1
|
Heil P, Peterson AJ. Spike timing in auditory-nerve fibers during spontaneous activity and phase locking. Synapse 2016; 71:5-36. [DOI: 10.1002/syn.21925] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Heil
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; Magdeburg 39118 Germany
- Center for Behavioral Brain Sciences; Magdeburg Germany
| | - Adam J. Peterson
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; Magdeburg 39118 Germany
| |
Collapse
|
2
|
Avissar M, Wittig JH, Saunders JC, Parsons TD. Refractoriness enhances temporal coding by auditory nerve fibers. J Neurosci 2013; 33:7681-90. [PMID: 23637161 PMCID: PMC3865560 DOI: 10.1523/jneurosci.3405-12.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/17/2013] [Accepted: 03/19/2013] [Indexed: 11/21/2022] Open
Abstract
A universal property of spiking neurons is refractoriness, a transient decrease in discharge probability immediately following an action potential (spike). The refractory period lasts only one to a few milliseconds, but has the potential to affect temporal coding of acoustic stimuli by auditory neurons, which are capable of submillisecond spike-time precision. Here this possibility was investigated systematically by recording spike times from chicken auditory nerve fibers in vivo while stimulating with repeated pure tones at characteristic frequency. Refractory periods were tightly distributed, with a mean of 1.58 ms. A statistical model was developed to recapitulate each fiber's responses and then used to predict the effect of removing the refractory period on a cell-by-cell basis for two largely independent facets of temporal coding: faithful entrainment of interspike intervals to the stimulus frequency and precise synchronization of spike times to the stimulus phase. The ratio of the refractory period to the stimulus period predicted the impact of refractoriness on entrainment and synchronization. For ratios less than ∼0.9, refractoriness enhanced entrainment and this enhancement was often accompanied by an increase in spike-time precision. At higher ratios, little or no change in entrainment or synchronization was observed. Given the tight distribution of refractory periods, the ability of refractoriness to improve temporal coding is restricted to neurons responding to low-frequency stimuli. Enhanced encoding of low frequencies likely affects sound localization and pitch perception in the auditory system, as well as perception in nonauditory sensory modalities, because all spiking neurons exhibit refractoriness.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine
| | - John H. Wittig
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine
- Department of Bioengineering, School of Engineering and Applied Science, and
| | - James C. Saunders
- Department of Otorhinolaryngology: Head and Neck Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Thomas D. Parsons
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine
- Department of Otorhinolaryngology: Head and Neck Surgery, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
3
|
Neubauer H, Köppl C, Heil P. Spontaneous activity of auditory nerve fibers in the barn owl (Tyto alba): analyses of interspike interval distributions. J Neurophysiol 2009; 101:3169-91. [PMID: 19357334 DOI: 10.1152/jn.90779.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vertebrate auditory systems, the conversion from graded receptor potentials across the hair-cell membrane into stochastic spike trains of the auditory nerve (AN) fibers is performed by ribbon synapses. The statistics underlying this process constrain auditory coding but are not precisely known. Here, we examine the distributions of interspike intervals (ISIs) from spontaneous activity of AN fibers of the barn owl (Tyto alba), a nocturnal avian predator whose auditory system is specialized for precise temporal coding. The spontaneous activity of AN fibers, with the exception of those showing preferred intervals, is commonly thought to result from excitatory events generated by a homogeneous Poisson point process, which lead to spikes unless the fiber is refractory. We show that the ISI distributions in the owl are better explained as resulting from the action of a brief refractory period ( approximately 0.5 ms) on excitatory events generated by a homogeneous stochastic process where the distribution of interevent intervals is a mixture of an exponential and a gamma distribution with shape factor 2, both with the same scaling parameter. The same model was previously shown to apply to AN fibers in the cat. However, the mean proportions of exponentially versus gamma-distributed intervals in the mixture were different for cat and owl. Furthermore, those proportions were constant across fibers in the cat, whereas they covaried with mean spontaneous rate and with characteristic frequency in the owl. We hypothesize that in birds, unlike in mammals, more than one ribbon may provide excitation to most fibers, accounting for the different proportions, and that variation in the number of ribbons may underlie the variation in the proportions.
Collapse
|
4
|
Neiman AB, Russell DF. Two Distinct Types of Noisy Oscillators in Electroreceptors of Paddlefish. J Neurophysiol 2004; 92:492-509. [PMID: 14573556 DOI: 10.1152/jn.00742.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our computational analyses and experiments demonstrate that ampullary electroreceptors in paddlefish ( Polyodon spathula) contain 2 distinct types of continuously active noisy oscillators. The spontaneous firing of afferents reflects both rhythms, and as a result is stochastically biperiodic (quasiperiodic). The first type of oscillator resides in the sensory epithelia, is recorded as approximately 26 Hz and ±70 μV voltage fluctuations at the canal skin pores, and gives rise to a noisy peak at fe≈ 26 Hz in power spectra of spontaneous afferent firing. The second type of oscillator resides in afferent terminals, is seen as a noisy peak at fa≈ 30–70 Hz that dominates the power spectra of spontaneous afferent firing, and corresponds to the mean spontaneous firing rate. Sideband peaks at frequencies of fa± feare consistent with epithelia-to-afferent unidirectional synaptic coupling or, alternatively, nonlinear mixing of the 2 oscillatory processes. External stimulation affects the frequency of only the afferent oscillator, not the epithelial oscillators. Application of temperature gradients localized the feand faoscillators to different depths below the skin. Having 2 distinct types of internal oscillators is a novel form of organization for peripheral sensory receptors, of relevance for other hair cell sensory receptors.
Collapse
Affiliation(s)
- Alexander B Neiman
- Center for Neurodynamics, Department of Physics and Astronomy, University of Missouri, St. Louis 63121-4499, USA
| | | |
Collapse
|
5
|
Abstract
Statoacoustic ganglion cells in the mature bird include neurons that are responsive to sound (auditory) and those that are not (nonauditory). Those that are nonauditory have been shown to innervate an otolith organ, the macula lagena, whereas auditory neurons innervate the basilar papilla. In the present study, single-unit recordings of statoacoustic ganglion cells were made in embryonic (E19, mean = 19.2 days of incubation) and hatchling (P6-P14, mean = 8.6 days posthatch) chickens. Spontaneous activity from the two age groups was compared with developmental changes. Activity was evaluated for 47 auditory, 11 nonauditory, and 6 undefined eighth nerve neurons in embryos and 29 auditory, 26 nonauditory, and 1 undefined neurons in hatchlings. For auditory neurons, spontaneous activity displayed an irregular pattern [discharge interval coefficient of variation (CV) was >0.5, mean CV for embryos was 1.46 +/- 0.58 and for hatchlings was 1.02 +/- 0.25; means +/- SD]. Embryonic discharge rates ranged from 0.05 to 97.6 spikes per second (sp/s) for all neurons (mean 18.6 +/- 16.9 sp/s). Hatchling spontaneous rates ranged from 1.2 to 185.2 sp/s (mean 66.5 +/- 39.6 sp/s). Discharge rates were significantly higher for hatchlings (P < 0.001). Many embryonic auditory neurons displayed long silent periods between irregular bursts of neural activity, a feature not seen posthatch. All regular bursting discharge patterns were correlated with heart rate in both embryos and hatchlings. Preferred intervals were visible in the time interval histograms (TIHs) of only one embryonic neuron in contrast to 55% of the neurons in posthatch animals. Generally, the embryonic auditory TIH displayed a modified quasi-Poisson distribution. Nonauditory units generally displayed regular (CV <0.5) or irregular (CV >0.5) activity and Gaussian and modified-Gaussian TIHs. Long silent periods or bursting patterns were not a characteristic of embryonic nonauditory neurons. CV varied systematically as a function of discharge rate in nonauditory but not auditory primary afferents. Minimum spike intervals (dead time) and interval modes for auditory neurons were longer in embryos (dead time: embryos 2.88 +/- 6.85 ms; hatchlings 1.50 +/- 1.76 ms; modal intervals: embryo 10.09 +/- 22.50 ms, hatchling 3.54 +/- 3.29 ms). The results show that significant developmental changes occur in spontaneous activity between E19 and posthatch. It is likely that both presynaptic and postsynaptic changes in the neuroepithelium contribute to maturational refinements during this period of development.
Collapse
Affiliation(s)
- T A Jones
- Department of Surgery/Otolaryngology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | |
Collapse
|
6
|
|
7
|
Köppl C. Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurophysiol 1997; 77:364-77. [PMID: 9120577 DOI: 10.1152/jn.1997.77.1.364] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Single-unit recordings were obtained from the brain stem of the barn owl at the level of entrance of the auditory nerve. Auditory nerve and nucleus magnocellularis units were distinguished by physiological criteria, with the use of the response latency to clicks, the spontaneous discharge rate, and the pattern of characteristic frequencies encountered along an electrode track. The response latency to click stimulation decreased in a logarithmic fashion with increasing characteristic frequency for both auditory nerve and nucleus magnocellularis units. The average difference between these populations was 0.4-0.55 ms. The average most sensitive thresholds were approximately 0 dB SPL and varied little between 0.5 and 9 kHz. Frequency-threshold curves showed the simple V shape that is typical for birds, with no indication of a low-frequency tail. Frequency selectivity increased in a gradual, power-law fashion with increasing characteristic frequency. There was no reflection of the unusual and greatly expanded mapping of higher frequencies on the basilar papilla of the owl. This observation is contrary to the equal-distance hypothesis that relates frequency selectivity to the spatial representation in the cochlea. On the basis of spontaneous rates and/or sensitivity there was no evidence for distinct subpopulations of auditory nerve fibers, such as the well-known type I afferent response classes in mammals. On the whole, barn owl auditory nerve physiology conformed entirely to the typical patterns seen in other bird species. The only exception was a remarkably small spread of thresholds at any one frequency, this being only 10-15 dB in individual owls. Average spontaneous rate was 72.2 spikes/s in the auditory nerve and 219.4 spikes/s for nucleus magnocellularis. This large difference, together with the known properties of endbulb-of-Held synapses, suggests a convergence of approximately 2-4 auditory nerve fibers onto one nucleus magnocellularis neuron. Some auditory nerve fibers as well as nucleus magnocellularis units showed a quasiperiodic spontaneous discharge with preferred intervals in the time-interval histogram. This phenomenon was observed at frequencies as high as 4.7 kHz.
Collapse
Affiliation(s)
- C Köppl
- Institut für Zoologie, Technischen Universität München, Garching, Germany
| |
Collapse
|
8
|
Abstract
Little is known about inner ear development in pigeons. This paper addresses the question of maturation in activity patterns of pigeon auditory nerve fibres, Pigeons that were 1, 2 and 4 weeks and 1, 2, 3 and 4 years old were investigated. Adult-like activity patterns are found 4 weeks post-hatching. Spontaneous activities of fibres in immature animals (about 40 spikes/s) are half that found in adults. Spontaneous discharge rate does not increase with decreasing characteristic frequency (CF) of the fibre if the animals are immature. Rate threshold are less sensitive in immature animals. Differences between the age groups are generally significant if the CFs of the fibres are below 1.3 kHz. Sharpness of tuning is already adult-like in l-week-old animals. Inter-spike time interval histograms (ISTH) of auditory fibres recorded in animals of all age groups often show Poisson-like distributions. Preferred intervals are found in 10% of the ISTHs of fibres in immature animals but in 30% of adults. Cross-correlations between heart beats of the animal and spontaneous activities show good correlation for about 70% of the fibres in immature animals. With the growth of the animals, the number of fibres showing correlation of spontaneous activities and heart beats decreases to about 40%. The basilar papilla of a 1-week-old animal is smaller than in an adult animal (by 10% in length and by 10% in width), judge by scanning electron microscopy (SEM), Changes of activity patterns in this study are likely to be a result of maturation of the middle ear. In addition to the latter, development of the inner ear is conceivable.
Collapse
Affiliation(s)
- C P Richter
- Zentrum der Physiologie, J.W. Goethe Universität, Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
9
|
Smolders JW, Ding-Pfennigdorff D, Klinke R. A functional map of the pigeon basilar papilla: correlation of the properties of single auditory nerve fibres and their peripheral origin. Hear Res 1995; 92:151-69. [PMID: 8647738 DOI: 10.1016/0378-5955(95)00214-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of the investigation was to correlate the functional properties of primary auditory fibres with the location of appertaining receptor cells in the avian basilar papilla. The functional properties of 425 single afferent fibres from the auditory nerve of adult pigeons were measured. The peripheral innervation site of 39 fibres was identified by intracellular labelling and correlated with the fibre's functional properties. Mean spontaneous firing rate (SR, 0.1-250/s) was distributed monomodally (mean: 91 +/- 47/s) but not normally. Characteristic frequencies (CFs) were in the range of 0.02-4 kHz. SR, threshold at CF (4-76 dB SPL) and sharpness of tuning (Q10 dB, 0.1-8.8) varied systematically with CF. For a given CF there was a strong correlation of threshold and Q10 dB and of threshold and SR. Labelled fibres innervated different hair cell types over 93% of the length and 97% of the width of the basilar papilla. The majority of fibres innervated hair cells located between 30 and 70% distance from the apex and 0 and 30% distance from the neural edge of the papilla. CFs are mapped tonotopically from high at the base to low at the apex of the papilla, with a mean mapping constant of 0.63 +/- 0.05 mm/octave (in vivo). The highest CF at the base extrapolates to 5.98 +/- 1.17 kHz. The lowest CF mapped at the apex is 0.021 kHz. From the data, together with data from mechanical measurements (Gummer et al., 1987), a frequency-place function of the pigeon papilla was calculated. Transverse gradients of threshold at CF and of Q10 dB were observed across the width of the papilla. Thresholds were lowest and sharpness of tuning was highest above the neural limbus at a distance of 23% from the neural edge of the papilla. Hair cells in this sensitive strip are the tallest and narrowest ones across the width of the papilla. They are packed most densely and receive the largest number of afferent fibres. Fibres innervating (mostly short) hair cells on the free basilar membrane were spontaneously active and responsive to sound. Their Q10 dB was less than average but their sensitivity and SR were comparable to the mean population values. It is concluded that functional properties change gradually not only along the length but also across the width of the pigeon basilar papilla. The results support the idea that sharp frequency tuning of avian primary auditory fibres involves tuning mechanisms supplementary to the tuning of the free part of the basilar membrane.
Collapse
Affiliation(s)
- J W Smolders
- Zentrum der Physiologie, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | |
Collapse
|
10
|
Synchronization of the stochastic Fitzhugh-Nagumo equations to periodic forcing. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf02451841] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Abstract
Rate-intensity-functions (RI-functions) were determined in 150 primary auditory afferents in anaesthetized pigeon. Acoustic stimulation was either at characteristic frequency (CF) or half an octave below or above CF. Stimulated at CF, 37% of the fibres showed saturating RI-functions, whereas 50% showed sloping and 13% straight RI-functions. In the sloping RI-functions, a bend was found about 20 dB above the fibres' thresholds. For non-CF stimuli, the general shape of the RI-functions remained constant. However, the maximum evoked discharge rates were lower for frequencies below CF and higher for frequencies above CF. The data show that a population of neurones, the sloping and straight ones, code stimulus intensities over a wide intensity range. In combination with the scatter of the thresholds, intensity ranges greater than 100 dB are conceivable. It was concluded that the nonlinearities found in pigeon are not caused by basilar membrane (BM) mechanics, rather an origin at the hair cell-afferent nerve fibre system has to be considered.
Collapse
Affiliation(s)
- C P Richter
- Zentrum der Physiologie, J.W. Goethe Universität, Frankfurt am Main, FRG
| | | | | |
Collapse
|
12
|
Rospars JP, Lánský P, Vaillant J, Duchamp-Viret P, Duchamp A. Spontaneous activity of first- and second-order neurons in the frog olfactory system. Brain Res 1994; 662:31-44. [PMID: 7859089 DOI: 10.1016/0006-8993(94)90793-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The spontaneous activity of first-order neurons (neuroreceptors of the mucosa) and second-order neurons (mitral cells of the bulb) was recorded extracellularly in the frog olfactory system. To assess the influence of peripheral inputs upon mitral cells, the bulb was either normally connected or partially deafferented. Our first set of findings concern the firing behavior. We found that most neurons generated interspike intervals (ISIs) that were stationary in mean and variance, and were not serially correlated at first and second order. Individual spikes in mitral cells and bursts of spikes in neuroreceptors were found to be generated by a Poisson process. Stochastic modeling suggests that the Poissonian behavior depends on the mean value of the membrane potential at the axon hillock. In these models, the mean potential in mitral cells would be far below the firing threshold and in neuroreceptors it would fluctuate at random between two states, one close to resting potential (between bursts) and the other close to the firing threshold with occasional crossings (within bursts). Secondly, partially deafferented mitral cells had significantly higher activity and lower variance than mitral cells receiving normal afferent input. This effect gives evidence that peripheral inputs influence mitral cells at rest not only through direct excitation but also through indirect inhibition exerted by local neurons. Thus, the unstimulated state of the olfactory bulb would not be qualitatively different from its stimulated state in the sense that both states involve the same types of synaptic interactions. Consequently, understanding the synaptic relationships that take place in the bulb network can benefit from studies of its spontaneous activity.
Collapse
Affiliation(s)
- J P Rospars
- Laboratoire de Biométrie, Institut National de la Recherche Agronomique, Versailles, France
| | | | | | | | | |
Collapse
|
13
|
Abstract
Quasi-periodic spontaneous activity (preferred intervals, PIs) has been reported from avian primary auditory afferents. In mammals, PIs have not been reported, as yet. As the length of PIs is close to 1/characteristic frequency, it has been suggested that this type of spontaneous activity indicates particular mechanisms in avian inner ear transduction. However, the present paper shows that pigeon auditory fibres possessing preferred intervals in their spontaneous activity always belong to the most sensitive and the most sharply-tuned fibres recorded. This leads to the assumption that preferred intervals are the response of narrow-band filters to noise. This view is supported by three additional findings: (i) Near-threshold noise provokes PIs in avian fibres that show no spontaneous PIs. (ii) Similarly, PIs can also be evoked in mammalian (gerbil) auditory afferents by low level noise. (iii) Phase-locking of auditory afferents can be achieved by sound stimuli 10-20 dB below rate threshold. It is argued that no conclusions may be drawn from the presence of PIs about the nature of the underlying filter.
Collapse
Affiliation(s)
- R Klinke
- Zentrum der Physiologie, Frankfurt am Main, FRG
| | | | | | | |
Collapse
|
14
|
Gummer AW. Postsynaptic inhibition can explain the concentration of short inter-spike-intervals in avian auditory nerve fibres. Hear Res 1991; 55:231-43. [PMID: 1757291 DOI: 10.1016/0378-5955(91)90108-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spontaneous and sound-evoked single-unit activity was recorded from afferent neurones in the cochlear ganglion of the anaesthetized pigeon. The histogram of successive intervals of spontaneous activity of 51% of neurones exhibited more short intervals than expected from a Poisson point-process description of spike times; for another 43% of neurones the point-process was Poisson. A model of spike generation was developed to account for the concentration of short spike-intervals. The proposed model contains inhibitory postsynaptic potentials at the afferent dendrite, in addition to the excitatory postsynaptic potentials. Not only does the model reproduce the first-order interval statistics of neural activity, but it provides a mechanism for improving phase-locking to the fundamental frequency of a sinusoid, and also offers an explanation for the presence of reciprocal synapses in the human cochlea.
Collapse
Affiliation(s)
- A W Gummer
- Australian National University, Research School of Biological Sciences, Developmental Neurobiology Group, Canberra
| |
Collapse
|