1
|
Thiebaud N, Llewellyn-Smith IJ, Gribble F, Reimann F, Trapp S, Fadool DA. The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel. J Physiol 2016; 594:2607-28. [PMID: 26931093 PMCID: PMC4865572 DOI: 10.1113/jp272322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
Key points The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain. GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb. GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3). Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing. The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes.
Abstract The olfactory system is intricately linked with the endocrine system where it may serve as a detector of the internal metabolic state or energy homeostasis in addition to its classical function as a sensor of external olfactory information. The recent development of transgenic mGLU‐yellow fluorescent protein mice that express a genetic reporter under the control of the preproglucagon reporter suggested the presence of the gut hormone, glucagon‐like peptide (GLP‐1), in deep short axon cells (Cajal cells) of the olfactory bulb and its neuromodulatory effect on mitral cell (MC) first‐order neurons. A MC target for the peptide was determined using GLP‐1 receptor binding assays, immunocytochemistry for the receptor and injection of fluorescence‐labelled GLP‐1 analogue exendin‐4. Using patch clamp recording of olfactory bulb slices in the whole‐cell configuration, we report that GLP‐1 and its stable analogue exendin‐4 increase the action potential firing frequency of MCs by decreasing the interburst interval rather than modifying the action potential shape, train length or interspike interval. GLP‐1 decreases Kv1.3 channel contribution to outward currents in voltage clamp recordings as determined by pharmacological blockade of Kv1.3 or utilizing mice with Kv1.3 gene‐targeted deletion as a negative control. Because fluctuations in GLP‐1 concentrations monitored by the olfactory bulb can modify the firing frequency of MCs, olfactory coding could change depending upon nutritional or physiological state. As a regulator of neuronal activity, GLP‐1 or its analogue may comprise a new metabolic factor with a potential therapeutic target in the olfactory bulb (i.e. via intranasal delivery) for controlling an imbalance in energy homeostasis. The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain. GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb. GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3). Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing. The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes.
Collapse
Affiliation(s)
- Nicolas Thiebaud
- The Florida State University, Department of Biological Science, Program in Neuroscience, Tallahassee, FL, USA
| | - Ida J Llewellyn-Smith
- Cardiovascular Medicine and Human Physiology, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - Fiona Gribble
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - Debra Ann Fadool
- The Florida State University, Department of Biological Science, Program in Neuroscience, Tallahassee, FL, USA.,The Florida State University, Institute of Molecular Biophysics, Tallahassee, FL, USA
| |
Collapse
|
2
|
Gilra A, Bhalla US. Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 2015; 10:e0098045. [PMID: 25942312 PMCID: PMC4420273 DOI: 10.1371/journal.pone.0098045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023] Open
Abstract
Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells) linearize the input-output transformation of the principal neurons (mitral cells), unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells). Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.
Collapse
Affiliation(s)
- Aditya Gilra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
- * E-mail:
| |
Collapse
|
3
|
Tucker K, Cho S, Thiebaud N, Henderson MX, Fadool DA. Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel. J Physiol 2013; 591:2541-61. [PMID: 23478133 DOI: 10.1113/jphysiol.2013.254086] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The olfactory bulb has recently been proposed to serve as a metabolic sensor of internal chemistry, particularly that modified by metabolism. Because the voltage-dependent potassium channel Kv1.3 regulates a large proportion of the outward current in olfactory bulb neurons and gene-targeted deletion of the protein produces a phenotype of resistance to diet-induced obesity in mice, we hypothesized that this channel may play a role in translating energy availability into a metabolic signal. Here we explored the ability of extracellular glucose concentration to modify evoked excitability of the mitral neurons that principally regulate olfactory coding and processing of olfactory information. Using voltage-clamp electrophysiology of heterologously expressed Kv1.3 channels in HEK 293 cells, we found that Kv1.3 macroscopic currents responded to metabolically active (d-) rather than inactive (l-) glucose with a response profile that followed a bell-shaped curve. Olfactory bulb slices stimulated with varying glucose concentrations showed glucose-dependent mitral cell excitability as evaluated by current-clamp electrophysiology. While glucose could be either excitatory or inhibitory, the majority of the sampled neurons displayed a decreased firing frequency in response to elevated glucose concentration that was linked to increased latency to first spike and decreased action potential cluster length. Unlike modulation attributed to phosphorylation, glucose modulation of mitral cells was rapid, less than one minute, and was reversible within the time course of a patch recording. Moreover, we report that modulation targets properties of spike firing rather than action potential shape, involves synaptic activity of glutamate or GABA signalling circuits, and is dependent upon Kv1.3 expression. Given the rising incidence of metabolic disorders attributed to weight gain, changes in neuronal excitability in brain regions regulating sensory perception of food are of consequence.
Collapse
Affiliation(s)
- Kristal Tucker
- Florida State University, 319 Stadium Drive, 3008 King Life Sciences, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
4
|
Mast TG, Fadool DA. Mature and precursor brain-derived neurotrophic factor have individual roles in the mouse olfactory bulb. PLoS One 2012; 7:e31978. [PMID: 22363780 PMCID: PMC3283713 DOI: 10.1371/journal.pone.0031978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/16/2012] [Indexed: 11/18/2022] Open
Abstract
Background Sensory deprivation induces dramatic morphological and neurochemical changes in the olfactory bulb (OB) that are largely restricted to glomerular and granule layer interneurons. Mitral cells, pyramidal-like neurons, are resistant to sensory-deprivation-induced changes and are associated with the precursor to brain-derived neurotrophic factor (proBDNF); here, we investigate its unknown function in the adult mouse OB. Principal Findings As determined using brain-slice electrophysiology in a whole-cell configuration, brain-derived neurotrophic factor (BDNF), but not proBDNF, increased mitral cell excitability. BDNF increased mitral cell action potential firing frequency and decreased interspike interval in response to current injection. In a separate set of experiments, intranasal delivery of neurotrophic factors to awake, adult mice was performed to induce sustained interneuron neurochemical changes. ProBDNF, but not BDNF, increased activated-caspase 3 and reduced tyrosine hydroxylase immunoreactivity in OB glomerular interneurons. In a parallel set of experiments, short-term sensory deprivation produced by unilateral naris occlusion generated an identical phenotype. Conclusions Our results indicate that only mature BDNF increases mitral cell excitability whereas proBDNF remains ineffective. Our demonstration that proBDNF activates an apoptotic marker in vivo is the first for any proneurotrophin and establishes a role for proBDNF in a model of neuronal plasticity.
Collapse
Affiliation(s)
- Thomas Gerald Mast
- Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America.
| | | |
Collapse
|
5
|
Stakic J, Suchanek JM, Ziegler GP, Griff ER. The source of spontaneous activity in the main olfactory bulb of the rat. PLoS One 2011; 6:e23990. [PMID: 21912614 PMCID: PMC3166066 DOI: 10.1371/journal.pone.0023990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/03/2011] [Indexed: 11/19/2022] Open
Abstract
Introduction In vivo, most neurons in the main olfactory bulb exhibit robust spontaneous activity. This paper tests the hypothesis that spontaneous activity in olfactory receptor neurons drives much of the spontaneous activity in mitral and tufted cells via excitatory synapses. Methods Single units were recorded in vivo from the main olfactory bulb of a rat before, during, and after application of lidocaine to the olfactory nerve. The effect of lidocaine on the conduction of action potentials from the olfactory epithelium to the olfactory bulb was assessed by electrically stimulating the olfactory nerve rostral to the application site and monitoring the field potential evoked in the bulb. Results Lidocaine caused a significant decrease in the amplitude of the olfactory nerve evoked field potential that was recorded in the olfactory bulb. By contrast, the lidocaine block did not significantly alter the spontaneous activity of single units in the bulb, nor did it alter the field potential evoked by electrical stimulation of the lateral olfactory tract. Lidocaine block also did not change the temporal patters of action potential or their synchronization with respiration. Conclusions Spontaneous activity in neurons of the main olfactory bulb is not driven mainly by activity in olfactory receptor neurons despite the extensive convergence onto mitral and tufted cells. These results suggest that spontaneous activity of mitral and tufted is either an inherent property of these cells or is driven by centrifugal inputs to the bulb.
Collapse
Affiliation(s)
- Josif Stakic
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jessica M. Suchanek
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Geoffrey P. Ziegler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Edwin R. Griff
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 2011; 472:186-90. [PMID: 21441906 DOI: 10.1038/nature09975] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/04/2011] [Indexed: 12/19/2022]
Abstract
Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Na(v)1.7 in odour perception, we generated conditional null mice in which Na(v)1.7 was removed from all olfactory sensory neurons. In the absence of Na(v)1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell.
Collapse
|
7
|
Shirley CH, Coddington EJ, Heyward PM. All-or-none population bursts temporally constrain surround inhibition between mouse olfactory glomeruli. Brain Res Bull 2009; 81:406-15. [PMID: 19913074 DOI: 10.1016/j.brainresbull.2009.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/25/2009] [Accepted: 10/31/2009] [Indexed: 10/20/2022]
Abstract
With each sniff, the olfactory bulbs of the brain generate a neural activity pattern representing the odour environment, transmitting this to higher brain centres in the form of mitral cell output. Inhibitory circuits in the olfactory bulb glomerular and external plexiform layers may amplify contrast in these patterns, through surround inhibition of mitral cells. These circuits may operate in series, but their respective roles are unclear. A single sniff is sufficient for odour discrimination, but is not clear that the inhibitory circuits act within this timeframe. We used microdissected slices of mouse olfactory bulb to study each circuit in isolation. We found that unlike surround inhibition mediated in the external plexiform layer, surround inhibition mediated in the glomerular layer was activated by sensory synaptic input, but not by mitral cell output. The results also suggest that interactions between olfactory glomeruli are exclusively inhibitory, unlike in antennal lobe, and that surround inhibition mediated within the external plexiform layer may involve neural circuit elements not preserved in slice preparations. Surround inhibition was effective only after an interval corresponding to a single sniff in vivo. Surplus excitation, initiated by sensory input but generated by collective all-or-none responses of mitral cells, may delay surround inhibition and allow the synchronous activation of multiple glomeruli without each suppressing the other. Surround inhibition in the glomerular layer may subsequently allow a fresh representation of the odour environment to be generated with each sniff. These findings are consistent with combinatorial odour coding based on all-or-none glomerular responses.
Collapse
|
8
|
Shepherd GM. Symposium overview and historical perspective: dendrodendritic synapses: past, present, and future. Ann N Y Acad Sci 2009; 1170:215-23. [PMID: 19686140 DOI: 10.1111/j.1749-6632.2009.03937.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gordon M Shepherd
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
9
|
Abstract
Decades of work in vivo and in vitro have provided a wealth of data on the properties of the reciprocal dendrodendritic synapses that connect olfactory bulb mitral and granule cells. However, hypotheses about the function of these connections have changed relatively little. These synapses are believed to mediate recurrent and lateral inhibition and thus, by analogy with lateral inhibition in other systems, have been proposed to play a role in sharpening mitral cell receptive fields and in generating oscillatory spiking in mitral cells. This description is likely to be partially accurate, but is likely to be a rather simplified and incomplete account of the function of these connections. In particular, current hypotheses about the function of dendrodendritic circuits do not account for some of the unusual features of reciprocal synapses that may allow olfactory bulb circuits to perform special functions. Here we review recent work on the physiology and function of olfactory bulb circuits and try to link the physiological properties of reciprocal synapses particular computations that the olfactory bulb may perform.
Collapse
Affiliation(s)
- Nathaniel N Urban
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
10
|
Reisenman CE, Heinbockel T, Hildebrand JG. Inhibitory interactions among olfactory glomeruli do not necessarily reflect spatial proximity. J Neurophysiol 2008; 100:554-64. [PMID: 18417626 DOI: 10.1152/jn.90231.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibitory interactions shape the activity of output neurons in primary olfactory centers and promote contrast enhancement of odor representations. Patterns of interglomerular connectivity, however, are largely unknown. To test whether the proximity of glomeruli to one another is correlated with interglomerular inhibitory interactions, we used intracellular recording and staining methods to record the responses of projection (output) neurons (PNs) associated with glomeruli of known olfactory tuning in the primary olfactory center of the moth Manduca sexta. We focused on Toroid I, a glomerulus in the male-specific macroglomerular complex (MGC) specialized to one of the two key components of the conspecific females' sex pheromone, and the adjacent, sexually isomorphic glomerulus 35, which is highly sensitive to Z-3-hexenyl acetate (Z3-6:OAc). We used the two odorants to activate these reference glomeruli and tested the effects of olfactory activation in other glomeruli. We found that Toroid-I PNs were not inhibited by input to G35, whereas G35 PNs were inhibited by input to Toroid-I PNs. We also recorded the responses of PNs arborizing in other sexually isomorphic glomeruli to stimulation with the sex pheromone and Z3-6:OAc. We found that inhibitory responses were not related to proximity to the MGC and G35: both distant and adjacent PNs were inhibited by stimulation with the sex pheromone, some others were affected by only one odorant, and yet others by neither. Similar results were obtained in female PNs recorded in proximity to female-specific glomeruli. Our findings indicate that inhibitory interactions among glomeruli are widespread and independent of their spatial proximity.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, PO Box 210077, Tucson, AZ 85721-0077, USA.
| | | | | |
Collapse
|
11
|
Pinato G, Rievaj J, Pifferi S, Dibattista M, Masten L, Menini A. Electroolfactogram responses from organotypic cultures of the olfactory epithelium from postnatal mice. Chem Senses 2008; 33:397-404. [PMID: 18303030 DOI: 10.1093/chemse/bjn007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organotypic cultures of the mouse olfactory epithelium connected to the olfactory bulb were obtained with the roller tube technique from postnatal mice aged between 13 and 66 days. To test the functionality of the cultures, we measured electroolfactograms (EOGs) at different days in vitro (DIV), up to 7 DIV, and we compared them with EOGs from identical acute preparations (0 DIV). Average amplitudes of EOG responses to 2 mixtures of various odorants at concentrations of 1 mM or 100 microM decreased in cultures between 2 and 5 DIV compared with 0 DIV. The percentage of responsive cultures was 57%. We also used the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) to trigger the olfactory transduction cascade bypassing odorant receptor activation. Average amplitudes of EOG responses to 500 microM IBMX were not significantly different in cultures up to 6 DIV or 0 DIV, and the average percentage of responsive cultures between 2 and 5 DIV was 72%. The dose-response curve to IBMX measured in cultures up to 7 DIV was similar to that at 0 DIV. Moreover, the percentage of EOG response to IBMX blocked by niflumic acid, a blocker of Ca-activated Cl channels, was not significantly different in cultured or acute preparations.
Collapse
Affiliation(s)
- Giulietta Pinato
- Neurobiology Sector, International School for Advanced Studies, SISSA, SS 14 Km 163.5, 34012 Basovizza, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Wachowiak M, Shipley MT. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin Cell Dev Biol 2006; 17:411-23. [PMID: 16765614 DOI: 10.1016/j.semcdb.2006.04.007] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Input from olfactory receptor neurons is first organized and processed in the glomerular layer of the olfactory bulb. Olfactory glomeruli serve as functional units in coding olfactory information and contain a complex network of synaptic connections. Odor information has long been thought to be represented by spatial patterns of glomerular activation; recent work has, additionally, shown that these patterns are temporally dynamic. At the same time, recent advances in our understanding of the glomerular network suggest that glomerular processing serves to temporally sharpen these dynamics and to modulate spatial patterns of glomerular activity. We speculate that odor representations and their postsynaptic processing are tuned to and shaped by the sniffing behavior of the animal.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
13
|
Rubin DB, Cleland TA. Dynamical mechanisms of odor processing in olfactory bulb mitral cells. J Neurophysiol 2006; 96:555-68. [PMID: 16707721 DOI: 10.1152/jn.00264.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the olfactory system, the contribution of dynamical properties such as neuronal oscillations and spike synchronization to the representation of odor stimuli is a matter of substantial debate. While relatively simple computational models have sufficed to guide current research in large-scale network dynamics, less attention has been paid to modeling the membrane dynamics in bulbar neurons that may be equally essential to sensory processing. We here present a reduced, conductance-based compartmental model of olfactory bulb mitral cells that exhibits the complex dynamical properties observed in these neurons. Specifically, model neurons exhibit intrinsic subthreshold oscillations with voltage-dependent frequencies that shape the timing of stimulus-evoked action potentials. These oscillations rely on a persistent sodium conductance, an inactivating potassium conductance, and a calcium-dependent potassium conductance and are reset via inhibitory input such as that delivered by periglomerular cell shunt inhibition. Mitral cells fire bursts, or clusters, of spikes when continuously stimulated. Burst properties depend critically on multiple currents, but a progressive deinactivation of I(A) over the course of a burst is an important regulator of burst termination. Each of these complex properties exhibits appropriate dynamics and pharmacology as determined by electrophysiological studies. Additionally, we propose that a second, inconsistently observed form of infrathreshold bistability in mitral cells may derive from the activation of ATP-activated potassium currents responding to hypoxic conditions. We discuss the integration of these cellular properties in the larger context of olfactory bulb network operations.
Collapse
Affiliation(s)
- Daniel B Rubin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
14
|
Abstract
A unique feature of the olfactory bulb circuit is the long projection of the mitral cell lateral dendrites. Through dendrodendritic reciprocal synapses, these dendrites connect one olfactory glomerular module to hundreds of others; but the functional principles governing these extensive lateral interactions remain largely unknown. Here we report that the spatial extent of action potential propagation in these dendrites is dynamically regulated by inhibitory synapses distributed along the dendrites. The extent of propagation determines the spatial pattern of Ca(2+) influx and thus the range and number of dendrodendritic synapses to be activated. Accordingly, network control of spike traffic in the mitral cell lateral dendrites can mediate dynamic interaction with different combinations of glomerular modules in response to different odorants.
Collapse
Affiliation(s)
- Wenhui Xiong
- Yale University Department of Neurobiology, 333 Cedar Street, C303 SHM, New Haven, CT 06520, USA
| | | |
Collapse
|
15
|
Hayar A, Heyward PM, Heinbockel T, Shipley MT, Ennis M. Direct excitation of mitral cells via activation of alpha1-noradrenergic receptors in rat olfactory bulb slices. J Neurophysiol 2001; 86:2173-82. [PMID: 11698509 DOI: 10.1152/jn.2001.86.5.2173] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main olfactory bulb receives a significant modulatory noradrenergic input from the locus coeruleus. Previous in vivo and in vitro studies showed that norepinephrine (NE) inputs increase the sensitivity of mitral cells to weak olfactory inputs. The cellular basis for this action of NE is not understood. The goal of this study was to investigate the effect of NE and noradrenergic agonists on the excitability of mitral cells, the main output cells of the olfactory bulb, using whole cell patch-clamp recording in vitro. The noradrenergic agonists, phenylephrine (PE, 10 microM), isoproterenol (Isop, 10 microM), and clonidine (3 microM), were used to test for the functional presence of alpha1-, beta-, and alpha2-receptors, respectively, on mitral cells. None of these agonists affected olfactory nerve (ON)-evoked field potentials recorded in the glomerular layer, or ON-evoked postsynaptic currents recorded in mitral cells. In whole cell voltage-clamp recordings, NE (30 microM) induced an inward current (54 +/- 7 pA, n = 16) with an EC(50) of 4.7 microM. Both PE and Isop also produced inward currents (22 +/- 4 pA, n = 19, and 29 +/- 9 pA, n = 8, respectively), while clonidine produced no effect (n = 6). In the presence of TTX (1 microM), and blockers of excitatory and inhibitory fast synaptic transmission [gabazine 5 microM, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) 10 microM, and (+/-)-2-amino-5-phosphonopentanoic acid (APV) 50 microM], the inward current induced by PE persisted (EC(50) = 9 microM), whereas that of Isop was absent. The effect of PE was also observed in the presence of the Ca(2+) channel blockers, cadmium (100 microM) and nickel (100 microM). The inward current caused by PE was blocked when the interior of the cell was perfused with the nonhydrolyzable GDP analogue, GDPbetaS, indicating that the alpha1 effect is mediated by G-protein coupling. The current-voltage relationship in the absence and presence of PE indicated that the current induced by PE decreased near the equilibrium potential for potassium ions. In current-clamp recordings from bistable mitral cells, PE shifted the membrane potential from the downstate (-52 mV) toward the upstate (-40 mV), and significantly increased spike generation in response to perithreshold ON input. These findings indicate that NE excites mitral cells directly via alpha1 receptors, an effect that may underlie, at least in part, increased mitral cell responses to weak ON input during locus coeruleus activation in vivo.
Collapse
Affiliation(s)
- A Hayar
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
16
|
Delaney K, Davison I, Denk W. Odour-evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli. Eur J Neurosci 2001; 13:1658-72. [PMID: 11359518 DOI: 10.1046/j.1460-9568.2001.01545.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We measured Ca2+ concentration, [Ca2+], transients in mitral cell distal apical dendritic tufts produced by physiological odour stimulation of the olfactory epithelium and electrical stimulation of the olfactory nerve (ON) using two-photon scanning and conventional wide-field microscopy of Ca2+-Green-1 dextran in an in vitro frog nose-brain preparation. Weak or strong ON shock-evoked fluorescence transients always had short latency with an onset 0-10 ms after the onset of the bulb local field potential, rapidly increasing to a peak of up to 25% fractional fluorescence change (DeltaF/F) in 10-30 ms, were blocked by 10 microM CNQX, decaying with a time constant of about 1 s. With stronger ON shocks that activated many receptor axons, an additional, delayed, sustained AP5-sensitive component (peak at approximately 0.5 s, up to 40% DeltaF/F maximum) could usually be produced. Odour-evoked [Ca2+] transients sometimes displayed a rapid onset phase that peaked within 50 ms but always had a sustained phase that peaked 0.5-1.5 s after onset, regardless of the strength of the odour or the amplitude of the response. These were considerably larger (up to 150% DeltaF/F) than those evoked by ON shock. Odour-evoked [Ca2+] transients were also distinguished from ON shock-evoked transients by tufts in different glomeruli responding with different delays (time to onset differed by up to 1.5 s between different tufts for the same odour). Odour-evoked [Ca2+] transients were increased by AMPA-kainate receptor blockade, but substantially blocked by AP5. Electrical stimulation of the lateral olfactory tract (5-6 stimuli at 10 Hz) that evoked granule cell feedback inhibition, blocked 60-100% of the odour-evoked [Ca2+] transient in tufts when delivered within about 0.5 s of the odour. LOT-mediated inhibition was blocked by 10 microM bicuculline.
Collapse
Affiliation(s)
- K Delaney
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6, Canada.
| | | | | |
Collapse
|
17
|
Abstract
Asymmetrical, type 1 synapses between mitral and/or tufted (M/T) cell dendrites were observed in the glomerular layer (GL) and juxtaglomerular external plexiform layer (EPL) of salamander olfactory bulb sections. The dendrites had electron-lucent cytoplasm containing regularly-arrayed microtubules and spherical translucent vesicles. The vesicles were clustered against a thin pre-synaptic density that was aligned with a 17-20 nm-wide synaptic cleft and a thicker post-synaptic density. These dendrodendritic synapses could be a source of the delayed, prolonged excitation that originates from the GL/EPL. During spatiotemporal encoding of odor stimuli, they could amplify or synchronize M/T cell responses.
Collapse
Affiliation(s)
- D M Allen
- Department of Cellular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, USA.
| | | |
Collapse
|
18
|
Davison AP, Feng J, Brown D. A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Res Bull 2000; 51:393-9. [PMID: 10715559 DOI: 10.1016/s0361-9230(99)00256-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed two-, three- and four-compartment models of a mammalian olfactory bulb mitral cell as a reduction of a complex 286-compartment model [1]. A minimum of three compartments, representing soma, secondary (basal) dendrites and the glomerular tuft of the primary dendrite, is required to adequately reproduce the behaviour of the full model over a broad range of firing rates. Adding a fourth compartment to represent the shaft of the primary dendrite gives a substantial improvement. The reduced models exhibit behaviours in common with the full model which were not used in fitting the model parameters. The reduced models run 75 or more times faster than the full model, making their use in large, realistic network models of the olfactory bulb practical.
Collapse
Affiliation(s)
- A P Davison
- Laboratory of Computational Neuroscience, The Babraham Institute, Babraham, Cambridge, UK.
| | | | | |
Collapse
|
19
|
Abstract
We investigated the mechanisms of long-lasting depolarizing potentials (LLDs) generated in mitral cells with whole-cell patch recordings in the rat olfactory bulb slice. LLDs occur spontaneously and are evoked by either orthodromic stimulation of the olfactory nerve or antidromic stimulation of mitral and tufted (M/T) cells. LLDs are followed by a long refractory period, limiting LLD generation to approximately 1 Hz. LLD production does not appear to involve either intrinsic voltage-activated or metabotropic mechanisms. The initiation of LLDs requires activation of non-NMDA but not NMDA receptors. Dual recordings from the apical dendrites and somata of mitral cells show that LLDs are generated in the distal portion of the apical dendrite, most likely in the glomerulus. The rising phase of LLDs shows characteristics of polyneuronal input, including a high variability and sensitivity to charge screening. Paired recordings from adjacent mitral cells suggest that LLDs occur synchronously only in cells whose apical dendrites ramify in the same glomerulus. These findings suggest that LLDs involve recurrent, intraglomerular dendrodendritic interactions among M/T cells.
Collapse
|
20
|
Jia C, Chen WR, Shepherd GM. Synaptic organization and neurotransmitters in the rat accessory olfactory bulb. J Neurophysiol 1999; 81:345-55. [PMID: 9914294 DOI: 10.1152/jn.1999.81.1.345] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The accessory olfactory bulb (AOB) is the first relay station in the vomeronasal system and may play a critical role in processing pheromone signals. The AOB shows similar but less distinct lamination compared with the main olfactory bulb (MOB). In this study, synaptic organization of the AOB was analyzed in slice preparations from adult rats by using both field potential and patch-clamp recordings. Stimulation of the vomeronasal nerve (VN) evoked field potentials that showed characteristic patterns in different layers of the AOB. Current source density (CSD) analysis of the field potentials revealed spatiotemporally separated loci of inward current (sinks) that represented sequential activation of different neuronal components: VN activity (period I), synaptic excitation of mitral cell apical dendrites (period II), and activation of granule cells by mitral cell basal dendrites (period III). Stimulation of the lateral olfactory tract also evoked field potentials in the AOB, which indicated antidromic activation of the mitral cells (period I and II) followed by activation of granule cells (period III). Whole cell patch recordings from mitral and granule cells of the AOB supported that mitral cells are excited by VN terminals and subsequently activate granule cells through dendrodendritic synapses. Both CSD analysis and patch recordings provided evidence that glutamate is the neurotransmitter at the vomeronasal receptor neuron; mitral cell synapses and both NMDA and non-NMDA receptors are involved. We also demonstrated electrophysiologically that reciprocal interaction between mitral and granule cells in the AOB is through the dendrodendritic reciprocal synapses. The neurotransmitter at the mitral-to-granule synapses is glutamate and at the granule-to-mitral synapse is gamma-aminobutyric acid. The synaptic interactions among receptor cell terminals, mitral cells, and granule cells in the AOB are therefore similar to those in the MOB, suggesting that processing of chemosensory information in the AOB shares similarities with that in the MOB.
Collapse
Affiliation(s)
- C Jia
- Section of Neurobiology, Yale Medical School, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
21
|
Ennis M, Linster C, Aroniadou-Anderjaska V, Ciombor K, Shipley MT. Glutamate and synaptic plasticity at mammalian primary olfactory synapses. Ann N Y Acad Sci 1998; 855:457-66. [PMID: 9929639 DOI: 10.1111/j.1749-6632.1998.tb10606.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutamate is the transmitter at synapses from the olfactory nerve (ON) to mitral (Mi)/tufted cells, but very little is known about the functional properties of this synapse. This report summarizes in vitro physiological and computational modeling studies investigating glutamatergic neurotransmission at ON-->Mi cell synapses. Single ON shocks in rat main olfactory bulb (MOB) slices elicit distinct early and late spiking components triggered, respectively, by (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)/kainic acid (KA) and N-methyl-D-aspartate (NMDA) receptor activation. Modeling simulations showed that the placement of both AMPA/KA and NMDA receptors on Mi apical dendrites replicates the experimentally observed early and late Mi spiking responses to ON shocks. Brief, tetanic ON stimulation in vitro induced robust, selective long-term potentiation (LTP) of NMDA receptor-dependent spiking. Modeling experiments disclosed several potential mechanisms underlying the selective LTP of NMDA receptor-dependent spiking. These findings demonstrate that ON-->Mi cell transmission exhibits a novel form of plasticity whereby high frequency synaptic activity induces selective LTP of NMDA receptor-dependent spiking.
Collapse
Affiliation(s)
- M Ennis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 21201, USA.
| | | | | | | | | |
Collapse
|
22
|
Kirillova V, Lin JW. A whole-cell clamp study of dendrodendritic synaptic activities in mitral cells of turtle olfactory bulb slices. Neuroscience 1998; 87:255-64. [PMID: 9722155 DOI: 10.1016/s0306-4522(98)00146-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A procedure for preparing slices from the turtle olfactory bulb is described in this report. Individual layers of the bulb could be identified in the slices which enabled visual identification of cell types. Mitral cells retained extensive dendritic arborizations in slices of typical thickness, 300-400 microm. The presence of extensive dendritic processes was consistent with the difficulties we encountered in our attempt to achieve adequate space clamp. On the few occasions where an adequate space clamp of a mitral cell was achieved, calcium current exhibited a threshold of - 50 mV and reached its maximal level at - 10 mV. In all cases where calcium current was analysed (n=46), the current exhibited little inactivation. Depolarizing steps in 50% of the mitral cells triggered a burst of feedback synaptic activity after termination of the step. The intensity of feedback activity correlated closely with the amplitude of the depolarizing step, reaching its maximal level at - 10 mV and declining with further depolarization. The bell-shaped relationship between the feedback activity and mitral cell depolarization is consistent with the hypothesis that the feedback activity is mediated by reciprocal synapses on the mitral cell dendrite. This hypothesis is further supported by the inhibitory nature of the feedback synaptic activity: (i) the polarity of the feedback synaptic current could be inverted at the predicted chloride equilibrium potential, (ii) the feedback activity could be completely blocked by 10 microM bicuculline. The analysis of spontaneous synaptic activity showed that it was mostly inhibitory because its polarity could be reversed at the predicted chloride equilibrium potential. In some mitral cells, the frequency of spontaneous activity was noticeably increased when the holding potential was depolarized. This correlation could be attributed to the activation of dendrodendritic synapses. Results shown in this report demonstrate that dendrodendritic synapses are viable in turtle olfactory bulb slices. In addition, the suppression of feedback inhibition by large depolarizing steps of mitral cells suggests that the control of mitral cell dendritic potential is adequate to suppress calcium influx during large depolarizing steps.
Collapse
Affiliation(s)
- V Kirillova
- Department of Biology, Boston University, MA 02215, USA
| | | |
Collapse
|
23
|
Abstract
The functional organization and synaptic physiology of olfactory bulb glomeruli were studied in rat in vitro slice preparations stained with the voltage-sensitive dye RH-155. Optical signals were recorded with a 100-element photodiode array at high temporal resolution. Pharmacological and ionic manipulations were used to investigate synaptic responses to stimulation of the olfactory nerve layer (ONL). ONL stimulation evoked a sodium-mediated compound action potential that propagated across the ONL and invaded individual glomeruli. This presynaptic volley evoked calcium-dependent synaptic responses the amplitudes of which were largest within the glomerular layer (GL); smaller amplitude responses were recorded in deeper layers of the olfactory bulb. Synaptic responses in the GL were attenuated by the non-NMDA ionotropic glutamate receptor antagonist CNQX; the residual component was suppressed by the NMDA glutamate receptor antagonist AP-5. The GABAA receptor antagonist bicuculline methiodide had little effect, whereas the GABAB receptor agonist baclofen dramatically attenuated ONL-evoked synaptic responses. The effects of baclofen were reversed by the GABAB receptor antagonist CGP35348. Paired-pulse depression of ONL-evoked synaptic responses in the GL was partially reversed by CGP35348. These findings suggest that olfactory nerve axons release glutamate to activate both NMDA and non-NMDA receptors on GL neurons, that GABAA receptor-mediated inhibition has little effect on these responses, and that GABAB receptor-mediated inhibition may act presynaptically on olfactory nerve axons to modulate their inputs to olfactory bulb neurons.
Collapse
|
24
|
Chen WR, Midtgaard J, Shepherd GM. Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science 1997; 278:463-7. [PMID: 9334305 DOI: 10.1126/science.278.5337.463] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The site of impulse initiation is crucial for the integrative actions of mammalian central neurons, but this question is currently controversial. Some recent studies support classical evidence that the impulse always arises in the soma-axon hillock region, with back-propagation through excitable dendrites, whereas others indicate that the dendrites are sufficiently excitable to initiate impulses that propagate forward along the dendrite to the soma-axon hillock. This issue has been addressed in the olfactory mitral cell, in which excitatory synaptic input is restricted to the distal tuft of a single primary dendrite. In rat olfactory bulb slices, dual whole cell recordings were made at or near the soma and from distal sites on the primary dendrite. The results show that the impulse can be initiated in either the soma-axon hillock or in the distal primary dendrite, and that the initiation site is controlled physiologically by the excitatory synaptic inputs to the distal tuft and inhibitory synaptic inputs near the soma.
Collapse
Affiliation(s)
- W R Chen
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
25
|
Aroniadou-Anderjaska V, Ennis M, Shipley MT. Glomerular synaptic responses to olfactory nerve input in rat olfactory bulb slices. Neuroscience 1997; 79:425-34. [PMID: 9200726 DOI: 10.1016/s0306-4522(96)00706-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In olfactory bulb slices from young rats, the field potential evoked in the glomerular layer by stimulation in the olfactory nerve layer consisted of two negative components: an early component (N1) which was blocked by bath application of the kainate/amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM), and a late, prolonged component (N2; duration > or = 350 msec) which was unaffected by CNQX, was enhanced by reduction of Mg2+ in the medium, and was blocked by the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovalerate (50 microM). A comparison of the glomerular field potentials before and after knife cuts that isolated the glomerular layer from the deeper layers of the olfactory bulb indicated that both N1 and N2 were produced by currents generated, for the most part, within the glomeruli. A laminar analysis of the field potential profiles evoked by olfactory nerve stimulation in standard medium, or in the presence of CNQX, showed that N1 and N2 reversed polarity in the external plexiform and mitral cell layers, suggesting that both components reflected synaptic responses in the distal, apical dendrites of mitral/tufted cells. Simultaneous field potential recordings in the glomerular layer and intracellular recordings in the mitral cell layer showed that: (i) N1 is associated with a brief, short-latency spiking activity of mitral cells, and (ii) N2 is associated with prolonged mitral cell spiking, since N2 and the late cell firing had similar time-courses, and both were blocked by bath applied DL-2-amino-5-phosphonovalerate. Application of the GABA(A) receptor antagonist bicuculline methiodide (10 microM) to standard medium selectively enhanced N2. The enhanced N2 was significantly reduced by DL-2-amino-5-phosphonovalerate. Strychnine, an antagonist of glycine receptors, had similar effects to those of bicuculline, but only at high concentrations that have been previously shown to block GABA(A) receptors; at low concentrations strychnine had no effect. The effects of all drugs tested were reversible. In the rat olfactory bulb, activation of the olfactory nerve evokes a kainate/AMPA receptor-mediated response in the distal, apical dendrites of mitral/tufted cells, followed by a slow N-methyl-D-aspartate receptor-mediated response which triggers prolonged discharge of mitral cells. GABA(A) receptor-mediated inhibition appears to suppress, preferentially, this N-methyl-D-aspartate receptor-mediated component. The presence of prolonged N-methyl-D-aspartate receptor-mediated postsynaptic activity at the primary synapses of the olfactory system may play a key role in olfactory processing by facilitating synaptic integration and plasticity.
Collapse
Affiliation(s)
- V Aroniadou-Anderjaska
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore 21201, U.S.A
| | | | | |
Collapse
|
26
|
Abstract
We have investigated the membrane properties and excitatory synaptic transmission of mitral cells in a slice preparation of rat olfactory bulb. In response to intracellular injection of depolarizing current, most mitral cells showed several distinct membrane properties: (1) delayed onset of firing (suggesting the presence of a type of potassium A current); (2) subthreshold oscillation of the membrane potential; and (3) repetitive firing of clustered action potentials during prolonged threshold stimulation. Olfactory nerve (ON) stimulation evoked a long-lasting EPSP in most of the mitral cells. This long EPSP was completely blocked by combined application of NMDA and non-NMDA receptor antagonists (20 microM CNQX and 100 microM APV), confirming that glutamate is the neurotransmitter at the synapses from ON to mitral cells. The ON-evoked EPSP was preceded by a prespike, which was resistant to membrane potential hyperpolarization at the soma. This fast prepotential may be indicative of an active response in the primary dendritic tufts of the mitral cells. Stimulation of the lateral olfactory tract evoked an antidromic pulse followed by a short EPSP, which could also be elicited independently of an antidromic spike in the recorded cell. Since the asymmetrical synapses so far observed on the mitral cells are all form the ON, this antidromically evoked EPSP may reflect self-excitation of a mitral cell by glutamate released from its own dendrites by antidromic impulse invasion, or/and lateral excitation by neighboring invaded dendrites.
Collapse
Affiliation(s)
- W R Chen
- Section of Neurobiology, Yale University, School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- M T Shipley
- Department of Anatomy, University of Maryland School of Medicine, Baltimore 21201, USA
| | | |
Collapse
|