1
|
Thway K, Folpe AL. Update on selected advances in the immunohistochemical and molecular genetic analysis of soft tissue tumors. Virchows Arch 2019; 476:3-15. [PMID: 31701221 DOI: 10.1007/s00428-019-02678-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/05/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
Although traditional morphological evaluation remains the cornerstone for the diagnosis of soft tissue tumors, ancillary diagnostic modalities such as immunohistochemistry and molecular genetic analysis are of ever-increasing importance in this field. New insights into the molecular pathogenesis of soft tissue tumors, often obtained from high-throughput sequencing technologies, has enabled significant progress in the characterization and biologic stratification of mesenchymal neoplasms, expanding the spectrum of immunohistochemical tests (often aimed towards recently discovered genetic events) and molecular genetic assays (most often fluorescence in situ hybridization and reverse transcription-polymerase chain reaction). This review discusses selected novel molecular and immunohistochemical assays with diagnostic applicability in mesenchymal neoplasms, with emphasis on diagnosis, refinement of tumor classification, and treatment stratification.
Collapse
Affiliation(s)
- Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, 203 Fulham Road, London, SW3 6JJ, UK
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Skowronek K, Boniecki MJ, Kluge B, Bujnicki JM. Rational engineering of sequence specificity in R.MwoI restriction endonuclease. Nucleic Acids Res 2012; 40:8579-92. [PMID: 22735699 PMCID: PMC3458533 DOI: 10.1093/nar/gks570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
R.MwoI is a Type II restriction endonucleases enzyme (REase), which specifically recognizes a palindromic interrupted DNA sequence 5′-GCNNNNNNNGC-3′ (where N indicates any nucleotide), and hydrolyzes the phosphodiester bond in the DNA between the 7th and 8th base in both strands. R.MwoI exhibits remote sequence similarity to R.BglI, a REase with known structure, which recognizes an interrupted palindromic target 5′-GCCNNNNNGGC-3′. A homology model of R.MwoI in complex with DNA was constructed and used to predict functionally important amino acid residues that were subsequently targeted by mutagenesis. The model, together with the supporting experimental data, revealed regions important for recognition of the common bases in DNA sequences recognized by R.BglI and R.MwoI. Based on the bioinformatics analysis, we designed substitutions of the S310 residue in R.MwoI to arginine or glutamic acid, which led to enzyme variants with altered sequence selectivity compared with the wild-type enzyme. The S310R variant of R.MwoI preferred the 5′-GCCNNNNNGGC-3′ sequence as a target, similarly to R.BglI, whereas the S310E variant preferentially cleaved a subset of the MwoI sites, depending on the identity of the 3rd and 9th nucleotide residues. Our results represent a case study of a REase sequence specificity alteration by a single amino acid substitution, based on a theoretical model in the absence of a crystal structure.
Collapse
Affiliation(s)
- Krzysztof Skowronek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.
| | | | | | | |
Collapse
|
3
|
Orlowski J, Bujnicki JM. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res 2008; 36:3552-69. [PMID: 18456708 PMCID: PMC2441816 DOI: 10.1093/nar/gkn175] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For a very long time, Type II restriction enzymes (REases) have been a paradigm of ORFans: proteins with no detectable similarity to each other and to any other protein in the database, despite common cellular and biochemical function. Crystallographic analyses published until January 2008 provided high-resolution structures for only 28 of 1637 Type II REase sequences available in the Restriction Enzyme database (REBASE). Among these structures, all but two possess catalytic domains with the common PD-(D/E)XK nuclease fold. Two structures are unrelated to the others: R.BfiI exhibits the phospholipase D (PLD) fold, while R.PabI has a new fold termed 'half-pipe'. Thus far, bioinformatic studies supported by site-directed mutagenesis have extended the number of tentatively assigned REase folds to five (now including also GIY-YIG and HNH folds identified earlier in homing endonucleases) and provided structural predictions for dozens of REase sequences without experimentally solved structures. Here, we present a comprehensive study of all Type II REase sequences available in REBASE together with their homologs detectable in the nonredundant and environmental samples databases at the NCBI. We present the summary and critical evaluation of structural assignments and predictions reported earlier, new classification of all REase sequences into families, domain architecture analysis and new predictions of three-dimensional folds. Among 289 experimentally characterized (not putative) Type II REases, whose apparently full-length sequences are available in REBASE, we assign 199 (69%) to contain the PD-(D/E)XK domain. The HNH domain is the second most common, with 24 (8%) members. When putative REases are taken into account, the fraction of PD-(D/E)XK and HNH folds changes to 48% and 30%, respectively. Fifty-six characterized (and 521 predicted) REases remain unassigned to any of the five REase folds identified so far, and may exhibit new architectures. These enzymes are proposed as the most interesting targets for structure determination by high-resolution experimental methods. Our analysis provides the first comprehensive map of sequence-structure relationships among Type II REases and will help to focus the efforts of structural and functional genomics of this large and biotechnologically important class of enzymes.
Collapse
Affiliation(s)
- Jerzy Orlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | | |
Collapse
|
4
|
Skowronek KJ, Kosinski J, Bujnicki JM. Theoretical model of restriction endonuclease HpaI in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis. Proteins 2006; 63:1059-68. [PMID: 16498623 DOI: 10.1002/prot.20920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type II restriction enzymes are commercially important deoxyribonucleases and very attractive targets for protein engineering of new specificities. At the same time they are a very challenging test bed for protein structure prediction methods. Typically, enzymes that recognize different sequences show little or no amino acid sequence similarity to each other and to other proteins. Based on crystallographic analyses that revealed the same PD-(D/E)XK fold for more than a dozen case studies, they were nevertheless considered to be related until the combination of bioinformatics and mutational analyses has demonstrated that some of these proteins belong to other, unrelated folds PLD, HNH, and GIY-YIG. As a part of a large-scale project aiming at identification of a three-dimensional fold for all type II REases with known sequences (currently approximately 1000 proteins), we carried out preliminary structure prediction and selected candidates for experimental validation. Here, we present the analysis of HpaI REase, an ORFan with no detectable homologs, for which we detected a structural template by protein fold recognition, constructed a model using the FRankenstein monster approach and identified a number of residues important for the DNA binding and catalysis. These predictions were confirmed by site-directed mutagenesis and in vitro analysis of the mutant proteins. The experimentally validated model of HpaI will serve as a low-resolution structural platform for evolutionary considerations in the subgroup of blunt-cutting REases with different specificities. The research protocol developed in the course of this work represents a streamlined version of the previously used techniques and can be used in a high-throughput fashion to build and validate models for other enzymes, especially ORFans that exhibit no sequence similarity to any other protein in the database.
Collapse
|
5
|
Kriukiene E, Lubiene J, Lagunavicius A, Lubys A. MnlI—The member of H-N-H subtype of Type IIS restriction endonucleases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:194-204. [PMID: 16024301 DOI: 10.1016/j.bbapap.2005.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
The Type IIS restriction endonuclease MnlI recognizes the non-palindromic nucleotide sequence 5'-CCTC(N)7/6 downward arrow and cleaves DNA strands as indicated by the arrow. The genes encoding MnlI restriction-modification system were cloned and sequenced. It comprises N6-methyladenine and C5-methylcytosine methyltransferases and the restriction endonuclease. Biochemical studies revealed that MnlI restriction endonuclease cleaves double- and single-stranded DNA, and that it prefers different metal ions for hydrolysis of these substrates. Mg2+ ions were shown to be required for the specific cleavage of double-stranded DNA, whereas Ni2+ and some other transition metal ions were preferred for nonspecific cleavage of single-stranded DNA. The C-terminal part of MnlI restriction endonuclease revealed an intriguing similarity with the H-N-H type nucleolytic domain of bacterial toxins, Colicin E7 and Colicin E9. Alanine replacements in the conserved sequence motif 306Rx3ExHHx14Nx8H greatly reduced specific activity of MnlI, and some mutations even completely inactivated the enzyme. However, none of these mutations had effect on MnlI binding to the specific DNA, and on its oligomerisation state as well. We interpret the presented experimental evidence as a suggestion that the motif 306Rx3ExHHx14Nx8H represents the active site of MnlI. Consequentially, MnlI seems to be the member of Type IIS with the active site of the H-N-H type.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Bacteriophage lambda/genetics
- Catalysis
- Cations, Divalent/chemistry
- Chromatography, Gel
- Cloning, Molecular
- DNA Restriction-Modification Enzymes/genetics
- DNA Restriction-Modification Enzymes/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/metabolism
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Kinetics
- Molecular Sequence Data
- Molecular Weight
- Moraxella/enzymology
- Moraxella/genetics
- Mutagenesis, Site-Directed
- Mutation
- Open Reading Frames/genetics
- Protein Binding
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Substrate Specificity/genetics
Collapse
Affiliation(s)
- Edita Kriukiene
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania
| | | | | | | |
Collapse
|
6
|
|
7
|
Skowron PM, Majewski J, Zylicz-Stachula A, Rutkowska SM, Jaworowska I, Harasimowicz-Słowińska RI. A new Thermus sp. class-IIS enzyme sub-family: isolation of a 'twin' endonuclease TspDTI with a novel specificity 5'-ATGAA(N(11/9))-3', related to TspGWI, TaqII and Tth111II. Nucleic Acids Res 2003; 31:e74. [PMID: 12853651 PMCID: PMC167652 DOI: 10.1093/nar/gng074] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2003] [Revised: 05/13/2003] [Accepted: 05/13/2003] [Indexed: 11/14/2022] Open
Abstract
The TspDTI restriction endonuclease, which shows a novel recognition specificity 5'-ATGAA(N(11/9))-3', was isolated from Thermus sp. DT. TspDTI appears to be a 'twin' of restriction endonuclease TspGWI from Thermus sp. GW, as we have previously reported. TspGWI was isolated from the same location as TspDTI, it recognizes a related sequence 5'-ACGGA(N(11/9))-3' and has conserved cleavage positions. Both enzymes resemble two other class-IIS endonucleases from Thermus sp.: TaqII and Tth111II. N-terminal amino acid sequences of TspGWI tryptic peptides exhibit 88.9-100% similarity to the TaqII sequence. All four enzymes were purified to homogeneity; their polypeptide sizes (114.5-122 kDa) make them the largest class-IIS restriction endonucleases known to date. The existence of a Thermus sp. sub-family of class-IIS restriction endonucleases of a common origin is herein proposed.
Collapse
|
8
|
Deva T, Krishnaswamy S. Structure-based sequence alignment of type-II restriction endonucleases. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1544:217-28. [PMID: 11341931 DOI: 10.1016/s0167-4838(00)00223-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The type-II restriction endonucleases generally do not share appreciable amino acid sequence homology. The crystal structures of restriction endonucleases EcoRI and BamHI have shown these enzymes to possess striking 3D-structural resemblance, i.e., they have a similar overall fold and similar active sites, though they possess <23% sequence identity. Structural superimposition of EcoRI, BamHI, EcoRV, and PvuII based on active site residues led to sequence alignments which showed nine possible sequence motifs. EcoRV and PvuII show a more similar pattern than EcoRI and BamHI suggesting that they belong to a different subgroup. The motifs are characterized by charged and/or hydrophobic residues. From other studies on the structure of these endonucleases, three of the motifs could be implicated in DNA binding, three in forming the active site and one in dimer formation. However, the motifs were not identifiable by regular sequence alignment methods. It is found that motif IX in BamHI is formed by reverse sequence order and the motif IX in PvuII is formed from the symmetry related monomer of the dimer. The inter-motif distance is also quite different in these cases. Of the nine motifs, motif III has been earlier identified as containing the PD motif involving one of the active site residues. These motifs were used in a modified profile analysis procedure to identify similar regions in eight other endonuclease sequences for which structures are not known.
Collapse
Affiliation(s)
- T Deva
- Bioinformatics Center, School of Biotechnology, Madurai Kamaraj University, 625 021, Madurai, India
| | | |
Collapse
|
9
|
Tang D, Ando S, Takasaki Y, Tadano J. Mutational analyses of restriction endonuclease-HindIII mutant E86K with higher activity and altered specificity. PROTEIN ENGINEERING 2000; 13:283-9. [PMID: 10810160 DOI: 10.1093/protein/13.4.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have performed mutational analyses of restriction endonuclease HindIII in order to identify the amino acid residues responsible for enzyme activity. Four of the seven HindIII mutants, which had His-tag sequences at the N-termini, were expressed in Escherichia coli, and purified to homogeneity. The His-tag sequence did not affect enzyme activity, whereas it hindered binding of the DNA probe in gel retardation assays. A mutant E86K in which Lys was substituted for Glu at residue 86 exhibited high endonuclease activity. Gel retardation assays showed high affinity of this mutant to the DNA probe. Surprisingly, in the presence of a transition metal, Mo(2+) or Mn(2+), the E86K mutant cleaved substrate DNA at a site other than HindIII. Substitution of Glu for Val at residue 106 (V106E), and Asn for Lys at residue 125 (K125N) resulted in a decrease in both endonucleolytic and DNA binding activities of the enzyme. Furthermore, substitution of Leu for Asp at residue 108 (D108L) abolished both HindIII endonuclease and DNA binding activities. CD spectra of the wild type and the two mutants, E86K and D108L, were similar to each other, suggesting that there was little change in conformation as a result of the mutations. These results account for the notion that Asp108 could be directly involved in HindIII catalytic function, and that the substitution at residue 86 may bring about new interactions between DNA and cations.
Collapse
Affiliation(s)
- D Tang
- Department of Chemistry, Saga Medical School, Saga City 849-8501, Japan
| | | | | | | |
Collapse
|
10
|
Reuter M, Schneider-Mergener J, Kupper D, Meisel A, Mackeldanz P, Krüger DH, Schroeder C. Regions of endonuclease EcoRII involved in DNA target recognition identified by membrane-bound peptide repertoires. J Biol Chem 1999; 274:5213-21. [PMID: 9988771 DOI: 10.1074/jbc.274.8.5213] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Target sequence-specific DNA binding regions of the restriction endonuclease EcoRII were identified by screening a membrane-bound EcoRII-derived peptide scan with an EcoRII recognition site (CCWGG) oligonucleotide duplex. Dodecapeptides overlapping by nine amino acids and representing the complete protein were prepared by spot synthesis. Two separate DNA binding regions, amino acids 88-102 and amino acids 256-273, which share the consensus motif KXRXXK, emerged. Screening 570 single substitution analogues obtained by exchanging every residue of both binding sites for all other amino acids demonstrated that replacing basic residues in the consensus motifs significantly reduced DNA binding. EcoRII mutant enzymes generated by substituting alanine or glutamic acid for the consensus lysine residues in DNA binding site I expressed attenuated DNA binding, whereas corresponding substitutions in DNA binding site II caused impaired cleavage, but enzyme secondary structure was unaffected. Furthermore, Glu96, which is part of a potential catalytic motif and also locates to DNA binding site I, was demonstrated to be critical for DNA cleavage and binding. Homology studies of DNA binding site II revealed strong local homology to SsoII (recognition sequence, CCNGG) and patterns of sequence conservation, suggesting the existence of functionally related DNA binding sites in diverse restriction endonucleases with recognition sequences containing terminal C:G or G:C pairs.
Collapse
Affiliation(s)
- M Reuter
- Institutes of Virology, Humboldt University Medical School (Charité), D-10098 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Morgan R, Xiao JP, Xu SY. Characterization of an extremely thermostable restriction enzyme, PspGI, from a Pyrococcus strain and cloning of the PspGI restriction-modification system in Escherichia coli. Appl Environ Microbiol 1998; 64:3669-73. [PMID: 9758783 PMCID: PMC106503 DOI: 10.1128/aem.64.10.3669-3673.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An extremely thermostable restriction endonuclease, PspGI, was purified from Pyrococcus sp. strain GI-H. PspGI is an isoschizomer of EcoRII and cleaves DNA before the first C in the sequence 5' CCWGG 3' (W is A or T). PspGI digestion can be carried out at 65 to 85 degrees C. To express PspGI at high levels, the PspGI restriction-modification genes (pspGIR and pspGIM) were cloned in Escherichia coli. M.PspGI contains the conserved sequence motifs of alpha-aminomethyltransferases; therefore, it must be an N4-cytosine methylase. M.PspGI shows 53% similarity to (44% identity with) its isoschizomer, M.MvaI from Micrococcus variabilis. In a segment of 87 amino acid residues, PspGI shows significant sequence similarity to EcoRII and to regions of SsoII and StyD4I which have a closely related recognition sequence (5' CCNGG 3'). PspGI was expressed in E. coli via a T7 expression system. Recombinant PspGI was purified to near homogeneity and had a half-life of 2 h at 95 degrees C. PspGI remained active following 30 cycles of thermocycling; thus, it can be used in DNA-based diagnostic applications.
Collapse
Affiliation(s)
- R Morgan
- New England Biolabs, Inc., Beverly, Massachusetts 01915, USA
| | | | | |
Collapse
|
12
|
Lagunavicius A, Grazulis S, Balciunaite E, Vainius D, Siksnys V. DNA binding specificity of MunI restriction endonuclease is controlled by pH and calcium ions: involvement of active site carboxylate residues. Biochemistry 1997; 36:11093-9. [PMID: 9287152 DOI: 10.1021/bi963126a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gel shift analysis reveals [Lagunavicius, A., & Siksnys, V. (1997) Biochemistry 36 (preceding paper in this issue)] that at pH 8.3 in the absence of Mg2+, MunI restriction endonuclease exhibits little DNA binding specificity, as compared with the D83A and E98A mutants of MunI. This suggests that charged carboxylate residue(s) influence the DNA binding specificity of MunI. In our efforts to establish the determinants of MunI binding specificity, we investigated the possible role of the ionic milieu, and we found that lowering pH or elevating Ca2+ levels per se induces specific DNA recognition by WT MunI. In contrast to the binding experiments at pH 8.3, gel shift analysis at pH 6.5 indicated tight sequence-specific binding of WT MunI in the absence of Mg2+, suggesting that protonation of active site carboxylate residue(s) which manifest anomalously high pKa value(s) control binding specificity. Interestingly, Ca2+ ion concentrations, which did not support DNA cleavage by MunI also induced DNA binding specificity in WT MunI at pH 8.3. To explore possible structural changes upon DNA binding, we then used a limited proteolysis technique. Trypsin cleavage of MunI-DNA complexes indicated that in the presence of cognate DNA the MunI restriction endonuclease became resistant to proteolytic cleavage, suggesting that binding of specific DNA induced a structural change. CD measurements confirmed this observation, suggesting minor secondary structural differences between complexes of MunI with cognate and noncognate DNA. These results therefore suggest that binding of MunI to its recognition sequence triggers a conformational transition that correctly juxtaposes active site carboxylate residues, which then chelate Mg2+ ions. In the absence of Mg2+ ions, at pH 8.3, conditions in which carboxylate groups would be expected to be completely ionized, electrostatic repulsion between charged carboxylates and phosphate oxygens is enhanced such as to interfere with specific DNA binding. Elimination of such repulsive constraints by replacement of carboxylate residues, by lowering pH, or by metal ion binding, then promotes MunI binding specificity.
Collapse
Affiliation(s)
- A Lagunavicius
- Institute of Biotechnology, Graiciuno 8, Vilnius 2028, Lithuania
| | | | | | | | | |
Collapse
|
13
|
Lagunavicius A, Siksnys V. Site-directed mutagenesis of putative active site residues of MunI restriction endonuclease: replacement of catalytically essential carboxylate residues triggers DNA binding specificity. Biochemistry 1997; 36:11086-92. [PMID: 9287151 DOI: 10.1021/bi963125i] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mapping of the conserved sequence regions in the restriction endonucleases MunI (C/AATTG) and EcoRI (G/AATTC) to the known X-ray structure of EcoRI allowed us to identify the sequence motif 82PDX14EXK as the putative catalytic/Mg2+ ion binding site of MunI [Siksnys, V., Zareckaja, N., Vaisvila, R., Timinskas, A., Stakenas, P., Butkus, V., & Janulaitis, A. Gene (1994) 142, 1-8]. Site-directed mutagenesis was then used to test whether amino acids P82, D83, E98, and K100 were important for the catalytic activity of MunI. Mutation P82A generated only a marginal effect on the cleavage properties of the enzyme. Investigation of the cleavage properties of the D83, E98, and K100 substitution mutants, however, in vivo and in vitro, revealed either an absence of catalytic activity or markedly reduced catalytic activity. Interestingly, the deleterious effect of the E98Q replacement in vitro was partially overcome by replacement of the metal cofactor used. Though the catalytic activity of the E98Q mutant was only 0.4% of WT under standard conditions (in the presence of Mg2+ ions), the mutant exhibited 40% of WT catalytic activity in buffer supplemented with Mn2+ ions. Further, the DNA binding properties of these substitution mutants were analyzed using the gel shift assay technique. In the absence of Mg2+ ions, WT MunI bound both cognate DNA and noncognate sequences with similar low affinities. The D83A and E98A mutants, in contrast, in the absence of Mg2+ ions, exhibited significant specificity of binding to cognate DNA, suggesting that the substitutions made can simulate the effect of the Mg2+ ion in conferring specificity to the MunI restriction enzyme.
Collapse
Affiliation(s)
- A Lagunavicius
- Institute of Biotechnology, Graiciuno 8, Vilnius 2028, Lithuania
| | | |
Collapse
|
14
|
Stahl F, Wende W, Jeltsch A, Pingoud A. Introduction of asymmetry in the naturally symmetric restriction endonuclease EcoRV to investigate intersubunit communication in the homodimeric protein. Proc Natl Acad Sci U S A 1996; 93:6175-80. [PMID: 8650239 PMCID: PMC39209 DOI: 10.1073/pnas.93.12.6175] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Type II restriction endonucleases are dimers of two identical subunits that together form one binding site for the double-stranded DNA substrate. Cleavage within the palindromic recognition site occurs in the two strands of the duplex in a concerted manner, due to the action of two catalytic centers, one per subunit. To investigate how the two identical subunits of the restriction endonuclease EcoRV cooperate in binding and cleaving their substrate, heterodimeric versions of EcoRV with different amino acid substitutions in the two subunits were constructed. For this purpose, the ecorV gene was fused to the coding region for the glutathione-binding domain of the glutathione S-transferase and a His6-tag, respectively. Upon cotransformation of Escherichia coli cells with both gene fusions stable homo- and heterodimers of the EcoRV variants are produced, which can be separated and purified to homogeneity by affinity chromatography over Ni-nitrilotriacetic acid and glutathione columns. A steady-state kinetic analysis shows that the activity of a heterodimeric variant with one inactive catalytic center is decreased by 2-fold, demonstrating that the two catalytic centers operate independently from each other. In contrast, heterodimeric variants with a defect in one DNA-binding site have a 30- to 50-fold lower activity, indicating that the two subunits of EcoRV cooperate in the recognition of the palindromic DNA sequence. By combining a subunit with an inactive catalytic center with a subunit with a defect in the DNA-binding site, EcoRV heterodimers were produced that only nick DNA specifically within the EcoRV recognition sequence.
Collapse
Affiliation(s)
- F Stahl
- Institut für Biochemie, Fachbereich Biologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | |
Collapse
|