1
|
Impaired visceral pain-related functions of the midbrain periaqueductal gray in rats with colitis. Brain Res Bull 2022; 182:12-25. [DOI: 10.1016/j.brainresbull.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022]
|
2
|
Bassi GS, Ulloa L, Santos VR, Del Vecchio F, Delfino-Pereira P, Rodrigues GJ, Castania JA, Cunha FDQ, Salgado HC, Cunha TM, Garcia-Cairasco N, Kanashiro A. Cortical stimulation in conscious rats controls joint inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:201-213. [PMID: 29522782 PMCID: PMC7592443 DOI: 10.1016/j.pnpbp.2018.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
The neuronal control of the immune system is fundamental to the development of new therapeutic strategies for inflammatory disorders. Recent studies reported that afferent vagal stimulation attenuates peripheral inflammation by activating specific sympathetic central and peripheral networks, but only few subcortical brain areas were investigated. In the present study, we report that afferent vagal stimulation also activates specific cortical areas, as the parietal and cingulate cortex. Since these cortical structures innervate sympathetic-related areas, we investigate whether electrical stimulation of parietal cortex can attenuate knee joint inflammation in non-anesthetized rats. Our results show that cortical stimulation in rats increased sympathetic activity and improved joint inflammatory parameters, such as local neutrophil infiltration and pro-inflammatory cytokine levels, without causing behavioral disturbance, brain epileptiform activity or neural damage. In addition, we superposed the areas activated by afferent vagal or cortical stimulation to map common central structures to depict a brain immunological homunculus that can allow novel therapeutic approaches against inflammatory joint diseases, such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Gabriel Shimizu Bassi
- Department of Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Translational Research Center for GastroIntestinal Disorders (TARGID), Intestinal Neuroimmune Interactions, University of Leuven, Leuven, Belgium.
| | - Luis Ulloa
- Department of Surgery, Center of Immunology and Inflammation, Rutgers - New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Victor Rodrigues Santos
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávio Del Vecchio
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Polianna Delfino-Pereira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gerson Jhonatan Rodrigues
- Department of Physiological Sciences, Federal University of São Carlos (UFSCAR), São Carlos, SP, Brazil
| | - Jaci Airton Castania
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando de Queiróz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hélio Cesar Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Alexandre Kanashiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCAR), São Carlos, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Newey CR, Martin JR. Increase in sensitivity of the baroreceptor reflex following microinjection of carbachol into the posterior hypothalamic nucleus of awake rats. ACTA ACUST UNITED AC 2016; 36:3-13. [DOI: 10.1111/aap.12041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 11/29/2022]
Affiliation(s)
- C. R. Newey
- Department of Neurology; University of Missouri; Columbia MO USA
- Department of Pharmacology; Kirksville College of Osteopathic Medicine; A.T. Still University of Health Sciences; Kirksville MO USA
| | - J. R. Martin
- Department of Pharmacology; Kirksville College of Osteopathic Medicine; A.T. Still University of Health Sciences; Kirksville MO USA
| |
Collapse
|
4
|
Oka T, Yokota S, Tsumori T, Niu JG, Yasui Y. Glutamatergic neurons in the lateral periaqueductal gray innervate neurokinin-1 receptor-expressing neurons in the ventrolateral medulla of the rat. Neurosci Res 2012; 74:106-15. [DOI: 10.1016/j.neures.2012.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/13/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023]
|
5
|
Díaz-Casares A, López-González MV, Peinado-Aragonés CA, González-Barón S, Dawid-Milner MS. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area. Auton Neurosci 2012; 169:124-34. [PMID: 22748567 DOI: 10.1016/j.autneu.2012.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/14/2012] [Accepted: 06/06/2012] [Indexed: 02/06/2023]
Abstract
To characterize the possible role of glutamate in the interaction between Hypothalamic Defense Area (HDA) and Parabrachial complex (PBc) nuclei, cardiorespiratory changes were analyzed in response to electrical stimulation of the HDA (1 ms pulses, 30-50 μA given at 100 Hz for 5s) before and after the microinjection of the nonspecific glutamate receptor antagonist kynurenic acid (50 nl, 5 nmol), NMDA receptor antagonist MK-801 (50 nl, 50 nmol), non-NMDA receptor antagonist CNQX (50 nl, 50 nmol) or metabotropic glutamate receptor antagonist MCPG (50 nl, 5 nmol) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (p<0.001) due to a decrease in expiratory time (p<0.01). The respiratory response was accompanied by a pressor (p<0.001) and a tachycardic response (p<0.001). Kynurenic acid within the lateral parabrachial region (lPB) abolished the tachycardia (p<0.001) and decreased the magnitude of blood pressure response (p<0.001) to HDA stimulation. Similarly, the magnitude of the tachycardia and the pressor response was decreased after the microinjection of MK-801 (p<0.01 and p<0.001, respectively) and CNQX (p<0.05 in both cases) into the lPB. Kynurenic acid microinjection in this region produced an inhibition of the tachypnea (p<0.001) to HDA stimulation but the respiratory response persisted unchanged after MK-801 or CNQX microinjection into the lPB. Kynurenic acid within the medial parabrachial region (mPB) abolished the tachycardia (p<0.01) and decreased the magnitude of the pressor response (p<0.001) to HDA stimulation. MK-801 and CNQX microinjection in this region decreased the magnitude of the tachycardia (p<0.05, in both cases) and pressor response (p<0.05, in both cases). The respiratory response evoked by HDA stimulation was not changed after the microinjection of kynurenic acid, MK-801 or CNQX within the mPB. No changes were observed in the cardiorespiratory response evoked to HDA stimulation after MCPG microinjection within lPB and mPB. These results indicate that glutamate PBc receptors are involved in the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.
Collapse
Affiliation(s)
- A Díaz-Casares
- Departamento de Fisiología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | | | | | | | | |
Collapse
|
6
|
McMullan S, Pilowsky PM. Sympathetic premotor neurones project to and are influenced by neurones in the contralateral rostral ventrolateral medulla of the rat in vivo. Brain Res 2012; 1439:34-43. [PMID: 22264491 DOI: 10.1016/j.brainres.2011.12.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/08/2011] [Accepted: 12/28/2011] [Indexed: 02/07/2023]
Abstract
The tonic activity of bulbospinal neurones in the rostral ventrolateral medulla (RVLM) is thought to underlie basal sympathetic nerve activity. A key research objective is to delineate the mechanisms that contribute to the firing of these neurones. In the current study we investigate the hypothesis that inputs arising in the contralateral RVLM converge on barosensitive bulbospinal neurones and contribute to their discharge pattern. Extracellular recordings were made from 24 barosensitive bulbospinal neurones in urethane anaesthetised, vagotomised and artificially ventilated rats during activation (glutamate or D,L-homocysteic acid microinjection, 50 nl, 50mM, or monopolar electrical stimulation) or inhibition (microinjection of GABA receptor agonists muscimol or isoguvacine, 50 nl, 10mM) of the contralateral RVLM. Chemical RVLM activation strongly increased (10/17) or inhibited (6/17) the spontaneous activity of neurones recorded in the contralateral RVLM. Electrical RVLM stimulation evoked a combination of short latency (median 6 ms) inhibitory and longer latency (median 9.1 ms, P<0.01) excitatory orthodromic responses in contralateral sympathetic premotor neurones and in some cases evoked antidromic action potentials that collided with spontaneous spikes. RVLM inhibition increased the discharge rate of sympathetic premotor neurones in the contralateral brainstem by 21 ± 13% (P<0.05) and reduced the variability of unit firing by 37 ± 12% (n=5, p<0.05). These findings indicate that sympathetic premotor neurones receive inhibitory and excitatory input from the contralateral RVLM, that inhibitory inputs predominate under baseline conditions, and that a population of sympathetic premotor neurones project to the contralateral RVLM in addition to their spinal targets.
Collapse
Affiliation(s)
- Simon McMullan
- Australian School of Advanced Medicine, Macquarie University, NSW, Australia.
| | | |
Collapse
|
7
|
Omelchenko N, Sesack SR. Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area. J Neurosci Res 2010; 88:981-91. [PMID: 19885830 DOI: 10.1002/jnr.22265] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The midbrain central gray (periaqueductal gray; PAG) mediates defensive behaviors and is implicated in the rewarding effects of opiate drugs. Projections from the PAG to the ventral tegmental area (VTA) suggest that this region might also regulate behaviors involving motivation and cognition. However, studies have not yet examined the morphological features of PAG axons in the VTA or whether they synapse onto dopamine (DA) or GABA neurons. In this study, we injected anterograde tracers into the rat PAG and used immunoperoxidase to visualize the projections to the VTA. Immunogold-silver labeling for tyrosine hydroxylase (TH) or GABA was then used to identify the phenotype of innervated cells. Electron microscopic examination of the VTA revealed axons labeled anterogradely from the PAG, including myelinated and unmyelinated fibers and axon varicosities, some of which formed identifiable synapses. Approximately 55% of these synaptic contacts were of the symmetric (presumably inhibitory) type; the rest were asymmetric (presumably excitatory). These findings are consistent with the presence of both GABA and glutamate projection neurons in the PAG. Some PAG axons contained dense-cored vesicles indicating the presence of neuropeptides in addition to classical neurotransmitters. PAG projections synapsed onto both DA and GABA cells with no obvious selectivity, providing the first anatomical evidence for these direct connections. The results suggest a diverse nature of PAG physiological actions on midbrain neurons. Moreover, as both the VTA and PAG are implicated in the reinforcing actions of opiates, our findings provide a potential substrate for some of the rewarding effects of these drugs.
Collapse
Affiliation(s)
- Natalia Omelchenko
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
8
|
Sartor DM, Verberne AJ. Abdominal vagal signalling: A novel role for cholecystokinin in circulatory control? ACTA ACUST UNITED AC 2008; 59:140-54. [DOI: 10.1016/j.brainresrev.2008.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/24/2008] [Accepted: 07/07/2008] [Indexed: 02/07/2023]
|
9
|
McMullan S, Pathmanandavel K, Pilowsky PM, Goodchild AK. Somatic nerve stimulation evokes qualitatively different somatosympathetic responses in the cervical and splanchnic sympathetic nerves in the rat. Brain Res 2008; 1217:139-47. [DOI: 10.1016/j.brainres.2008.04.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/15/2008] [Accepted: 04/18/2008] [Indexed: 11/30/2022]
|
10
|
Xing J, Li J. TRPV1 Receptor Mediates Glutamatergic Synaptic Input to Dorsolateral Periaqueductal Gray (dl-PAG) Neurons. J Neurophysiol 2007; 97:503-11. [PMID: 17065246 DOI: 10.1152/jn.01023.2006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the role of transient receptor potential vanilloid type 1 (TRPV1) receptor in modulating neuronal activity of the dorsolateral periaqueductal gray (dl-PAG) through excitatory and inhibitory synaptic inputs. First, whole cell voltage-clamp recording was performed to obtain the spontaneous miniature excitatory postsynaptic currents (mEPSCs) and inhibitory postsynaptic currents (mIPSCs) of the dl-PAG neurons. As 1 μM of capsaicin was applied into the perfusion chamber, the frequency of mEPSCs was increased from 3.21 ± 0.49 to 5.64 ± 0.64 Hz ( P < 0.05, n = 12) without altering the amplitude and the decay time constant of mEPSCs. In contrast, capsaicin had no distinct effect on mIPSCs. A specific TRPV1 receptor antagonist, iodo-resiniferatoxin (i-RTX, 300 nM), decreased the frequency of mEPSCs from 3.51 ± 0.29 to 2.01 ± 0.2 Hz ( P < 0.05, n = 8) but did not alter the amplitude and decay time. In addition, i-RTX applied into the chamber abolished the effect of capsaicin on mEPSC of the dl-PAG. In another experiment, spontaneous action potential of the dl-PAG neurons was recorded using whole cell current-clamp methods. Capsaicin significantly elevated the discharge rate of the dl-PAG neurons from 3.03 ± 0.38 to 5.96 ± 0.87 Hz ( n = 8). The increased firing activity was abolished in the presence of glutamate N-methy-d-aspartate (NMDA) and non-NMDA antagonists, 2-amino-5-phosphonopentanoic acid, and 6-cyano-7-nitroquinoxaline-2,3-dione. The results from this study provide the first evidence indicating that activation of TRPV1 receptors increases the neuronal activity of the dl-PAG through selective potentiation of glutamatergic synaptic inputs.
Collapse
Affiliation(s)
- Jihong Xing
- Heart and Vascular Institute and Department of Medicine, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
11
|
Tjen-A-Looi SC, Li P, Longhurst JC. Midbrain vlPAG inhibits rVLM cardiovascular sympathoexcitatory responses during electroacupuncture. Am J Physiol Heart Circ Physiol 2006; 290:H2543-53. [PMID: 16428348 DOI: 10.1152/ajpheart.01329.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The periaqueductal gray (PAG) is an important integrative region in the regulation of autonomic outflow and cardiovascular function and may serve as a regulatory center as part of a long-loop pathway during somatic afferent stimulation with acupuncture. Because the ventrolateral PAG (vlPAG) provides input to the rostral ventrolateral medulla (rVLM), an important area for electroacupuncture (EA) regulation of sympathetic outflow, we hypothesized that the vlPAG plays a role in the EA-related modulation of rVLM premotor sympathetic neurons activated during visceral afferent stimulation and autonomic excitatory reflexes. Cats were anesthetized and ventilated, and heart rate and mean blood pressure were monitored. Stimulation of the splanchnic nerve by a pledget of filter paper soaked in bradykinin (BK, 10 μg/ml) every 10 min on the gallbladder induced consistent cardiovascular reflex responses. Bilateral stimulation with EA at acupoints over the pericardial meridian (P5-6) situated over the median nerve reduced the increases in blood pressure from 34 ± 3 to 18 ± 5 mmHg for a period of time that lasted for 60 min or more. Unilateral inactivation of neuronal activity in the vlPAG with 50–75 nl of kainic acid (KA, 1 mM) restored the blood pressure responses from 18 ± 3 to 36 ± 5 mmHg during BK-induced gallbladder stimulation, an effect that lasted for 30 min. In the absence of EA, unilateral microinjection of the excitatory amino acid dl-homocysteic acid (DLH, 4 nM) in the vlPAG mimicked the effect of EA and reduced the reflex blood pressure responses from 35 ± 6 to 14 ± 5 mmHg. Responses of 21 cardiovascular sympathoexcitatory rVLM neurons, including 12 that were identified as premotor neurons, paralleled the cardiovascular responses. Thus splanchnic nerve-evoked neuronal discharge of 32 ± 4 spikes/30 stimuli in six neurons was reduced to 10 ± 2 spikes/30 stimuli by EA, which was restored rapidly to 28 ± 4 spikes/30 stimuli by unilateral injection of 50 nl KA into the vlPAG. Conversely, 50 nl of DLH in the vlPAG reduced the number of action potentials of 5 rVLM neurons from 30 ± 4 to 18 ± 4 spikes/30 stimuli. We conclude that the inhibitory influence of EA involves vlPAG stimulation, which, in turn, inhibits rVLM neurons in the EA-related attenuation of the cardiovascular excitatory response during visceral afferent stimulation.
Collapse
Affiliation(s)
- Stephanie C Tjen-A-Looi
- Department of Medicine, Susan Samueli Center for Integrative Medicine, UCI School of Medicine, University of California-Irvine, CA 92697-4075, USA.
| | | | | |
Collapse
|
12
|
Green AL, Wang S, Owen SLF, Paterson DJ, Stein JF, Aziz TZ. Controlling the Heart Via the Brain: A Potential New Therapy for Orthostatic Hypotension. Neurosurgery 2006; 58:1176-83; discussion 1176-83. [PMID: 16723897 DOI: 10.1227/01.neu.0000215943.78685.01] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
OBJECTIVE:
Electrical stimulation of the midbrain is known to influence blood pressure in animals. In humans, it is used for the treatment of chronic neuropathic pain. Our aim was to assess whether orthostatic hypotension can be successfully treated with deep brain stimulation of the periventricular/periaqueductal gray areas in humans.
METHODS:
We recruited 11 patients who had chronic neuropathic pain and who had undergone implantation of a deep brain stimulator in the periventricular/periaqueductal gray areas. Patients were divided into three groups depending on whether they had orthostatic hypotension (one patient), mild orthostatic intolerance (five patients), or no orthostatic intolerance (five patients). Postoperatively, we continuously recorded blood pressure and heart rate with stimulation off and on and in both sitting and standing positions. From these values, we derived the blood pressure changing rate. Using autoregressive modeling techniques, we calculated changes in low- and high-frequency power spectra of heart rate and baroreflex sensitivity.
RESULTS:
Electrical stimulation reduced the decrease in systolic blood pressure on standing from 28.2 to 11.1% in one patient with orthostatic hypotension (P < 0.001). In the mild orthostatic intolerance group, an initial drop in systolic blood pressure of 15.4% was completely reversed (P < 0.001). There were no side effects in the remaining group. These changes were accompanied by increases in the blood pressure changing rate, the baroreflex sensitivity, and the baseline (sitting) low-frequency power of the RR interval, but not the high-frequency power.
CONCLUSION:
Electrical stimulation of the human periventricular/periaqueductal gray areas can reverse orthostatic hypotension. The cause seems to be an increase in sympathetic outflow and in baroreflex sensitivity. This has important implications for future therapies.
Collapse
|
13
|
Zhang W, Hayward LF, Davenport PW. Respiratory muscle responses elicited by dorsal periaqueductal gray stimulation in rats. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1338-47. [PMID: 15976306 DOI: 10.1152/ajpregu.00828.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The periaqueductal gray matter is an essential neural substrate for central integration of defense behavior and accompanied autonomic responses. The dorsal half of the periaqueductal gray matter (dPAG) is also involved in mediating emotional responses of anxiety and fear, psychological states that often are associated with changes in ventilation. However, information regarding respiratory modulation elicited from this structure is limited. The present study was undertaken to investigate the relationship between stimulus frequency and magnitude on ventilatory pattern and respiratory muscle activity in urethane-anesthetized, spontaneously breathing rats. Electrical stimulation in the dPAG-recruited abdominal muscle activity increased ventilation and increased respiratory frequency by significantly shortening both inspiratory time and expiratory time. Ventilation increased within the first breath after the onset of stimulation, and the respiratory response increased with increasing stimulus frequency and magnitude. dPAG stimulation also increased baseline EMG activity in the diaphragm and recruited baseline external abdominal oblique EMG activity, normally quiescent during eupneic breathing. Significant changes in cardiorespiratory function were only evoked by stimulus intensities >10 microA and when stimulus frequencies were >10 Hz. Respiratory activity of both the diaphragm and abdominal muscles remained elevated for a minimum of 60 s after cessation of stimulation. These results demonstrate that there is a short-latency respiratory response elicited from the dPAG stimulation, which includes both inspiratory and expiratory muscles. The changes in respiratory timing suggest rapid onset and sustained poststimulus dPAG modulation of the brain stem respiratory network that includes expiratory muscle recruitment.
Collapse
Affiliation(s)
- Weirong Zhang
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
14
|
Goodwin GA, Barr GA. Developmental changes in the behavioral and autonomic effects of kappa opioid receptor stimulation of the midbrain periaqueductal gray. Dev Psychobiol 2005; 46:47-56. [PMID: 15690388 DOI: 10.1002/dev.20039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Kappa opioid receptors stimulation with U50,488 is known to modulate behaviors during the early postnatal period, but the specific neuroanatomical locus of many of these effects is unexplored. In the present study, we infused U50,488 into the midbrain periaqueductal gray (PAG) and investigated the effects of this drug on behavior and heart rate of 1-, 2-, and 3-week-old rats. U50,488 increased activity most potently in 1- and 2-week-old subjects. Ultrasonic vocalization (USV) production was increased in 1-week-old subjects, but not in 2- or 3-week-old pups. Heart rate changes were similarly seen in younger aged subjects. At 1 week, U50,488 decreased heart rate, but at 2 weeks it increased heart rate. There was no effect of this drug on heart rate at 3 weeks. At 1 week, USVs were more potently elicited from dorsal than lateral PAG infusion sites. No other site-specific effects within the PAG were seen. The age-related decline in behavioral effects elicited by U50,488 is consistent with other published reports, and to the extent that kappa receptor activity mediates infant separation responses, implicates the PAG as a modulator of those responses.
Collapse
Affiliation(s)
- Gregory A Goodwin
- Department of Psychology, Skidmore College, Saratoga Springs, NY 12866, USA.
| | | |
Collapse
|
15
|
Li J. Central integration of muscle reflex and arterial baroreflex in midbrain periaqueductal gray: roles of GABA and NO. Am J Physiol Heart Circ Physiol 2004; 287:H1312-8. [PMID: 15087292 DOI: 10.1152/ajpheart.00163.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that the midbrain periaqueductal gray (PAG) is a neural integrating site for the interaction between the muscle pressor reflex and the arterial baroreceptor reflex. The underlying mechanisms are poorly understood. The purpose of this study was to examine the roles of GABA and nitric oxide (NO) in modulating the PAG integration of both reflexes. To activate muscle afferents, static contraction of the triceps surae muscle was evoked by electrical stimulation of the L7 and S1 ventral roots of 18 anesthetized cats. In the first group of experiments ( n = 6), the pressor response to muscle contraction was attenuated by bilateral microinjection of muscimol (a GABA receptor agonist) into the lateral PAG [change in mean arterial pressure (ΔMAP) = 24 ± 5 vs. 46 ± 8 mmHg in control]. Conversely, the pressor response was significantly augmented by 0.1 mM bicuculline, a GABAA receptor antagonist (ΔMAP = 65 ± 10 mmHg). In addition, the effect of GABAA receptor blockade on the reflex response was significantly blunted after sinoaortic denervation and vagotomy ( n = 4). In the second group of experiments ( n = 8), the pressor response to contraction was significantly attenuated by microinjection of l-arginine into the lateral PAG (ΔMAP = 26 ± 4 mmHg after l-arginine injection vs. 45 ± 7 mmHg in control). The effect of NO attenuation was antagonized by bicuculline and was reduced after denervation. These data demonstrate that GABA and NO within the PAG modulate the pressor response to muscle contraction and that NO attenuation of the muscle pressor reflex is mediated via arterial baroreflex-engaged GABA increase. The results suggest that the PAG plays an important role in modulating cardiovascular responses when muscle afferents are activated.
Collapse
Affiliation(s)
- Jianhua Li
- Division of Cardiology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| |
Collapse
|
16
|
Hayward LF, Castellanos M, Davenport PW. Parabrachial neurons mediate dorsal periaqueductal gray evoked respiratory responses in the rat. J Appl Physiol (1985) 2004; 96:1146-54. [PMID: 14594859 DOI: 10.1152/japplphysiol.00903.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neural substrates mediating autonomic components of the behavioral defense response reside in the periaqueductal gray (PAG). The cardiovascular components of the defense response evoked from the dorsal PAG (DPAG) have been well described and are dependent, in part, on the integrity of neurons in the region of the parabrachial nucleus as well as the rostral ventrolateral medulla. Descending pathways mediating the ventilatory response associated with activation of DPAG neurons are unknown. The present study was undertaken to test the hypothesis that parabrachial area neurons are also involved in mediating the respiratory response to DPAG stimulation. In urethane-anesthetized, spontaneously breathing rats, electrical stimulation of the DPAG significantly increased respiratory rate, arterial pressure, and heart rate. Changes in respiratory frequency were associated with significant decreases in inspiratory and expiratory durations. After bilateral inhibition of neurons in the lateral parabrachial nucleus (LPBN) region with 5 mM muscimol ( n = 6), DPAG-evoked increases in respiration and heart rate were attenuated by 90 ± 6 and 72 ± 13%, respectively. The pressor response evoked by DPAG stimulation, however, was attenuated by only 57 ± 6%. Bilateral blockade of glutamate receptors with 20 mM kynurenic acid ( n = 6) in the LPBN also markedly attenuated DPAG-evoked increases in respiration and heart rate (65 ± 15 and 53 ± 9% reduction, respectively) but only modestly changed the DPAG-evoked pressor response (34 ± 16% reduction). These results demonstrate that LPBN neurons play a significant role in the DPAG-mediated respiratory component of behavioral defense responses. This finding supports previous work demonstrating that the dorsolateral pons plays a significant role in mediating most physiological adjustments associated with activation of the DPAG.
Collapse
Affiliation(s)
- Linda F Hayward
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32601, USA.
| | | | | |
Collapse
|
17
|
Glickstein SB, Ilch CP, Golanov EV. Electrical stimulation of the dorsal periaqueductal gray decreases volume of the brain infarction independently of accompanying hypertension and cerebrovasodilation. Brain Res 2003; 994:135-45. [PMID: 14642639 DOI: 10.1016/j.brainres.2003.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated whether selective stimulation of neurons of the sympathoinhibitory ventral periaqueductal gray (VPAG), or sympathoexcitatory dorsal periaqueductal gray (DPAG), differentially modulates CBF and EEG and exerts neuroprotection. Electrical stimulation of either regions of PAG comparably elevated AP and CBF, whereas chemical stimulation with the D,L-homocysteine produced either sympathoinhibition accompanied by decrease in CBF from ventral region or sympathoexcitation accompanied by increase in CBF from dorsal region in nonspinalized rats. The CBF effects evoked from DPAG and VPAG by chemical stimulation were preserved in spinalized rats supporting that the evoked CBF responses result directly from stimulation and are not secondary to AP changes. Stimulation of either region, whether chemical or electrical, synchronized the EEG. To explore whether PAG stimulation might protect the brain against ischemic injury, in other rats the VPAG or DPAG were stimulated for 1 h (50 Hz, 1 s on/1 s off, 75-100 microA) and the middle cerebral artery occluded 72 h later. Stimulation of the DPAG, but not VPAG, significantly reduced infarction volumes relative to sham-stimulated controls as determined 24 h after occlusion. Elevations of AP and CBF did not differ between groups. We conclude: (a). intrinsic neurons of D- and VPAG differentially regulate CBF; (b). neurons of DPAG are neuroprotective independently of changes in CBF and/or AP. The DPAG effect on infarct volume may be related to the central neuroprotective pathway evoked by stimulation of the cerebellar FN.
Collapse
Affiliation(s)
- Sara B Glickstein
- Departments of Psychiatry and Neuroscience, Columbia University and New York State Psychiatric Institute, 1051 Riverside Dr, Box #42, New York, NY 10032, USA
| | | | | |
Collapse
|
18
|
Sartor DM, Verberne AJM. Phenotypic identification of rat rostroventrolateral medullary presympathetic vasomotor neurons inhibited by exogenous cholecystokinin. J Comp Neurol 2003; 465:467-79. [PMID: 12975810 DOI: 10.1002/cne.10840] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systemic administration of the gastrointestinal hormone cholecystokinin (CCK) selectively inhibits splanchnic sympathetic vasomotor discharge and differentially affects presympathetic vasomotor neurons of the rostroventrolateral medulla (RVLM). Stimulation of the sympathoexcitatory region of the periaqueductal grey (PAG) produces profound mesenteric vasoconstriction. In this study, our aim was to identify phenotypically different populations of RVLM presympathetic vasomotor neurons using juxtacellular neuronal labelling and immunohistochemical detection of the adrenergic neuronal marker phenylethanolamine-N-methyl transferase (PNMT) and to determine whether the PAG provides functional excitatory input to these neurons. Fifty-eight percent (36/62) of RVLM presympathetic neurons were inhibited by systemic administration of CCK. These cells had conduction velocities (3.6 +/- 0.2 m/sec) in the non-C-fiber range consistent with neurons possessing lightly myelinated spinal axons. Of these, 79% (22/28) were excited by PAG stimulation, and 59% (10/17) were not immunoreactive for PNMT. Conversely, 42% (26/62) of RVLM presympathetic neurons were either unaffected or activated by CCK administration and had slower conduction velocities (1.4 +/- 0.3 m/sec) than cells inhibited by CCK. Fifty percent (11/22) of these cells were driven by PAG stimulation, and most (11/14 or 79%) were PNMT-positive. These results suggest that cardiovascular responses elicited by PAG stimulation occur via activation of non-C1 and C1 RVLM presympathetic neurons. RVLM neurons inhibited by CCK were more likely to be driven by PAG stimulation and may be a subset of neurons responsible for driving gastrointestinal sympathetic vasomotor tone. CCK-induced inhibition of a subpopulation of RVLM presympathetic neurons may be implicated in postprandial hyperemia and postprandial hypotension.
Collapse
Affiliation(s)
- Daniela M Sartor
- Clinical Pharmacology and Therapeutics Unit, Austin and Repatriation Medical Centre, Department of Medicine, University of Melbourne, Heidelberg 3084, Victoria, Australia
| | | |
Collapse
|
19
|
Li J, Mitchell JH. Glutamate release in midbrain periaqueductal gray by activation of skeletal muscle receptors and arterial baroreceptors. Am J Physiol Heart Circ Physiol 2003; 285:H137-44. [PMID: 12649075 DOI: 10.1152/ajpheart.00904.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that both skeletal muscle receptor and arterial baroreceptor afferent inputs activate neurons in the dorsolateral (DL) and lateral regions of the midbrain periaqueductal gray (PAG). In this study, we determined whether the excitatory amino acid glutamate (Glu) is released to mediate the increased activity in these regions. Static contraction of the triceps surae muscle for 4 min was evoked by electrical stimulation of the L7 and S1 ventral roots in cats. Activation of arterial baroreceptor was induced by intravenous injection of phenylephrine. The endogenous release of Glu from the PAG was recovered with the use of a microdialysis probe. Glu concentration was measured by the HPLC method. Muscle contraction increased mean arterial pressure (MAP) from 98 +/- 10 to 149 +/- 12 mmHg (P < 0.05) and increased Glu release in the DL and lateral regions of the middle PAG from 0.39 +/- 0.10 to 0.73 +/- 0.12 microM (87%, P < 0.05) in intact cats. After sinoaortic denervation and vagotomy were performed, contraction increased MAP from 95 +/- 12 to 158 +/- 15 mmHg, and Glu from 0.34 +/- 0.08 to 0.54 +/- 0.10 microM (59%, P < 0.05). The increases in arterial pressure and Glu were abolished by muscle paralysis. Phenylephrine increased MAP from 100 +/- 13 to 162 +/- 22 mmHg and increased Glu from 0.36 +/- 0.10 to 0.59 +/- 0.18 microM (64%, P < 0.05) in intact animals. Denervation abolished this Glu increase. Summation of the changes in Glu evoked by muscle receptor and arterial baroreceptor afferent inputs was greater than the increase in Glu produced when both reflexes were activated simultaneously in intact state (123% vs. 87%). These data demonstrate that activation of skeletal muscle receptors evokes release of Glu in the DL and lateral regions of the middle PAG, and convergence of afferent inputs from muscle receptors and arterial baroreceptors in these regions inhibits the release of Glu. These results suggest that the PAG is a neural integrating site for the interaction between the exercise pressor reflex and the arterial baroreceptor reflex.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
20
|
Critchley HD, Mathias CJ, Dolan RJ. Neuroanatomical basis for first- and second-order representations of bodily states. Nat Neurosci 2001; 4:207-12. [PMID: 11175883 DOI: 10.1038/84048] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes in bodily states, particularly those mediated by the autonomic nervous system, are crucial to ongoing emotional experience. A theoretical model proposes a first-order autoregulatory representation of bodily state at the level of dorsal pons, and a second-order experience-dependent re-mapping of changes in bodily state within structures such as cingulate and medial parietal cortices. We tested these anatomical predictions using positron emission tomography and a human neurological model (pure autonomic failure), in which peripheral autonomic denervation prevents the emergence of autonomic responses. Compared to controls, we observed task-independent differences in activity of dorsal pons and context-induced differences in cingulate and medial parietal activity in PAF patients. An absence of afferent feedback concerning autonomically generated bodily states was associated with subtle impairments of emotional responses in PAF patients. Our findings provide empirical support for a theory proposing a hierarchical representation of bodily states.
Collapse
Affiliation(s)
- H D Critchley
- Wellcome Department of Cognitive Neurology, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|