (BSH) were used as capture agents, either alone or in combination with each other. The 9L gliosarcoma, which has been difficult to cure by means of either chemo- or radiotherapy alone, was readily curable by BNCT. The best survival data were obtained using BPA at a dose of 1200 mg/kg (64.8mg 10B), administered intraperitoneally (i.p.), with a 100% survival rate at 8 months. In contrast, the F98 glioma has been refractory to all therapeutic modalities. Tumor bearing animals, which had received 500 mg/kg (27 mg 10B) of BPA, or an equivalent amount of BSH i.v., had mean survival time (MST) of 37 and 33 days, respectively, compared to 29 days for irradiated controls. The best survival data with the F98 glioma model were obtained using BPA + BSH in combination, administered intra-arterially via the internal carotid artery (i.c.) with hyperosmotic mannitol induced blood-brain barrier disruption (BBB-D). The MST was 140 days with a cure rate of 25%, compared to a MST of 73 days with a 5% cure rate without BBB-D, and 41 days following i.v. administration of both drugs. A modest but significant increase in MST also was observed in rats that received intracarotid (i.c.) BPA in combination with Cereport (RMP-7), which produced a pharmacologically mediated opening of the BBB. Studies also have been carried out with the F98 glioma to determine whether an X-ray boost could enhance the efficacy of BNCT, and it was shown that there was a significant therapeutic gain. Finally, molecular targeting of the epidermal growth factor receptor (EGFR) has been investigated using F98 glioma cells, which had been transfected with the gene encoding EGFR and, intratumoral injection of boronated EGF as the delivery agent, followed by BNCT. These studies demonstrated that there was specific targeting of EGFR and provided proof of principle for the use of high molecular weight, receptor targeting-boron delivery agents. Finally, a xenograft model for melanoma metastatic to the brain has been developed using a human melanoma (MRA27), stereotactically implanted into the brains of nude rats, and these studies demonstrated that BNCT either cured or significantly prolonged the survival of tumor-bearing rats. It remains to be determined, which, if any, of these experimental approaches will be translated into clinical studies. Be that as it may, rat brain tumor models already have made a significant contribution to the design of clinical BNCT protocols, and should continue to do so in the future.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
19
|
Carlsson J, Kullberg EB, Capala J, Sjöberg S, Edwards K, Gedda L. Ligand liposomes and boron neutron capture therapy. J Neurooncol 2003; 62:47-59. [PMID: 12749702 DOI: 10.1007/bf02699933] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Boron neutron capture therapy (BNCT) has been used both experimentally and clinically for the treatment of gliomas and melanomas, with varying results. However, the therapeutic effects on micro-invasive tumor cells are not clear. The two drugs that have been used clinically, p-boronophenylalanine, (BPA), and the sulfhydryl borane, (BSH), seem to be taken up preferentially in solid tumor areas but it is uncertain whether enough boron is taken up by micro-invasive tumor cells. To increase the selective uptake of boron by such cells, would be to exploit tumor transformation related cellular changes such as over-expression of growth factor receptors. However, the number of receptors varies from small to large and the uptake of large amounts of boron for each receptor interaction is necessary in order to deliver sufficient amounts of boron. Therefore, each targeting moiety must deliver large number of boron atoms. One possible way to meet these requirements would be to use receptor-targeting ligand liposomes, containing large number of boron atoms. This will be the subject of this review and studies of boron containing liposomes, with or without ligand, will be discussed. Two recent examples from the literature are ligand liposomes targeting either folate or epidermal growth factor (EGF) receptors on tumor cells. Other potential receptors on gliomas include PDGFR and EGFRvIII. Besides the appropriate choice of target receptor, it is also important to consider delivery of the ligand liposomes, their pharmacodynamics and pharmacokinetics and cellular processing, subjects that also will be discussed in this review.
Collapse
Affiliation(s)
- Jörgen Carlsson
- Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Kullberg EB, Nestor M, Gedda L. Tumor-cell targeted epiderimal growth factor liposomes loaded with boronated acridine: uptake and processing. Pharm Res 2003; 20:229-36. [PMID: 12636161 DOI: 10.1023/a:1022223204460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The aim of this work was to investigate the cellular binding and processing of polyethylene glycol-stabilized epidermal growth factor (EGF) liposomes. The liposomes were actively loaded with water-soluble boronated acridine (WSA), primarily developed for boron neutron capture therapy. METHODS The uptake, internalization, and retention of EGF-liposome conjugates were studied in two cultured monolayer cell-lines, A-431 and U-343, with regard to the nuclide-label on the targeting agent, the carrier, and the load. The subcellular localization of WSA was studied using confocal microscopy. RESULTS We found that the liposome complex was internalized after specific binding to the EGF receptor. After internalization in the tumor cells, WSA was distributed mainly in the cytoplasm and was shown to have long cellular retention, with 80% of the boron remaining after 48 h. CONCLUSIONS The long retention of the compound and the cellular boron concentration reached makes these targeted liposomes interesting for further development toward boron neutron capture therapy.
Collapse
Affiliation(s)
- Erika Bohl Kullberg
- Division of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden.
| | | | | |
Collapse
|
21
|
Lee JD, Lee YJ, Jeong HJ, Lee JS, Lee CH, Ko J, Kang SO. Practical Synthesis of Aminoethyl-o-carboranes. Organometallics 2003. [DOI: 10.1021/om020803q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Yang W, Barth RF, Leveille R, Adams DM, Ciesielski M, Fenstermaker RA, Capala J. Evaluation of systemically administered radiolabeled epidermal growth factor as a brain tumor targeting agent. J Neurooncol 2001; 55:19-28. [PMID: 11804279 DOI: 10.1023/a:1013017821166] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously reported a method for labeling epidermal growth factor (EGF) with technetium-99m and have shown that 99mTc-EGF localized in EGF receptor (R) positive intracerebral C6EGFR rat gliomas following intratumoral (i.t.) injection of the radioligand. In the present study, we have evaluated the potential use of 99mTc-EGF as a tumor targeting agent after systemic administration to Fischer rats bearing intracerebral implants of C6EGFRgliomas. Radiolocalization was determined following intravenous (i.v.) or intracarotid (i.c.) injection with or without hyperosmotic mannitol induced disruption of the blood-brain barrier (BBB-D). As determined by gamma-scintillation counting, 4 h after i.c. injection of 99mTc-EGF, 0.34% of the injected dose per gram (% ID/g) was localized in C6EGFR tumors. which expressed 10(5)-10(6) EGFR sites per cell, compared to 0.07% ID/g in animals bearing C6 wildtype gliomas, which do not express EGFR. The corresponding tumor to brain ratios were 5.6 and 1.6, respectively. Tumors could be visualized by external gamma-scintigraphy in rats bearing C6EGFR but not C6 wildtype gliomas, thereby establishing that radiolocalization was dependent upon receptor expression. Intracarotid administration of 99mTc-EGF significantly increased tumor uptake compared to i.v. injection (0.34 vs 0.14% ID/g, p < 0.04). BBB-D disruption, followed by i.c. injection of 99mTc-EGF, however, did not significantly enhance tumor uptake compared to i.c. injection without BBB-D (0.45% vs 0.34% ID/g, p > 0.1). The uptake of 99mTc-EGF was approximately 4-9% ID/g in the liver and 12-20% ID/g in the kidneys after i.c. or i.v. administration. External gamma-scintigraphy of regions of interest over the liver and kidneys revealed that approximately 70-80% of the whole body radioactivity accumulated in these organs, and only 0.47-0.83% in the tumor following i.v. or i.c. administration of 99m9Tc-EGF. Our study has demonstrated that EGF can be used as a specific targeting agent for EGFR (+) rat brain tumors. However, it is unlikely that systemic injection of EGF-based bioconjugates can deliver sufficient amounts of the ligand to brain tumors for therapeutic purposes and direct delivery by means of either intratumoral injection or a variant of it such as convection enhanced delivery will be required.
Collapse
Affiliation(s)
- W Yang
- Department of Pathology, The Ohio State University, Columbus 43210, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Orlova A, Bruskin A, Sjöström A, Lundqvist H, Gedda L, Tolmachev V. Cellular processing of (125)I- and (111)in-labeled epidermal growth factor (EGF) bound to cultured A431 tumor cells. Nucl Med Biol 2000; 27:827-35. [PMID: 11150717 DOI: 10.1016/s0969-8051(00)00148-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Low molecular weight of epidermal growth factor (EGF) enables better intratumoral penetration in comparison with larger targeting proteins, but the cellular retention of EGF-associated radioactivity is poor for directly iodinated EGF. An attempt was made to improve intracellular retention by the use of metal-diethylenetriaminepentaacetic acid or nonphenolic linker (N-succinimidyl-para-iodobenzoate) as labeling agents. The use of nonphenolic linker did not improve retention of the radioactivity in A431 carcinoma cell line. The use of the radiometal label provided an appreciable prolongation of radioactivity residence inside the cell.
Collapse
Affiliation(s)
- A Orlova
- Department of Biomedical Radiation Sciences, Rudbecklaboratoriet, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Zhao Q, Tolmachev V, Carlsson J, Lundqvist H, Sundin J, Janson JC, Sundin A. Effects of dextranation on the pharmacokinetics of short peptides. A PET study on mEGF. Bioconjug Chem 1999; 10:938-46. [PMID: 10563762 DOI: 10.1021/bc990011l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of dextranation on the biodistribution of mouse epidermal growth factor (mEGF, 6 kDa) were assessed. By reductive amination, mEGF was coupled to 13 and 46 kDa dextran. The two dextranated conjugates and free mEGF were labeled with the positron-emitting nuclide (76)Br (T(1/2) = 16 h). After intravenous administration to Sprague Dawley rats, the radioactivity biodistribution was evaluated by positron emission tomography (PET) and by measurements of dissected tissues. The dextranation prolonged the retention time in blood, especially when the dextran chain was long. [(76)Br]mEGF-dextran conjugates were shown to have significantly, more than 5 times, lower kidney accumulation than the nonconjugated [(76)Br]mEGF. In conclusion, dextranation affects the biodistribution of mEGF in vivo giving a prolonged circulation time, a decreased uptake in kidney, and an increased spleen accumulation.
Collapse
Affiliation(s)
- Q Zhao
- Biomedical Radiation Sciences, Box 535, Uppsala University, S-751 21 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Lundqvist H, Lubberink M, Tolmachev V, Lövqvist A, Sundin A, Beshara S, Bruskin A, Carlsson J, Westlin JE. Positron emission tomography and radioimmunotargeting--general aspects. Acta Oncol 1999; 38:335-41. [PMID: 10380825 DOI: 10.1080/028418699431410] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To optimize radioimmunotherapy, in vivo information on individual patients, such as radionuclide uptake, kinetics, metabolic patterns and optimal administration methods, is important. An overriding problem is to determine accurately the absorbed dose in the target organ as well as critical organs. Positron Emission Tomography (PET) is a superior technique to quantify regional kinetics in vivo with a spatial resolution better than 1 cm3 and a temporal resolution better than 10 s. However, target molecules often have distribution times of several hours to days. Conventional PET nuclides are not applicable and alternative positron-emitting nuclides with matching half-lives and with suitable labelling properties are thus necessary. Over many years we have systematically developed convenient production methods and labelling techniques of suitable positron nuclides, such as 110In(T(1/2) = 1.15 h), 86Y(T(1/2) = 14 h), 76Br(T(1/2) = 16 h) and 124I(T(1/2) = 4 days). 'Dose planning' can be done, for example, with 86Y- or 124I-labelled ligands before therapy, and 90Y- and 131I-labelled analogues and double-labelling, e.g. with a 86Y/90Y-labelled ligand, can be used to determine the true radioactivity integral from a pure beta-emitting nuclide. The usefulness of these techniques was demonstrated in animal and patient studies by halogen-labelled MAbs and EGF-dextran conjugates and peptides chelated with metal ions.
Collapse
Affiliation(s)
- H Lundqvist
- Department of Oncology, Radiology and Clinical Immunology, Uppsala University, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tolmachev V, Koziorowski J, Sivaev I, Lundqvist H, Carlsson J, Orlova A, Gedda L, Olsson P, Sjöberg S, Sundin A. Closo-dodecaborate(2-) as a linker for iodination of macromolecules. Aspects on conjugation chemistry and biodistribution. Bioconjug Chem 1999; 10:338-45. [PMID: 10346862 DOI: 10.1021/bc980033s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Boron-containing compounds like closo-dodecaborate(2-) are in theory suitable for radioactive labeling with halogens. The boron-halogen bond is stronger than carbon-halogen bond and is not likely to be recognized by deiodinating enzymes in vivo. Peptides and proteins may be conjugated with various closo-dodecaborate(2-)-containing ligands, and thereafter, the conjugate can be iodinated. Since closo-dodecaborate(2-) is more avidly iodinated than tyrosine in moderately acidic media, such conjugates may be directly labeled on the boron part with radioisotopes of iodine using the standard Chloramine-T procedure. Mercapto-undecahydro-closo-dodecaborate(2-) (BSH) was reacted with the double bond of allyldextran to form a boronated dextran compound of the molecular size of about 70 kDa. This compound, in the text denoted as Dx-BS, and cesium dodecahydro-closo-dodecaborate(2-) were labeled using iodine-125. The two compounds were administered to rats in order to study their in vivo stability. The results indicate that iodinated Dx-BS is stable for about 20 h in vivo. The degradation rate, as indicated by thyroid uptake, was found low. [125I]Iodo-closo-dodecaborate(2-), which is a possible degradation product of [125I]Dx-BS-I, was rapidly excreted in urine without significant accumulation in any organ.
Collapse
Affiliation(s)
- V Tolmachev
- Division of Biomedical Radiation Sciences, Box 535, S-751 21, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, Wilson JG. The Chemistry of Neutron Capture Therapy. Chem Rev 1998; 98:1515-1562. [PMID: 11848941 DOI: 10.1021/cr941195u] [Citation(s) in RCA: 889] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Albert H. Soloway
- College of Pharmacy, Department of Pathology, and The Comprehensive Cancer Center of The Ohio State University, The Ohio State University, Columbus, Ohio 43210
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhao Q, Gottschalk I, Carlsson J, Arvidsson LE, Oscarsson S, Medin A, Ersson B, Janson JC. Preparation and purification of an end to end coupled mEGF-dextran conjugate. Bioconjug Chem 1997; 8:927-34. [PMID: 9404668 DOI: 10.1021/bc970173m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The amino terminus of mouse epidermal growth factor (mEGF) was coupled directly to the aldehyde end of dextran through a reductive amination procedure. The highest coupling efficiency was approximately 80% and could be reached after approximately 24 h of reaction time at pH 8. Gel filtration on Sephadex G-50 Fine removed free mEGF from the conjugate. Preparative polyacrylamide gel electrophoresis was used to separate the conjugate from excess noncharged dextran. The conjugate bound specifically to the EGF receptor on cultured glioma cells as shown in displacement tests with free mEGF. The conjugate was stable in the pH interval 4-9, in 2 M sodium chloride, in 7 M urea, and in human serum and could still bind to the EGF receptor after such treatments. The conjugates are candidates for targeted nuclide therapy.
Collapse
Affiliation(s)
- Q Zhao
- Department of Diagnostic Radiology, Uppsala University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen G, Ito Y, Imanishi Y. Photo-immobilization of epidermal growth factor enhances its mitogenic effect by artificial juxtacrine signaling. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1358:200-8. [PMID: 9332456 DOI: 10.1016/s0167-4889(97)00065-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photo-reactive epidermal growth factor (EGF) was synthesized by coupling EGF with azidobenzoic acid and was immobilized onto the wells of a polystyrene culture plate by photo-irradiation. The photo-immobilized EGF enhanced the growth of anchorage-dependent cells more than native or azidobenzoyl derivatized EGF. A small amount of photo-immobilized EGF was sufficient to enhance the growth of cells and the maximal mitogenic effect was greater than that of native or derivatized EGF. On the other hand, the photo-immobilized EGF did not enhance growth of anchorage-independent cells. In addition, signal transduction in the cells adhered only on the EGF-immobilized surface was observed by staining of phosphotyrosine residues by anti-phosphotyrosine antibodies. These results showed that the enhanced cell growth was due to direct interaction between the cells and the immobilized EGF. Photo-immobilization could be a universal means of fixing growth factors onto an artificial matrix that is devoid of chemically functional groups scaffolding growth factors and could provide a new tool to elucidate signal transduction mechanism and could lead to the development of a new protein-free cell culture system or tissue engineering materials.
Collapse
Affiliation(s)
- G Chen
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | | | | |
Collapse
|
30
|
Sjöberg S, Carlsson J, Ghaneolhosseini H, Gedda L, Hartman T, Malmquist J, Naeslund C, Olsson P, Tjarks W. Chemistry and biology of some low molecular weight boron compounds for boron neutron capture therapy. J Neurooncol 1997; 33:41-52. [PMID: 9151222 DOI: 10.1023/a:1005756929011] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Boronated DNA targeting agents are especially attractive candidates for BNCT because they may deliver boron-10 to the nuclei of tumor cells. Numerous boron-containing analogs have been synthesized and some have shown promising results in initial biological tests. One of the most challenging tasks in this special field of research remains the finding of suitable targeting strategies for the selective delivery of boron rich DNA-intercalator/alkylator to tumor cells. Synthetic and biological studies of boron compounds suitable for DNA-binding are reviewed. The amino acid p-boronophenylalanine (BPA) is presently of considerable clinical interest. Other boronated amino acids might also be candidates for BNCT either per se, as part of part of tumor-seeking peptides or conjugated to targeting macromolecules. A large number of boronated L- and D-amino acids with varying liphophicility and sterical requirements are now available for evaluation. Recent synthetic and biological studies of aromatic boronoamino acids, carboranylamino acids and carboranyl amines are also reviewed.
Collapse
Affiliation(s)
- S Sjöberg
- Department of Organic Chemistry, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Capala J, Barth RF, Bailey MQ, Fenstermaker RA, Marek MJ, Rhodes BA. Radiolabeling of epidermal growth factor with 99mTc and in vivo localization following intracerebral injection into normal and glioma-bearing rats. Bioconjug Chem 1997; 8:289-95. [PMID: 9177833 DOI: 10.1021/bc970031s] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High grade gliomas may have amplified expression of the epidermal growth factor receptor (EGFR) gene c-erb-B, which often is associated with increased expression of transmembrane EGFR. The purpose of the present study was to develop a method for labeling EGF with 99mTc and to determine whether the resulting radioligand would localize, following intracerebral injection, in rats bearing EGFR-positive gliomas. EGF has a relatively low molecular mass (approximately 6 kDa) compared to monoclonal antibodies, and this has allowed smaller bioconjugates, which should diffuse more rapidly within the brain and more effectively target disseminated glioma cells, to be constructed. In the present study, EGF has been labeled with either 131I or 99mTc, and in vitro uptake of the resulting radioligand has been investigated using C6EGFR rat glioma cells, which had been transfected with the EGFR gene. Cellular uptake of 131I radioactivity peaked after approximately 30 min of incubation with [131I]EGF, following which time it declined, while 99mTc radioactivity continued to increase over a 6 h incubation with [99mTc]-EGF. To determine if radiolabeled EGF had in vivo tumor-localizing properties, C6EGFR glioma cells were implanted stereotactically into the brains of Fischer rats. Four weeks later, either 99mTc- or 131I-labeled EGF was injected intracerebrally into normal or glioma-bearing animals using the same stereotactic coordinates. External gamma scintigraphy revealed that 131I radioactivity disappeared rapidly from the brain regions of tumor-bearing animals compared to 99mTc, approximately 50% of which remained in the tumor for up to 12 h. In contrast, only approximately 20% remained in the brains of non-tumor-bearing animals after 6 h. These studies are the first to describe a method for radiolabeling EGF with 99mTc and to detect it by external scintigraphy in the brains of tumor-bearing animals.
Collapse
Affiliation(s)
- J Capala
- Department of Pathology, Ohio State University, Columbus 43210, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Auger-emitting radionuclides have potential for the therapy of cancer due to their high level of cytotoxicity and short-range biological effectiveness. Biological effects are critically dependent on the sub-cellular (and sub-nuclear) localization of Auger emitters. Mathematical modelling studies suggest that there are theoretical advantages in the use of radionuclides with short half-lives (such as 123I) in preference to those (such as 125I) with long half-lives. In addition, heterogeneity of radionuclide uptake is predicted to be a serious limitation on the ultimate therapeutic effect of targeted Auger therapy. Possible methods of targeting include the use of analogues of DNA precursors such as iodo-deoxyuridine and molecules which bind DNA such as steroid hormones or growth factors. A longer term possibility may be the use of molecules such as oligonucleotides which can discriminate at the level of DNA sequence. It seems likely that the optimal clinical role of targeted Auger therapy will be as one component of a multi-modality therapeutic strategy for the treatment of selected malignant diseases.
Collapse
Affiliation(s)
- J A O'Donoghue
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
33
|
Gedda L, Olsson P, Pontén J, Carlsson J. Development and in vitro studies of epidermal growth factor-dextran conjugates for boron neutron capture therapy. Bioconjug Chem 1996; 7:584-91. [PMID: 8889021 DOI: 10.1021/bc9600473] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A delivery molecule for directed boron neutron capture therapy against epidermal growth factor (EGF) receptor-rich tumors, such as gliomas, squamous carcinomas, and breast cancers, is presented. EGF and sulfhydryl boron hydride (BSH) were covalently coupled to an allylated 70 kDa dextran chain to form a conjugate. Conjugates with low and high substitution rates of BSH, as well as without BSH, were investigated. The conjugate with a low amount of boron had approximately 6 BSH (72 boron atoms) per dextran, while the conjugates with higher amounts had an average substitution of 55 BSH (660 boron atoms) per dextran. The maximum substitution of boron to dextran in a single experiment was over 800 boron atoms. Binding, retention, and internalization of 125I-labeled conjugates were investigated on cultured human glioma cells. Binding of the conjugates was EGF receptor specific, but the amount of BSH coupled to dextran affected specificity, more than the presence of dextran. The nonspecific binding of the conjugates increased with the amount of attached boron. This was partly due to nonspecific adhesion to the plastic in the culture dishes. [125I]EGF-allyldextran with 6 BSH had a binding maximum after 4 h of continuous incubation and thereafter decreased in binding, while [125I]EGF-allyldextran with the higher substitution rate had a slow increase of binding during 24 h. Over 93% of the radioactivity bound to the cells was internalized, but the retention was quite poor. Only one-third of the cell-bound activity was still associated to the cells 4 h after incubation had ended. In conclusion, it is possible to load the conjugates produced with high amounts of boron, and they retained specificity for the EGF receptor and internalized into cultured cells. Theoretical calculations show that about 10(3) boron atoms per EGF-based conjugate are needed to give a satisfactory therapeutic response. These conjugates are within reach of that level.
Collapse
Affiliation(s)
- L Gedda
- Department of Diagnostic Radiology, Uppsala University, Sweden.
| | | | | | | |
Collapse
|
34
|
Barth RF, Soloway AH, Brugger RM. Boron neutron capture therapy of brain tumors: past history, current status, and future potential. Cancer Invest 1996; 14:534-50. [PMID: 8951358 DOI: 10.3109/07357909609076899] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with low-energy thermal neutrons to yield alpha particles and recoiling lithium-7 nuclei. High-grade astrocytomas, glioblastoma multiforme, and metastatic brain tumors constitute a major group of neoplasms for which there is no effective treatment. There is growing interest in using BNCT in combination with surgery to treat patients with primary, and possibly metastatic brain tumors. For BNCT to be successful, a large number of 10B atoms must be localized on or preferably within neoplastic cells, and a sufficient number of thermal neutrons must reach and be absorbed by the 10B atoms to sustain a lethal 10B(n, alpha)7 Li reaction. Two major questions will be addressed in this review. First, how can a large number of 10B atoms be delivered selectively to cancer cells? Second, how can a high fluence of neutrons be delivered to the tumor? Two boron compounds currently are being used clinically, sodium borocaptate (BSH) and boronophenylalanine (BPA), and a number of new delivery agents are under investigation, including boronated porphyrins, nucleosides, amino acids, polyamines, monoclonal and bispecific antibodies, liposomes, and epidermal growth factor. These will be discussed, and potential problems associated with their use as boron delivery agents will be considered. Nuclear reactors, currently, are the only source of neutrons for BNCT, and the fission process within the core produces a mixture of lower-energy thermal and epithermal neutrons, fast or high (> 10,000 eV) energy neutrons, and gamma rays. Although thermal neutron beams have been used clinically in Japan to treat patients with brain tumors and cutaneous melanomas, epithermal neutron beams should be more useful because of their superior tissue-penetrating properties. Beam sources and characteristics will be discussed in the context of current and future BNCT trials. Finally, the past and present clinical trials on BNCT for brain tumors will be reviewed and the future potential of BNCT will be assessed.
Collapse
Affiliation(s)
- R F Barth
- Department of Pathology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
35
|
Capala J, Barth RF, Bendayan M, Lauzon M, Adams DM, Soloway AH, Fenstermaker RA, Carlsson J. Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem 1996; 7:7-15. [PMID: 8741985 DOI: 10.1021/bc950077q] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order for boron neutron capture therapy (BNCT) to be successful, a large number (approximately 10(9)) of 10B atoms must be delivered to each cancer cell in order to sustain a lethal 10B(n, alpha)7Li reaction. The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and increased numbers of EGFR are found on the cell surface. If a sufficiently large number of 10B atoms could be attached to EGF, the resulting bioconjugates might be useful for targeting brain tumors. In order to accomplish this, we have boronated a fourth-generation starburst dendrimer (SD) using an isocyanato polyhedral borane, Na(CH3)3NB10H8NCO. For conjugation, reactive thiol groups were introduced into the boronated SD using N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP), and EGF was derivatized with m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester (sMBS). Subsequent reaction of thiol groups of derivatized BSD with maleimide groups of derivatized EGF produced stable BSD-EGF bioconjugates containing approximately 960 atoms of boron per molecule of EGF. As determined by electron spectroscopic imaging, the BSD-EGF initially was bound to the cell surface membrane and then was endocytosed, which resulted in accumulation of boron in lysosomes. The favorable in vitro properties of these bioconjugates suggest that they may be useful for the in vivo targeting of EGFR positive brain tumors.
Collapse
Affiliation(s)
- J Capala
- Department of Pathology, Ohio State University, Columbus 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|