1
|
Jánošíková L, Pálková L, Šalát D, Klepanec A, Soltys K. Response of Escherichia coli minimal ter operon to UVC and auto-aggregation: pilot study. PeerJ 2021; 9:e11197. [PMID: 34026346 PMCID: PMC8123226 DOI: 10.7717/peerj.11197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Aim The study of minimal ter operon as a determinant of tellurium resistance (TeR) is important for the purpose of confirming the relationship of these genes to the pathogenicity of microorganisms. The ter operon is widespread among bacterial species and pathogens, implicated also in phage inhibition, oxidative stress and colicin resistance. So far, there is no experimental evidence for the role of the Escherichia coli (E. coli) minimal ter operon in ultraviolet C (UVC) resistance, biofilm formation and auto-aggregation. To identify connection with UVC resistance of the minimal ter operon, matched pairs of Ter-positive and -negative E. coli cells were stressed and differences in survival and whole genome sequence analysis were performed. This study was aimed also to identify differences in phenotype of cells induced by environmental stress. Methods In the current study, a minimal ter operon(terBCDEΔF) originating from the uropathogenic strain E. coli KL53 was used. Clonogenic assay was the method of choice to determine cell reproductive death after treatment with UVC irradiation at certain time intervals. Bacterial suspensions were irradiated with 254 nm UVC-light (germicidal lamp in biological safety cabinet) in vitro. UVC irradiance output was 2.5 mW/cm2 (calculated at the UVC device aperture) and plate-lamp distance of 60 cm. DNA damage analysis was performed using shotgun sequencing on Illumina MiSeq platform. Biofilm formation was measured by a crystal violet retention assay. Auto-aggregation assay was performed according to the Ghane, Babaeekhou & Ketabi (2020). Results A large fraction of Ter-positive E. coli cells survived treatment with 120-s UVC light (300 mJ/cm2) compared to matched Ter-negative cells; ∼5-fold higher resistance of Ter-positive cells to UVC dose (p = 0.0007). Moreover, UVC surviving Ter-positive cells showed smaller mutation rate as Ter-negative cells. The study demonstrated that a 1200-s exposure to UVC (3,000 mJ/cm2) was sufficient for 100% inhibition of growth for all the Ter-positive and -negative E. coli cells. The Ter-positive strain exhibited of 26% higher auto-aggregation activities and was able to inhibit biofilm formation over than Ter- negative strain (**** P < 0.0001). Conclusion Our study shows that Ter-positive cells display lower sensitivity to UVC radiation, corresponding to a presence in minimal ter operon. In addition, our study suggests that also auto-aggregation ability is related to minimal ter operon. The role of the minimal ter operon (terBCDEΔF) in resistance behavior of E. coli under environmental stress is evident.
Collapse
Affiliation(s)
- Lenka Jánošíková
- Faculty of Health Sciences, University of St. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | | | - Dušan Šalát
- Faculty of Health Sciences, University of St. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | - Andrej Klepanec
- Faculty of Health Sciences, University of St. Cyril and Methodius in Trnava, Trnava, Slovak Republic
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic.,Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
2
|
Yu B, Fey P, Kestin-Pilcher KE, Fedorov A, Prakash A, Chisholm RL, Wu JY. Spliceosomal genes in the D. discoideum genome: a comparison with those in H. sapiens, D. melanogaster, A. thaliana and S. cerevisiae. Protein Cell 2011; 2:395-409. [PMID: 21667333 DOI: 10.1007/s13238-011-1052-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/20/2011] [Indexed: 02/05/2023] Open
Abstract
Little is known about pre-mRNA splicing in Dictyostelium discoideum although its genome has been completely sequenced. Our analysis suggests that pre-mRNA splicing plays an important role in D. discoideum gene expression as two thirds of its genes contain at least one intron. Ongoing curation of the genome to date has revealed 40 genes in D. discoideum with clear evidence of alternative splicing, supporting the existence of alternative splicing in this unicellular organism. We identified 160 candidate U2-type spliceosomal proteins and related factors in D. discoideum based on 264 known human genes involved in splicing. Spliceosomal small ribonucleoproteins (snRNPs), PRP19 complex proteins and late-acting proteins are highly conserved in D. discoideum and throughout the metazoa. In non-snRNP and hnRNP families, D. discoideum orthologs are closer to those in A. thaliana, D. melanogaster and H. sapiens than to their counterparts in S. cerevisiae. Several splicing regulators, including SR proteins and CUG-binding proteins, were found in D. discoideum, but not in yeast. Our comprehensive catalog of spliceosomal proteins provides useful information for future studies of splicing in D. discoideum where the efficient genetic and biochemical manipulation will also further our general understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Bing Yu
- Department of Molecular and Clinical Genetics, Royal Prince Alfred Hospital and Sydney Medical School (Central), the University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
3
|
Jaiswal JK, Nanjundiah V. Calcium regulates the expression of a Dictyostelium discoideum asparaginyl tRNA synthetase gene. J Biosci 2004; 28:697-707. [PMID: 14660869 DOI: 10.1007/bf02708430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In a screen for calcium-regulated gene expression during growth and development of Dictyostelium discoideum we have identified an asparaginyl tRNA synthetase (ddAsnRS) gene, the second tRNA synthetase gene identified in this organism. The ddAsnRS gene shows many unique features. One, it is repressed by lowering cellular calcium, making it the first known calcium-regulated tRNA synthetase. Two, despite the calcium-dependence, its expression is unaltered during the cell cycle, making this the first D. discoideum gene to show a calcium-dependent but cell cycle phase-independent expression. Finally, the N-terminal domain of the predicted ddAsnRS protein shows higher sequence similarity to Glutaminyl tRNA synthetases than to other Asn tRNA synthetases. These unique features of the AsnRS from this primitive eukaryote not only point to a novel mechanism regulating the components of translation machinery and gene expression by calcium, but also hint at a link between the evolution of GlnRS and AsnRS in eukaryotes.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
4
|
Williamson BD, Favis R, Brickey DA, Rutherford CL. Isolation and characterization of glycogen synthase in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 2000; 19:350-64. [PMID: 9023987 DOI: 10.1002/(sici)1520-6408(1996)19:4<350::aid-dvg8>3.0.co;2-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have partially purified the protein and isolated the glcS gene for glycogen synthase in Dictyostelium. glcS mRNA is present throughout development and is the product of a single gene coding for 775 amino acids, with a predicted molecular mass of 87 kD. The sequence is highly similar to glycogen synthase from human muscle, yeast, and rat liver, diverging significantly only at the amino and carboxy termini. Phosphorylation and UDPG binding sites are conserved, with K(m) values for UDPG being comparable to those determined for other organisms, but in vitro phosphorylation failing to convert between the G6P-dependent (D) and -independent (I) forms. Enzyme activity is relatively constant throughout the life cycle: the I form of the enzyme isolates with the soluble fraction in amoebae, switches to the D form, becomes pellet-associated during early development, and finally reverts during late development to the I form, which again localizes to the soluble fraction. Deletion analysis of the promoter reveals a GC-rich element which, when deleted, abolishes expression of glcS.
Collapse
Affiliation(s)
- B D Williamson
- Department of Biology, virginia Polytechnic Institute and State University, Blacksburg 24061-0406, USA
| | | | | | | |
Collapse
|
5
|
Okazaki Y, Shizuri Y. Structures of six cDNAs expressed specifically at cypris larvae of barnacles, Balanus amphitrite. Gene 2000; 250:127-35. [PMID: 10854786 DOI: 10.1016/s0378-1119(00)00184-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We cloned six cDNAs by screening cDNA libraries of cypris larvae from barnacles, Balanus amphitrite, and studied their expression by Northern blot analysis. All of them are expressed in the cypris larvae at the settlement stage, but not in the earlier nauplii larvae nor in later adult barnacles. Therefore, we designated them as barnacle cypris larva-specific genes (bcs); bcs-1, bcs-2, bcs-3, bcs-4, bcs-5 and bcs-6. During the process of larval attachment and metamorphosis, the amounts of bcs-1 and bcs-2 mRNAs decreased, whereas the bcs-3, bcs-4, bcs-5 and bcs-6 mRNAs increased. A homology search showed that all cDNAs encode novel peptides containing characteristic amino acid sequences. This study strongly suggests that these bcs gene products are involved in the cypris larval attachment and metamorphosis of barnacles.
Collapse
Affiliation(s)
- Y Okazaki
- Marine Biotechnology Institute Co. Ltd., Shizuoka, Japan.
| | | |
Collapse
|
6
|
McCue LA, McDonough KA, Lawrence CE. Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res 2000; 10:204-19. [PMID: 10673278 DOI: 10.1101/gr.10.2.204] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have analyzed the cyclic nucleotide (cNMP)-binding protein and nucleotide cyclase superfamilies using Bayesian computational methods of protein family identification and classification. In addition to the known cNMP-binding proteins (cNMP-dependent kinases, cNMP-gated channels, cAMP-guanine nucleotide exchange factors, and bacterial cAMP-dependent transcription factors), new functional groups of cNMP-binding proteins were identified, including putative ABC-transporter subunits, translocases, and esterases. Classification of the nucleotide cyclases revealed subtle differences in sequence conservation of the active site that distinguish the five classes of cyclases: the multicellular eukaryotic adenylyl cyclases, the eukaryotic receptor-type guanylyl cyclases, the eukaryotic soluble guanylyl cyclases, the unicellular eukaryotic and prokaryotic adenylyl cyclases, and the putative prokaryotic guanylyl cyclases. Phylogenetic distribution of the cNMP-binding proteins and cyclases was analyzed, with particular attention to the 22 complete archaeal and eubacterial genome sequences. Mycobacterium tuberculosis H37Rv and Synechocystis PCC6803 were each found to encode several more putative cNMP-binding proteins than other prokaryotes; many of these proteins are of unknown function. M. tuberculosis also encodes several more putative nucleotide cyclases than other prokaryotic species.
Collapse
Affiliation(s)
- L A McCue
- The Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany, New York 12201-0509 USA
| | | | | |
Collapse
|
7
|
Gaudet P, Tsang A. Regulation of the ribonucleotide reductase small subunit gene by DNA-damaging agents in Dictyostelium discoideum. Nucleic Acids Res 1999; 27:3042-8. [PMID: 10454598 PMCID: PMC148528 DOI: 10.1093/nar/27.15.3042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Escherichia coli, yeast and mammalian cells, the genes encoding ribonucleotide reductase, an essential enzyme for de novo DNA synthesis, are up-regulated in response to DNA damaging agents. We have examined the response of the rnrB gene, encoding the small subunit of ribonucleotide reductase in Dictyostelium discoideum, to DNA damaging agents. We show here that the accumulation of rnrB transcript is increased in response to methyl methane sulfonate, 4-nitroquinoline-1-oxide and irradiation with UV-light, but not to the ribonucleotide reductase inhibitor hydroxyurea. This response is rapid, transient and independent of protein synthesis. Moreover, cells from different developmental stages are able to respond to the drug in a similar fashion, regardless of the basal level of expression of the rnrB gene. We have defined the cis -acting elements of the rnrB promoter required for the response to methyl methane sulfonate and 4-nitroquinoline-1-oxide by deletion analysis. Our results indicate that there is one element, named box C, that can confer response to both drugs. Two other boxes, box A and box D, specifically conferred response to methyl methane sulfonate and 4-nitroquinoline-1-oxide, respectively.
Collapse
Affiliation(s)
- P Gaudet
- Department of Chemistry, Concordia University, 1455 de Maisonneuve Boulevard W., Montreal, Quebec H3G 1M8, Canada
| | | |
Collapse
|
8
|
Bonfils C, Greenwood M, Tsang A. Expression and characterization of a Dictyostelium discoideum annexin. Mol Cell Biochem 1994; 139:159-66. [PMID: 7862106 DOI: 10.1007/bf01081739] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The annexins are calcium-dependent phospholipid-binding proteins. Recently the gene encoding the homologue of a mammalian annexin has been identified in Dictyostelium discoideum. Analysis of cDNA and genomic clones showed that the transcript for Dictyostelium annexin is alternatively spliced (Greenwood, M. and Tsang, A. (1991) Biochim. Biophys. Acta 1088, 429-432; Döring, V., Schleicher, M and Noegel, A. (1991) J. Biol. Chem. 266, 17509-17515). Here, we showed that the Dictyostelium annexin DNA hybridized to two populations of transcripts. We used a recombinant annexin polypeptide to raise polyclonal antibody. Immunoblot analysis revealed that the antibody recognized two polypeptides of 48 kDa and 54 kDa in developing D. discoideum cells. The molecular sizes of these polypeptides correspond well with the expected sizes of the alternatively spliced products. The 48-kDa and 54-kDa polypeptides were purified by isoelectric focusing to more than 70% homogeneity. The partially purified proteins were found to associate with phosphatidylserine vesicles in a calcium-dependent manner. These results suggest that the 48- and 54-kDa polypeptides are the products of alternative splicing of the annexin transcripts. During development the two polypeptides accumulate at different rates to about 60 times the level detected in vegetative cells. On the other hand, RNA blot analysis showed that the level of the annexin transcripts in multicellular aggregates was about 5 times that of vegetative cells.
Collapse
Affiliation(s)
- C Bonfils
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
9
|
Azeddoug H, Reysset G. Cloning and sequencing of a chromosomal fragment from Clostridium acetobutylicum strain ABKn8 conferring chemical-damaging agents and UV resistance to E. coli recA strains. Curr Microbiol 1994; 29:229-35. [PMID: 7765497 DOI: 10.1007/bf01570159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 3.3-kb DNA fragment of Clostridium acetobutylicum conferred methyl methane sulfonate (MMS), mitomycin C (MC), and UV resistance to recA strains of E. coli when cloned on the pUC19 plasmid. Analysis of the nucleotide sequence of the total insert and results of in vitro transcription-translation experiments showed that the insert directed the synthesis of three polypeptides referred to as ORFa, ORFb, and ORFc of 23.6, 15.3, and 21 kDa, respectively. None of the polypeptides presented a relationship with the RecA protein of E. coli or products of genes involved in the SOS response. The deduced amino acid sequence of ORFb and ORFc are highly homologous to those deduced from two genes specifying resistance to tellurium salts present on plasmid pMER610 harbored by Alcaligenes sp.strains and to an AMP-binding protein (CABP1) found in Dictyostelium discoideum. The existence of these homologous proteins suggests that they may perform a similar key function in the three unrelated organisms.
Collapse
Affiliation(s)
- H Azeddoug
- Division of Anaerobics, Pasteur Institute, Paris, France
| | | |
Collapse
|
10
|
Abstract
A few hours after the onset of starvation, amoebae of Dictyostelium discoideum start to form multicellular aggregates by chemotaxis to centers that emit periodic cyclic AMP signals. There are two major developmental decisions: first, the aggregates either construct fruiting bodies directly, in a process known as culmination, or they migrate for a period as "slugs." Second, the amoebae differentiate into either prestalk or prespore cells. These are at first randomly distributed within aggregates and then sort out from each other to form polarized structures with the prestalk cells at the apex, before eventually maturing into the stalk cells and spores of fruiting bodies. Developmental gene expression seems to be driven primarily by cyclic AMP signaling between cells, and this review summarizes what is known of the cyclic AMP-based signaling mechanism and of the signal transduction pathways leading from cell surface cyclic AMP receptors to gene expression. Current understanding of the factors controlling the two major developmental choices is emphasized. The weak base ammonia appears to play a key role in preventing culmination by inhibiting activation of cyclic AMP-dependent protein kinase, whereas the prestalk cell-inducing factor DIF-1 is central to the choice of cell differentiation pathway. The mode of action of DIF-1 and of ammonia in the developmental choices is discussed.
Collapse
Affiliation(s)
- J D Gross
- Department of Biochemistry, Oxford University, United Kingdom
| |
Collapse
|
11
|
Hill SM, Jobling MG, Lloyd BH, Strike P, Ritchie DA. Functional expression of the tellurite resistance determinant from the IncHI-2 plasmid pMER610. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:203-12. [PMID: 8232205 DOI: 10.1007/bf00280218] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The transpositional phage MudI 1734 lacZ was used to construct transcriptional fusions within the plasmid pMJ611, which contains the cloned tellurite resistance (TeR) determinant of the IncHI-2 plasmid pMER610. A series of 70 MudI insertions, in both orientations, causing loss of tellurite resistance in pMJ611, mapped within a 4.3 kb region which included the genes terA-terD and a 0.4 kb region upstream of the site previously reported as the 5' limit of the TeR determinant. Expression of beta-galactosidase from these transcriptional fusions, including those involving the 5' upstream region, occurred only from inserts transcribed in the direction terA-terD, confirming the transcriptional orientation of the TeR determinant deduced from DNA sequence analysis. Sixteen of the tellurite-sensitive MudI fusions, distributed over the entire determinant and in both orientations, showed the same pattern of expression when transferred by conjugation and homologous recombination to pMER610, except that the beta-galactosidase levels were consistently 2- to 3-fold higher in the parent plasmid. Northern analysis with a DNA probe spanning the TeR determinant identified five transcripts of 4.8, 4.0, 2.7, 1.5 and 1.0 kb synthesised by pMER610. Further hybridisations with DNA probes defining sub-sections of the TeR determinant, together with DNA sequence analysis, suggested the presence of three transcriptional start sites, at approximately 0.9 and 0.1 kb upstream of terA, and near the junction between terC and terD. Three transcriptional termination sites, located within terA, near the terC-terD junction and at the 3' end of terE are also indicated. Both the expression of beta-galactosidase from the MudI fusions and the synthesis of ter gene transcripts are constitutive and were not affected by prior exposure of cultures to sub-toxic levels of tellurite. Further DNA sequence analysis reveals that the extensive homology between terD and terE extends to a section of terA.
Collapse
Affiliation(s)
- S M Hill
- Department of Genetics and Microbiology, Donnan Laboratories, University of Liverpool, UK
| | | | | | | | | |
Collapse
|
12
|
Cell-permeable non-hydrolyzable cAMP derivatives as tools for analysis of signaling pathways controlling gene regulation in Dictyostelium. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53256-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Abstract
The ability of some bacteria to grow in the presence of high concentrations of tellurium compounds has been recognized for almost 100 years. Since then, interest in this phenomenon has generated a slow but steady trickle of literature. In the past few years, the use of modern techniques in molecular biology has led to a dramatic increase in our understanding of the genetics of several bacterial determinants for resistance to tellurium compounds. These determinants are frequently found to be encoded by plasmids which carry multiple antibiotic resistance determinants. Our understanding of the biochemistry of these systems remains limited. In this article, the history of the study of bacterial resistance to tellurium compounds is briefly reviewed. This is followed by an analysis of the recent developments in the study of plasmid-mediated resistance determinants. Finally, preliminary investigations on the possible mechanisms of bacterial resistance to tellurium compounds are presented.
Collapse
Affiliation(s)
- E G Walter
- Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
14
|
Kimmel AR, Firtel RA. cAMP signal transduction pathways regulating development of Dictyostelium discoideum. Curr Opin Genet Dev 1991; 1:383-90. [PMID: 1668648 DOI: 10.1016/s0959-437x(05)80304-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dictyostelium discoideum development is regulated through receptor/G protein signal transduction using cAMP as a primary extracellular signal. Signaling pathways will be discussed as well as the regulation and function of individual cAMP receptors and G alpha subunits. Finally potential downstream targets including protein kinases and nuclear events will be explored.
Collapse
Affiliation(s)
- A R Kimmel
- Laboratory of Cellular and Developmental Biology, NIDDK/NIH, Bethesda, Maryland 20892
| | | |
Collapse
|
15
|
Bain G, Tsang A. Disruption of the gene encoding the p34/31 polypeptides affects growth and development of Dictyostelium discoideum. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:59-64. [PMID: 1851956 DOI: 10.1007/bf00273587] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have used homologous recombination to disrupt the gene which codes for p34 and p31, two polypeptides related to a cAMP-binding protein (CABP1) in Dictyostelium discoideum. By screening a total of 80 independent transformants by Southern blotting, four mutants have been isolated. Two of these mutants were analyzed in detail. Our results indicate that, while a null allele has not been obtained, both mutants express drastically reduced levels of truncated p34 and p31. Phenotypic analysis has demonstrated that both of them grow significantly more slowly than wild-type controls when bacteria are used as a food source. Interestingly, this growth defect is not seen when the cells are cultured axenically. In addition, the mutants possess an altered developmental profile. They complete development approximately 3 h later than wild-type controls. These results indicate that p34 and p31 play roles in both growth and development in this organism.
Collapse
Affiliation(s)
- G Bain
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|