1
|
Huang Q, Fan Y, Wang J, Xu Z, Yang L, Wang J, Zhan Y, Kong X, Zhou N. The diagnostic efficiency of artificial intelligence based 2 hours Holter monitoring in premature ventricular and supraventricular contractions detection. Clin Cardiol 2024; 47:e24266. [PMID: 38587231 PMCID: PMC11000269 DOI: 10.1002/clc.24266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Electrocardiography (ECG) and 24 hours Holter monitoring (24 h-Holter) provided valuable information for premature ventricular and supraventricular contractions (PVC and PSVC). Currently, artificial intelligence (AI) based 2 hours single-lead Holter (2 h-Holter) monitoring may provide an improved strategy for PSVC/PVC diagnosis. HYPOTHESIS AI combined with single-lead Holter monitoring improves PSVC/PVC detection. METHODS In total, 170 patients were enrolled between August 2022 and 2023. All patients wore both devices simultaneously; then, we compared diagnostic efficiency, including the sensitivity/specificity/positive predictive-value (PPV) and negative predictive-value (NPV) in detecting PSVC/PVC by 24 h-Holter and 2 h-Holter. RESULTS The PPV and NPV in patients underwent 2 h-Holter were 76.00%/87.50% and 96.35%/98.55, respectively, and the sensitivity and specificity were 79.17%/91.30%, and 95.65%/97.84% in PSVC/PVC detection compared with 24 h-Holter. The areas under the ROC curves (AUCs) for PSVC and PVC were 0.885 and 0.741, respectively (p < .0001). CONCLUSIONS The potential advantages of the 2 h-Holter were shortened wearing period, improved convenience, and excellent consistency of diagnosis.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuansheng Fan
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jialin Wang
- Department of General Practice, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyang Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linfeng Yang
- Department of General Practice, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiyang Zhan
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ningtian Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Paz-Cruz E, Ruiz-Pozo VA, Cadena-Ullauri S, Guevara-Ramirez P, Tamayo-Trujillo R, Ibarra-Castillo R, Laso-Bayas JL, Onofre-Ruiz P, Domenech N, Ibarra-Rodriguez AA, Zambrano AK. Associations of MYPN, TTN, SCN5A, MYO6 and ELN Mutations With Arrhythmias and Subsequent Sudden Cardiac Death: A Case Report of an Ecuadorian Individual. Cardiol Res 2023; 14:409-415. [PMID: 37936622 PMCID: PMC10627373 DOI: 10.14740/cr1552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 11/09/2023] Open
Abstract
Cardiac pathologies are among the most frequent causes of death worldwide. Regarding cardiovascular deaths, it is estimated that 5 million cases are caused by sudden cardiac death (SCD) annually. The primary cause of SCD is ventricular arrhythmias. Genomic studies have provided pathogenic, likely pathogenic, and variants of uncertain significance that may predispose individuals to cardiac causes of sudden death. In this study, we describe the case of a 43-year-old individual who experienced an episode of aborted SCD. An implantable cardioverter defibrillator was placed to prevent further SCD episodes. The diagnosis was ventricular fibrillation. Genomic analysis revealed some variants in the MYPN (pathogenic), GCKR (likely pathogenic), TTN (variant of uncertain significance), SCN5A (variant of uncertain significance), MYO6 (variant of uncertain significance), and ELN (variant of uncertain significance) genes, which could be associated with SCD episodes. In addition, a protein-protein interaction network was obtained, with proteins related to ventricular arrhythmia and the biological processes involved. Therefore, this study identified genetic variants that may be associated with and trigger SCD in the individual. Moreover, genetic variants of uncertain significance, which have not been reported, could contribute to the genetic basis of the disease.
Collapse
Affiliation(s)
- Elius Paz-Cruz
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| | - Viviana A Ruiz-Pozo
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| | - Santiago Cadena-Ullauri
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Patricia Guevara-Ramirez
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | | | - Paul Onofre-Ruiz
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Nieves Domenech
- Instituto de Investigacion Biomedica de A Coruna (INIBIC) - CIBERCV, Complexo Hospitalario Universitario de A Coruna (CHUAC), Sergas, Universidad da Coruna (UDC), Spain
| | | | - Ana Karina Zambrano
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- These authors contributed equally to this work and share first authorship
| |
Collapse
|
3
|
Chang X, Liu J, Wang Y, Guan X, Liu R. Mitochondrial disorder and treatment of ischemic cardiomyopathy: Potential and advantages of Chinese herbal medicine. Biomed Pharmacother 2023; 159:114171. [PMID: 36641924 DOI: 10.1016/j.biopha.2022.114171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is the main cause of damage to the pathological mechanism of ischemic cardiomyopathy. In addition, mitochondrial dysfunction can also affect the homeostasis of cardiomyocytes or endothelial cell dysfunction, leading to a vicious cycle of mitochondrial oxidative stress. And mitochondrial dysfunction is also an important pathological basis for ischemic cardiomyopathy and reperfusion injury after myocardial infarction or end-stage coronary heart disease. Therefore, mitochondria can be used as therapeutic targets against myocardial ischemia injury, and the regulation of mitochondrial morphology, function and structure is a key and important way of targeting mitochondrial quality control therapeutic mechanisms. Mitochondrial quality control includes mechanisms such as mitophagy, mitochondrial dynamics (mitochondrial fusion/fission), mitochondrial biosynthesis, and mitochondrial unfolded protein responses. Among them, the increase of mitochondrial fragmentation caused by mitochondrial pathological fission is the initial factor. The protective mitochondrial fusion can strengthen the interaction and synthesis of paired mitochondria and promote mitochondrial biosynthesis. In ischemia or hypoxia, pathological mitochondrial fission can promote the formation of mitochondrial fragments, fragmented mitochondria can lead to damaged mitochondrial DNA production, which can lead to mitochondrial biosynthesis dysfunction, insufficient mitochondrial ATP production, and mitochondrial ROS. Burst growth or loss of mitochondrial membrane potential. This eventually leads to the accumulation of damaged mitochondria. Then, under the leadership of mitophagy, damaged mitochondria can complete the mitochondrial degradation process through mitophagy, and transport the morphologically and structurally damaged mitochondria to lysosomes for degradation. But once the pathological mitochondrial fission increases, the damaged mitochondria increases, which may activate the pathway of cardiomyocyte death. Although laboratory studies have found that a variety of mitochondrial-targeted drugs can reduce myocardial ischemia and protect cardiomyocytes, there are still few drugs that have successfully passed clinical trials. In this review, we describe the role of MQS in ischemia/hypoxia-induced cardiomyocyte physiopathology and elucidate the relevant mechanisms of mitochondrial dysfunction in ischemic cardiomyopathy. In addition, we also further explained the advantages of natural products in improving mitochondrial dysfunction and protecting myocardial cells from the perspective of pharmacological mechanism, and explained its related mechanisms. Potential targeted therapies that can be used to improve MQS under ischemia/hypoxia are discussed, aiming to accelerate the development of cardioprotective drugs targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
4
|
Wang R, Ye H, Ma L, Wei J, Wang Y, Zhang X, Wang L. Effect of Sacubitril/Valsartan on Reducing the Risk of Arrhythmia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Cardiovasc Med 2022; 9:890481. [PMID: 35859597 PMCID: PMC9289747 DOI: 10.3389/fcvm.2022.890481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Objective Relevant data of PARADIGM-HF reveals sacubitril/valsartan (SV) therapy led to a greater reduction in the risks of arrhythmia, and sudden cardiac death than angiotensin converting enzyme inhibitor (ACEI)/angiotensin receptor inhibitor (ARB) therapy in HFrEF, however, inconsistent results were reported in subsequent studies. Here, we conduct a meta-analysis of related randomized controlled trials (RCTs) to evaluate the protective effect of SV on reducing the risk of arrhythmias. Methods and Results RCTs focused on the difference in therapeutic outcomes between SV and ACEI/ARB were searched from PUBMED, EMBASE, ClinicalTrials.gov, and Cochrane Library. The results were extracted from each individual study, expressed as binary risk, 95% confidence interval (CI) and relative risk (RR). Sixteen RCTs including 22, 563 patients met the study criteria. Compared with ACEI/ARB therapy, SV therapy did significantly reduce in the risks of severe arrhythmias among patients with heart failure with reduced ejection fraction (HFrEF) (RR 0.83, 95% CI 0.73–0.95, p = 0.006), ventricular tachycardia (VT) among patients with HFrEF (RR 0.69, 95% CI 0.51–0.92, p = 0.01), cardiac arrest among patients with heart failure (HF) (RR 0.52, 95% CI 0.37–0.73, p = 0.0002), cardiac arrest among patients with HFrEF (RR 0.49, 95% CI 0.32–0.76, p = 0.001), cardiac arrest or ventricular fibrillation (VF) among patients with HF (RR 0.63, 95% CI 0.48–0.83, p = 0.001), and cardiac arrest or VF among patients with HFrEF (RR 0.65, 95% CI 0.47–0.89, p = 0.008), but reduced the risks of arrhythmias (RR 0.87, 95% CI 0.74–1.01, p = 0.07), atrial arrhythmias (RR 0.98, 95% CI 0.83–1.16, p = 0.85), and atrial fibrillation (RR 0.98, 95% CI 0.82–1.17, p = 0.82) among all patients with no significant between-group difference. The merged result was robust after sensitivity analysis, and there was no publication bias. Conclusion Our meta-analysis provides evidence that, compared with ACEI/ARB, SV can additionally reduce the risks of most arrhythmias, just the significant differences are revealed in reducing the risks of VT, severe arrhythmias, and cardiac arrest in patients with HFrEF. Besides, the positive effect of SV on VF according to statistical result of combining VF with cardiac arrest in patients with HFrEF is credibility.
Collapse
Affiliation(s)
- Ruxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Ma
- Department of Functional Examination, Gansu Provincial Maternal and Child Health Hospital, Lanzhou, China
| | - Jinjing Wei
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaofang Zhang
- Clinical Experimental Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Xiaofang Zhang,
| | - Lihong Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Lihong Wang,
| |
Collapse
|
5
|
Bozzi M, Parisi V, Poggio P. Macrophages in the heart: Active players or simple bystanders? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:109-141. [PMID: 35636926 DOI: 10.1016/bs.ircmb.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Today, more and more studies focus on the processes in which macrophages are involved. These discoveries provide new perspectives on the cellular mechanisms that regulate the physiological functions of the healthy heart. Moreover, they offer a deeper knowledge of the pathologic processes underlying the onset and the evolution of specific cardiac impairment. The heterogeneous population of macrophages within the heart can be divided by origin, expression profile, and function. The pool of cardiac macrophages includes at least two distinct subsets with different ontogeny. The first one has an embryonic origin, deriving from the yolk sac and the fetal liver, while the other macrophage subset results from the postnatal recruitment of monocytes produced in the bone marrow. This review will focus on new phenotypes and functions of cardiac macrophages that have been identified in the last years and that need to be deeply studied to unveil new potential therapies aimed at treating cardiac diseases.
Collapse
Affiliation(s)
- Michele Bozzi
- Unit for the Study of Aortic, Valvular, and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular, and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
6
|
Kritikou E, Kuiper J, Kovanen PT, Bot I. The impact of mast cells on cardiovascular diseases. Eur J Pharmacol 2015; 778:103-15. [PMID: 25959384 DOI: 10.1016/j.ejphar.2015.04.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
Mast cells comprise an innate immune cell population, which accumulates in tissues proximal to the outside environment and, upon activation, augments the progression of immunological reactions through the release and diffusion of either pre-formed or newly generated mediators. The released products of mast cells include histamine, proteases, as well as a variety of cytokines, chemokines and growth factors, which act on the surrounding microenvironment thereby shaping the immune responses triggered in various diseased states. Mast cells have also been detected in the arterial wall and are implicated in the onset and progression of numerous cardiovascular diseases. Notably, modulation of distinct mast cell actions using genetic and pharmacological approaches highlights the crucial role of this cell type in cardiovascular syndromes. The acquired evidence renders mast cells and their mediators as potential prognostic markers and therapeutic targets in a broad spectrum of pathophysiological conditions related to cardiovascular diseases.
Collapse
Affiliation(s)
- Eva Kritikou
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Ilze Bot
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
7
|
Perlman O, Katz A, Weissman N, Amit G, Zigel Y. Atrial electrical activity detection using linear combination of 12-lead ECG signals. IEEE Trans Biomed Eng 2014; 61:1034-43. [PMID: 24658228 DOI: 10.1109/tbme.2013.2292930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
ECG analysis is the method for cardiac arrhythmia diagnosis. During the diagnostic process many features should be taken into consideration, such as regularity and atrial activity. Since in some arrhythmias, the atrial electrical activity (AEA) waves are hidden in other waves, and a precise classification from surface ECG is inapplicable, a confirmation diagnosis is usually performed during an invasive procedure. In this paper, we study a "semiautomatic" method for AEA-waves detection using a linear combination of 12-lead ECG signals. This method's objective is to be applicable to a variety of arrhythmias with emphasis given to detect concealed AEA waves. It includes two variations--using maximum energy ratio and a synthetic AEA signal. In the former variation, an energy ratio-based cost function is created and maximized using the gradient ascent method. The latter variation adapted the linear combiner method, when applied on a synthetic signal, combined with surface ECG leads. A study was performed evaluating the AEA-waves detection from 63 patients (nine training, 54 validation) presenting eight arrhythmia types. Averaged sensitivity of 92.21% and averaged precision of 92.08% were achieved compared to the definite diagnosis. In conclusion, the presented method may lead to early and accurate detection of arrhythmias, which will result in a better oriented treatment.
Collapse
|