1
|
A regioselective synthesis of imidazothiazolotriazines based on the cyclization of imidazotriazinethiones with phenacyl bromides. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Yahya S, Haider K, Pathak A, Choudhary A, Hooda P, Shafeeq M, Shahar Yar M. Strategies in synthetic design and structure-activity relationship studies of novel heterocyclic scaffolds as aldose reductase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200167. [PMID: 36125217 DOI: 10.1002/ardp.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Heterocyclic scaffolds of natural as well as synthetic origin provide almost all categories of drugs exhibiting a wide range of pharmacological activities, such as antibiotics, antidiabetic and anticancer agents, and so on. Under normal homeostasis, aldose reductase 2 (ALR2) regulates vital metabolic functions; however, in pathological conditions like diabetes, ALR2 is unable to function and leads to secondary diabetic complications. ALR2 inhibitors are a novel target for the treatment of retinopathy (cataract) influenced by diabetes. Epalrestat (stat), an ALR2 inhibitor, is the only drug candidate that was approved in the last four decades; the other drugs from the stat class were retracted after clinical trial studies due to untoward iatrogenic effects. The present study summarizes the recent development (2014 and onwards) of this pharmacologically active ALR2 heterocyclic scaffold and illustrates the rationale behind the design, structure-activity relationships, and biological studies performed on these molecules. The aim of the current review is to pave a straight path for medicinal chemists and chemical biologists, and, in general, to the drug discovery scientists to facilitate the synthesis and development of novel ALR2 inhibitors that may serve as lead molecules for the treatment of diseases related to the ALR2 enzyme.
Collapse
Affiliation(s)
- Shaikh Yahya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Akram Choudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Hooda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Shafeeq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
Imran A, Shehzad MT, Shah SJA, Laws M, al-Adhami T, Rahman KM, Khan IA, Shafiq Z, Iqbal J. Development, Molecular Docking, and In Silico ADME Evaluation of Selective ALR2 Inhibitors for the Treatment of Diabetic Complications via Suppression of the Polyol Pathway. ACS OMEGA 2022; 7:26425-26436. [PMID: 35936488 PMCID: PMC9352332 DOI: 10.1021/acsomega.2c02326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 05/29/2023]
Abstract
Diabetic complications are associated with overexpression of aldose reductase, an enzyme that catalyzes the first step of the polyol pathway. Osmotic stress in the hyperglycemic state is linked with the intracellular accumulation of sorbitol along with the depletion of NADPH and eventually leads to oxidative stress via formation of reactive oxygen species and advanced glycation end products (AGEs). These kinds of mechanisms cause the development of various diabetic complications including neuropathy, nephropathy, retinopathy, and atherosclerotic plaque formation. Various aldose reductase inhibitors have been developed to date for the treatment of diabetic complications, but all have failed in different stages of clinical trials due to toxicity and poor pharmacokinetic profiles. This toxicity is rooted in a nonselective inhibition of both ALR2 and ALR1, homologous enzymes involved in the metabolism of toxic aldehydes such as methylglyoxal and 3-oxyglucosazone. In the present study, we developed a series of thiosemicarbazone derivatives as selective inhibitors of ALR2 with both antioxidant and antiglycation potential. Among the synthesized compounds, 3c exhibited strong and selective inhibition of ALR2 (IC50 1.42 μM) along with good antioxidant and antiglycative properties. The binding mode of 3c was assessed through molecular docking and cluster analysis via MD simulations, while in silico ADME evaluation studies predicted the compounds' druglike properties. Therefore, we report 3c as a drug candidate with promising antioxidant and antiglycative properties that may be useful for the treatment of diabetic complications through selective inhibition of ALR2.
Collapse
Affiliation(s)
- Aqeel Imran
- Center
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad 22060, Pakistan
- Department
of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | | | - Syed Jawad Ali Shah
- Center
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad 22060, Pakistan
| | - Mark Laws
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Taha al-Adhami
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Khondaker Miraz Rahman
- Institute
of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, United Kingdom
| | - Imtiaz Ali Khan
- Department
of Entomology, University of Agriculture, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Shafiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
- Pharmaceutical
Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jamshed Iqbal
- Center
for Advanced Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad 22060, Pakistan
- Department
of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
4
|
Kovacikova L, Prnova MS, Majekova M, Bohac A, Karasu C, Stefek M. Development of Novel Indole-Based Bifunctional Aldose Reductase Inhibitors/Antioxidants as Promising Drugs for the Treatment of Diabetic Complications. Molecules 2021; 26:molecules26102867. [PMID: 34066081 PMCID: PMC8151378 DOI: 10.3390/molecules26102867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/16/2023] Open
Abstract
Aldose reductase (AR, ALR2), the first enzyme of the polyol pathway, is implicated in the pathophysiology of diabetic complications. Aldose reductase inhibitors (ARIs) thus present a promising therapeutic approach to treat a wide array of diabetic complications. Moreover, a therapeutic potential of ARIs in the treatment of chronic inflammation-related pathologies and several genetic metabolic disorders has been recently indicated. Substituted indoles are an interesting group of compounds with a plethora of biological activities. This article reviews a series of indole-based bifunctional aldose reductase inhibitors/antioxidants (ARIs/AOs) developed during recent years. Experimental results obtained in in vitro, ex vivo, and in vivo models of diabetic complications are presented. Structure–activity relationships with respect to carboxymethyl pharmacophore regioisomerization and core scaffold modification are discussed along with the criteria of ‘drug-likeness”. Novel promising structures of putative multifunctional ARIs/AOs are designed.
Collapse
Affiliation(s)
- Lucia Kovacikova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Marta Soltesova Prnova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Magdalena Majekova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Andrej Bohac
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
- Biomagi, Inc., Mamateyova 26, 851 04 Bratislava, Slovakia
| | - Cimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Beşevler, 06500 Ankara, Turkey;
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
- Correspondence:
| |
Collapse
|
5
|
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel) 2021; 10:727. [PMID: 34063078 PMCID: PMC8147954 DOI: 10.3390/antiox10050727] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty-year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| |
Collapse
|
6
|
Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Med Chem 2020; 12:1327-1358. [PMID: 32602375 DOI: 10.4155/fmc-2020-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldose Reductase 2 (ALR2), the rate-limiting enzyme of the polyol pathway, plays an important role in detoxification of some toxic aldehydes. Under hyperglycemia, this enzyme overactivates and causes diabetic complications (DC). Therefore, ALR2 inhibition has been established as a potential approach to manage these complications. Several ALR2 inhibitors have been reported, but none of them could reach US FDA approval. One of the main reasons is their poor selectivity over ALR1, which leads to the toxicity. The current review underlines the molecular connectivity of ALR2 with DC and comparative analysis of the catalytic domains of ALR2 and ALR1, to better understand the selectivity issues. This report also discusses the key features required for ALR2 inhibition and to limit toxicity due to off-target activity.
Collapse
|
7
|
Forman V, Šušaníková I, Kukurová Ľ, Švajdlenka E, Nagy M, Mučaji P. Flower Infusions From Cornus masand Cornus kousaInhibit Aldose Reductase Enzyme, Without Any Effects on Lipotoxicity. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20912868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aldose reductase inhibitors are considered to be potential therapeutic agents for chronic diabetic complications. Diabetes mellitus can be accompanied by elevated blood levels of free fatty acids, which can cause lipotoxicity. Herbal extracts and their constituents are promising agents which have the potential for alleviating these complications. Our study was focused on the influence on these effects by flower infusions from Cornus mas L. and Cornus kousa F.Buerger ex Hance. Initially, phenolic compounds were quantified in the dried flowers. Next, we studied the ability of flower infusions from both plants to inhibit aldose reductase in vitro, the protective role in the cell model of lipotoxicity, and the cytotoxic action on fibroblast cell line NIH-3T3 by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2 H-tetrazolium bromide assay. Both species are rich in phenolics; C. kousa flowers contain slightly higher amounts of phenolic acids (20.8%) and flavonoids (56.1%) than C. mas (20.2%) and (47.4%), respectively. Both extracts showed effective inhibition, expressed as half-maximal inhibitory concentration (IC50) (the concentration of inhibitor required to exhibit 50% inhibition of the enzyme reaction), of aldose reductase in non-toxic low concentrations (IC50= 3.06 μg/mL for C. mas and IC50= 2.49 μg/mL for C. kousa, respectively). In contrast, these concentrations of both extracts had almost no effects in the lipotoxicity cell model. To our knowledge, this study is the first report on C. mas and C. kousa flowers’ aldose reductase inhibitory activity and influence upon lipotoxicity.
Collapse
Affiliation(s)
- Vladimír Forman
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Ivana Šušaníková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Ľubica Kukurová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Emil Švajdlenka
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| |
Collapse
|
8
|
Miláčková I, Meščanová M, Ševčíková V, Mučaji P. Water leaves extracts of Cornus mas and Cornus kousa as aldose reductase inhibitors: the potential therapeutic agents. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0227-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Saito R, Tamura M, Kawano S, Yoshikawa Y, Kato A, Sasaki K, Yasui H. Synthesis and biological evaluation of 4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxamides and their zinc(ii) complexes as candidate antidiabetic agents. NEW J CHEM 2017. [DOI: 10.1039/c7nj00970d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five new zinc(ii) complexes with 4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrole-3-carboxamides were synthesized, and four of them exhibited insulin-mimetic activity in vitro.
Collapse
Affiliation(s)
- Ryota Saito
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
- Research Center for Materials with Integrated Properties
| | - Moe Tamura
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Saya Kawano
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Yutaka Yoshikawa
- Department of Health
- Sports and Nutrition
- Kobe Women's University
- Kobe 650-0046
- Japan
| | - Akihiro Kato
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Kaname Sasaki
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry
- Kyoto Pharmaceutical University
- Kyoto 607-8414
- Japan
| |
Collapse
|
10
|
Saito R, Hoshi M, Kato A, Ishikawa C, Komatsu T. Green fluorescent protein chromophore derivatives as a new class of aldose reductase inhibitors. Eur J Med Chem 2017; 125:965-974. [DOI: 10.1016/j.ejmech.2016.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/14/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
|
11
|
Soltesova Prnova M, Ballekova J, Gajdosikova A, Gajdosik A, Stefek M. A novel carboxymethylated mercaptotriazinoindole inhibitor of aldose reductase interferes with the polyol pathway in streptozotocin-induced diabetic rats. Physiol Res 2016; 64:587-91. [PMID: 26291727 DOI: 10.33549/physiolres.933034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of the present work was to study the effect of 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (CMTI), an efficient aldose reductase inhibitor, on sorbitol accumulation in selected organs of streptozotocin-induced diabetic rats in vivo. In addition, the effect of CMTI on aldose reductase back reaction and on sorbitol dehydrogenase was determined. The model of experimental diabetes in male Wistar rats induced by streptozotocin was used. Experimental diabetes was induced by triple intraperitoneal doses of streptozotocin on three consecutive days. In diabetic rats, significant elevation of sorbitol concentration in the sciatic nerve and eye lenses was recorded. CMTI administered intragastrically (50 mg/kg/day) for five consecutive days significantly inhibited sorbitol accumulation in the sciatic nerve, yet it was without effect in eye lenses of diabetic animals. For aldose reductase back reaction, the substrate affinity of glycerol to aldose reductase was one order lower than that of glyceraldehyde in forward reaction. In addition, the back reaction was much slower, characterized by V(max) value of about 30 times lower than that of the forward reaction. Inhibition of aldose reductase by CMTI was characterized by closely related IC(50) values in submicromolar range for both forward and back reactions. No significant inhibition of the second enzyme of the polyol pathway, sorbitol dehydrogenase, by 100 microM CMTI was recorded (I=0.9+/-2.7 %, n=3). To conclude, the presented results showed the ability of CMTI to affect the polyol pathway in diabetic rats in vivo and represent thus a further step in a complex preclinical evaluation of CMTI as a potential agent for treatment of chronic diabetic complications.
Collapse
Affiliation(s)
- M Soltesova Prnova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
12
|
Prnova MS, Ballekova J, Majekova M, Stefek M. Antioxidant action of 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid, an efficient aldose reductase inhibitor, in a 1,1'-diphenyl-2-picrylhydrazyl assay and in the cellular system of isolated erythrocytes exposed to tert-butyl hydroperoxide. Redox Rep 2015; 20:282-8. [PMID: 26066740 DOI: 10.1179/1351000215y.0000000019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES The subject of this study was 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (compound 1), an efficient aldose reductase inhibitor of high selectivity. The antioxidant action of 1 was investigated in greater detail by employing a 1,1'-diphenyl-2-picrylhydrazyl (DPPH) test and in the system of isolated rat erythrocytes. METHODS First, the compound was subjected to the DPPH test. Second, the overall antioxidant action of the compound was studied in the cellular system of isolated rat erythrocytes oxidatively stressed by free radicals derived from the lipophilic tert-butyl hydroperoxide. The uptake kinetics of 1 was studied and osmotic fragility of the erythrocytes was evaluated. RESULTS The DPPH test revealed significant antiradical activity of 1. One molecule of 1 was found to quench 1.48 ± 0.06 DPPH radicals. In the system of isolated erythrocytes, the compound was readily taken up by the cells followed by their protection against free radical-initiated hemolysis. Osmotic fragility of the erythrocytes was not affected by 1. CONCLUSIONS The results demonstrated the ability of 1 to scavenge DPPH and to protect intact erythrocytes against oxidative damage induced by peroxyl radicals. By affecting both the polyol pathway and oxidative stress, the compound represents an example of a promising agent for multi-target pharmacology of diabetic complications.
Collapse
|
13
|
Vijjulatha M, Lingala Y, Merugu RT. Induced fit docking, pharmacophore modeling, and molecular dynamic simulations on thiazolidinedione derivatives to explore key interactions with Tyr48 in polyol pathway. J Mol Model 2014; 20:2348. [PMID: 24974084 DOI: 10.1007/s00894-014-2348-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/08/2014] [Indexed: 11/24/2022]
Abstract
To obtain a scientific thought and expedition to explore key interactions with Tyr48 in aldose reductase (ALR), combined study of pharmacophore modeling, induced fit docking, and dynamics studies were performed on ALR. A stereo chemically and energetically valid model of ALR-NADP+ complex was developed using homology modeling technique. Statistically a significant five point pharmacophore model was designed on a set of 54 thiazolidinedione derivatives with good external and internal predictive ability. Rigid and induced fit docking protocols were applied on ALR protein for both with and without NADP+ cofactor to identify a suitable binding mode that facilitates the key hydrogen bond interactions with Tyr48. Docking of thiazolidinedione derivatives into ALR-NADP+ complex gave more promising results by reducing false positive binding of inhibitors into the co-factor binding site. Structural changes within Try48 and Asp43 during the binding process in enzyme inhibitor complex were analyzed using molecular dynamics (MD) simulations. The results obtained from dynamic simulations emphasized the role of Tyr48 in maintaining inter or intra molecular hydrogen bond interaction with the protein or inhibitor respectively. New molecules were designed and checked for their binding interactions and showed improved results compared to existing thiazolidinediones derivatives. Hence, these combined protocols will be helpful and cooperative to design and optimize molecules with better inhibitory activity against the biologically active target.
Collapse
Affiliation(s)
- Manga Vijjulatha
- Molecular Modeling and Medicinal Chemistry Group, Dept. of Chemistry, University College of Science, Osmania University, Hyderabad, 500-007, India,
| | | | | |
Collapse
|
14
|
Kumar P, Natarajan K, Shanmugam N. High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: Molecular mechanisms of IL-17 family gene expression. Cell Signal 2014; 26:528-39. [DOI: 10.1016/j.cellsig.2013.11.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/18/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023]
|
15
|
Ramachandran S, Venugopal A, Sathisha K, Reshmi G, Charles S, Divya G, Chandran NSP, Mullassari A, Pillai MR, Kartha CC. Proteomic profiling of high glucose primed monocytes identifies cyclophilin A as a potential secretory marker of inflammation in type 2 diabetes. Proteomics 2013; 12:2808-21. [PMID: 22930659 DOI: 10.1002/pmic.201100586] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperglycemia is widely recognized to be a potent stimulator of monocyte activity, which is a crucial event in the pathogenesis of atherosclerosis. We analyzed the monocyte proteome for potential markers that would enhance the ability to screen for early inflammatory status in Type 2 diabetes mellitus (T2DM), using proteomic technologies. Monocytic cells (THP-1) were primed with high glucose (HG), their protein profiles were analyzed using 2DE and the downregulated differentially expressed spots were identified using MALDI TOF/MS. We selected five proteins that were secretory in function with the help of bioinformatic programs. A predominantly downregulated protein identified as cyclophilin A (sequence coverage 98%) was further validated by immunoblotting experiments. The cellular mRNA levels of cyclophilin A in various HG-primed cells were studied using qRT-PCR assays and it was observed to decrease in a dose-dependent manner. LC-ESI-MS was used to identify this protein in the conditioned media of HG-primed cells and confirmed by Western blotting as well as ELISA. Cyclophilin A was also detected in the plasma of patients with diabetes. We conclude that cyclophilin A is secreted by monocytes in response to HG. Given the paracrine and autocrine actions of cyclophilin A, the secreted immunophilin could be significant for progression of atherosclerosis in type 2 diabetes. Our study also provides evidence that analysis of monocyte secretome is a viable strategy for identifying candidate plasma markers in diabetes.
Collapse
Affiliation(s)
- Surya Ramachandran
- Cardiovascular Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease. Vis Neurosci 2012; 29:267-74. [PMID: 23101909 DOI: 10.1017/s0952523812000326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Streptozotocin (STZ)-induced diabetes is associated with reductions in the electrical response of the outer retina and retinal pigment epithelium (RPE) to light. Aldose reductase (AR) is the first enzyme required in the polyol-mediated metabolism of glucose, and AR inhibitors have been shown to improve diabetes-induced electroretinogram (ERG) defects. Here, we used control and AR -/- mice to determine if genetic inactivation of this enzyme likewise inhibits retinal electrophysiological defects observed in a mouse model of type 1 diabetes. STZ was used to induce hyperglycemia and type 1 diabetes. Diabetic and age-matched nondiabetic controls of each genotype were maintained for 22 weeks, after which ERGs were used to measure the light-evoked components of the RPE (dc-ERG) and the neural retina (a-wave, b-wave). In comparison to their nondiabetic controls, wildtype (WT) and AR -/- diabetic mice displayed significant decreases in the c-wave, fast oscillation, and off response components of the dc-ERG but not in the light peak response. Nondiabetic AR -/- mice displayed larger ERG component amplitudes than did nondiabetic WT mice; however, the amplitude of dc-ERG components in diabetic AR -/- animals were similar to WT diabetics. ERG a-wave amplitudes were not reduced in either diabetic group, but b-wave amplitudes were lower in WT and AR -/-diabetic mice. These findings demonstrate that the light-induced responses of the RPE and outer retina are disrupted in diabetic mice, but these defects are not due to photoreceptor dysfunction, nor are they ameliorated by deletion of AR. This latter finding suggests that benefits observed in other studies utilizing pharmacological inhibitors of AR might have been secondary to off-target effects of the drugs.
Collapse
|
17
|
Differentially-expressed genes associated with glycophosphatidylinositol (GPI)-anchored proteins by diabetes-related toxic substances in human endothelial cells. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6309-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Treatment of diabetic neuropathy with baicalein: intervention at multiple sites. Exp Neurol 2011; 232:105-9. [PMID: 21907195 DOI: 10.1016/j.expneurol.2011.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 01/03/2023]
|
19
|
Liu HY, Liu SS, Qin LT, Mo LY. CoMFA and CoMSIA analysis of 2,4-thiazolidinediones derivatives as aldose reductase inhibitors. J Mol Model 2009; 15:837-45. [PMID: 19132416 DOI: 10.1007/s00894-008-0439-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/22/2008] [Indexed: 12/12/2022]
Abstract
Diabetes remains a life-threatening disease. The clinical profile of diabetic subjects is often worsened by the presence of several long-term complications, for example neuropathy, nephropathy, retinopathy, and cataract. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of 2,4-thiazolidinediones derivatives as aldose reductase (ALR2) inhibitors. Molecular ligand superimposition on a template structure was finished by the database alignment method. The 3D-QSAR models resulted from 44 molecules gave q (2) values of 0.773 and 0.817, r (2) values of 0.981 and 0.979 for CoMFA and CoMSIA, respectively. The contour maps from the models indicated that a large volume group next to the R-substituent will increase the ALR2 inhibitory activity. In fact, adding a -CH(2)COOH substituent at the R-position would generate a new compound with higher predicted activity.
Collapse
Affiliation(s)
- Hong-Yan Liu
- Department of Material and Chemical Engineering, Guilin University of Technology, 541004 Guilin, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Wang Z, Ling B, Zhang R, Liu Y. Docking and Molecular Dynamics Study on the Inhibitory Activity of Coumarins on Aldose Reductase. J Phys Chem B 2008; 112:10033-40. [DOI: 10.1021/jp8033227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiguo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Baoping Ling
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Rui Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
21
|
Lutein prevents the effect of high glucose levels on immune system cells in vivo and in vitro. J Physiol Biochem 2008; 64:149-57. [DOI: 10.1007/bf03168243] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Effect of C-peptide on diabetic neuropathy in patients with type 1 diabetes. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:457912. [PMID: 18350117 PMCID: PMC2266809 DOI: 10.1155/2008/457912] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 12/27/2007] [Indexed: 12/18/2022]
Abstract
Recent results indicate that proinsulin C-peptide, contrary
to previous views, exerts important physiological effects and
shows the characteristics of a bioactive peptide. Studies in
type 1 diabetes, involving animal models as well as patients,
demonstrate that C-peptide in replacement doses has the
ability to improve peripheral nerve function and prevent or
reverse the development of nerve structural abnormalities.
Peripheral nerve function, as evaluated by determination of
sensory nerve conduction velocity and quantitative sensory
testing, is improved by C-peptide replacement in diabetes type
1 patients with early stage neuropathy. Similarly, autonomic
nerve dysfunction is ameliorated following administration of C
peptide for up to 3 months. As evaluated in animal models of
type 1 diabetes, the improved nerve function is accompanied by
reversal or prevention of nerve structural changes, and the
mechanisms of action are related to the ability of C-peptide
to correct diabetes-induced reductions in endoneurial blood
flow and in
Na+ K+-ATPase activity and modulation of neurotrophic
factors. Combining the results demonstrates that C-peptide may be
a possible new treatment of neuropathy in type 1 diabetes.
Collapse
|
23
|
Alba-Loureiro TC, Munhoz CD, Martins JO, Cerchiaro GA, Scavone C, Curi R, Sannomiya P. Neutrophil function and metabolism in individuals with diabetes mellitus. ACTA ACUST UNITED AC 2008; 40:1037-44. [PMID: 17665039 DOI: 10.1590/s0100-879x2006005000143] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 05/21/2007] [Indexed: 12/29/2022]
Abstract
Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibility to and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesion to the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways) may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.
Collapse
Affiliation(s)
- T C Alba-Loureiro
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo
| | | | | | | | | | | | | |
Collapse
|
24
|
Murao K, Yu X, Imachi H, Cao WM, Chen K, Matsumoto K, Nishiuchi T, Wong NCW, Ishida T. Hyperglycemia suppresses hepatic scavenger receptor class B type I expression. Am J Physiol Endocrinol Metab 2008; 294:E78-87. [PMID: 17957039 DOI: 10.1152/ajpendo.00023.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hyperglycemia is a major risk factor for atherosclerotic disease. Hepatic scavenger receptor class B type I (SR-BI) binds HDL particles that mediate reverse cholesterol transport and thus lowers the risk of atherosclerosis. Here we examined glucose regulation of SR-BI gene expression in both HepG2 cells and whole animals. Results showed that hepatic SR-BI mRNA, protein, and uptake of cholesterol from HDL were halved following 48 h of exposure to 22.4 vs. 5.6 mM glucose. As in the case of the cell culture model, hepatic expression of SR-BI was lower in diabetic rats than in euglycemic rats. Transcriptional activity of the human SR-BI promoter paralleled endogenous expression of the gene, and this activity was dependent upon the dose of glucose. Next, we used inhibitors of select signal transduction pathways to demonstrate that glucose suppression of SR-BI was sensitive to the p38 MAPK inhibitor. Expression of a constitutively active p38 MAPK inhibited SR-BI promoter activity in the presence or absence of glucose. A dominant-negative p38 MAPK abolished the inhibitory effect of glucose on promoter activity. Deletional analysis located a 50-bp fragment of the promoter that mediated the effects of glucose. Within this DNA fragment there were several specificity protein-1 (Sp1) binding sites, and cellular knockdown of Sp1 abrogated its suppression by glucose. Together, these results indicate that the glucose suppression of SR-B1 expression is partially mediated by the activation of the p38 MAPK-Sp1 pathway and raise the possibility that the inhibition of hepatic SR-BI expression under high-glucose conditions provides a mechanism for accelerated atherosclerosis in diabetics.
Collapse
Affiliation(s)
- Koji Murao
- Div. of Endocrinology and Metabolism, Dept. of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Murao K, Yu X, Cao WM, Imachi H, Chen K, Muraoka T, Kitanaka N, Li J, Ahmed RAM, Matsumoto K, Nishiuchi T, Tokuda M, Ishida T. D-Psicose inhibits the expression of MCP-1 induced by high-glucose stimulation in HUVECs. Life Sci 2007; 81:592-9. [PMID: 17655880 DOI: 10.1016/j.lfs.2007.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/06/2007] [Accepted: 06/24/2007] [Indexed: 02/02/2023]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is a 76-amino-acid chemokine thought to be the major chemotactic factor for monocytes. MCP-1 is found in macrophage-rich areas of atherosclerotic lesions. Recent report indicates that MCP-1 is induced by glucose-stimulation, raising the important link between diabetes mellitus and atherosclerosis. One of the rare sugars, d-psicose (d-ribo-2-hexulose) is present in small quantities in commercial carbohydrate complexes, however the physiological functions of d-psicose have not been evaluated. In this study, we examined the effects of d-psicose on MCP-1 expression in human umbilical vein endothelial cells (HUVECs). Results showed that MCP-1 mRNA and protein were stimulated following exposure to 22.4 mM glucose. Transcriptional activity of MCP-1 promoter paralleled endogenous expression of the gene and this activity was dependent on the dose of d-glucose. d-Psicose inhibited these effects. Next we used inhibitors of selected signal transduction pathways to show that high-glucose (HG) stimulated MCP-1 promoter activity was sensitive to p38-Mitogen-Activated Protein Kinase (p38-MAPK) pathway inhibitor. As expected, a dominant-negative p38-MAPK abolished the stimulatory effect of HG on the promoter activity. To incubate the cells with HG and d-psicose reduced the activation of p38-MAPK. Together, these results indicate that the d-psicose suppression of HG induced MCP-1 expression is mediated in part by inhibition of the p38-MAPK pathway and raise the possibility that d-psicose may be of therapeutic value in the treatment of diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Koji Murao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rajesh M, Mukhopadhyay P, Bátkai S, Haskó G, Liaudet L, Drel VR, Obrosova IG, Pacher P. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol 2007; 293:H610-H619. [PMID: 17384130 PMCID: PMC2228254 DOI: 10.1152/ajpheart.00236.2007] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-kappaB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-kappaB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, MD 20892-9413, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Iwashima Y, Okada M, Haneda M, Yoshida T. Regression of cardiac hypertrophy in type 2 diabetes with hypertension by candesartan. Diabetes Res Clin Pract 2006; 74:8-14. [PMID: 16720057 DOI: 10.1016/j.diabres.2006.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 02/02/2006] [Accepted: 03/01/2006] [Indexed: 11/21/2022]
Abstract
This study was designed to compare the effect of candesartan on cardiac left ventricular mass in Japanese patients with that of amlodipine. A total of 40 type 2 diabetic patients with hypertension and left ventricular hypertrophy (LVH) were randomly assigned to receive candesartan (n=20) or amlodipine (n=20). The two treatments when administered for 6 months significantly reduced systolic and diastolic blood pressures (BPs) to a comparable extent. Notably, candesartan significantly reduced left ventricular mass index (LVMI: from 131.5+/-4.5 to 112.1+/-5.9g/m(2), P=0.0009, M+/-S.E.M.), LV posterior wall thickness (PWTd: from 10.3+/-0.3 to 9.1+/-0.3mm, P=0.0052) and interventricular septal thickness (IVSTd: from 10.7+/-0.4 to 9.3+/-0.4mm, P=0.0019) as determined by echocardiography in diastole, but amlodipine treatment did not. LVMI, PWTd and IVSTd were decreased more significantly by the treatment with candesartan than by that with amlodipine (P=0.020, 0.031 and 0.043). The present study thus revealed that candesartan effectively induced regression of LVH in type 2 diabetic patients with hypertension due to effects beyond reduction in BP.
Collapse
Affiliation(s)
- Yasunori Iwashima
- Department of Internal Medicine, Yoshida Hospital, 4-Nishi 4-1-2, Asahikawa 070-0054, Japan.
| | | | | | | |
Collapse
|
28
|
Mine S, Okada Y, Tanikawa T, Kawahara C, Tabata T, Tanaka Y. Increased expression levels of monocyte CCR2 and monocyte chemoattractant protein-1 in patients with diabetes mellitus. Biochem Biophys Res Commun 2006; 344:780-5. [PMID: 16631114 DOI: 10.1016/j.bbrc.2006.03.197] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 03/29/2006] [Indexed: 02/02/2023]
Abstract
Increased monocyte recruitment into subendothelial space in atherosclerotic lesions is one of the hallmarks of diabetic angiopathy. The aim of this study was to determine the state of peripheral blood monocytes in diabetes associated with atherosclerosis. Diabetic patients treated with/without an oral hypoglycemic agent and/or insulin for at least 1 year were recruited (n=106). We also included 24 non-diabetic control subjects. We measured serum levels of monocyte chemoattractant protein (MCP)-1, fasting plasma glucose (FPG), HbA1c, total cholesterol, triglyceride, body mass index (BMI), high sensitivity CRP (hs-CRP) and evaluated CCR2, CD36, CD68 expression on the surface of monocytes. Serum MCP-1 levels were significantly (p<0.05) higher in diabetic patients than in normal subjects. In diabetic patients, serum MCP-1 levels correlated significantly with FPG, HbA1c, triglyceride, BMI, and hs-CRP. The expression levels of CCR2, CD36, and CD68 on monocytes were significantly increased in diabetic patients and were more upregulated by MCP-1 stimulation. Our data suggest that elevated serum MCP-1 levels and increased monocyte CCR2, CD36, CD68 expression correlate with poor blood glucose control and potentially contribute to increased recruitment of monocytes to the vessel wall in diabetes mellitus.
Collapse
Affiliation(s)
- Shinichiro Mine
- First Department of Internal Medicine, University of Occupational and Environmental Health, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Nakano I, Tsugawa T, Shinohara R, Watanabe F, Fujita T, Nagata M, Kato T, Himeno Y, Kobayashi T, Fujiwara K, Nagata M, Itoh M, Nagasaka A. Urinary sorbitol measurement and the effect of an aldose reductase inhibitor on its concentration in the diabetic state. J Diabetes Complications 2003; 17:337-42. [PMID: 14583178 DOI: 10.1016/s1056-8727(02)00169-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amounts of sorbitol (SOR) excreted in 24-h urine were determined on two groups, i.e., diabetic and nondiabetic patients, using an improved method in which ion exchange resin column processing was applied, and these levels were compared with SOR levels in whole blood. Urinary SOR concentration was also determined in diabetic and normal rats in the same manner and its relationship to aldose reductase (AR) activity in whole blood was investigated. Changes in SOR levels in urine and whole blood were compared in diabetic rats after administration of an AR inhibitor (ARI). Whole blood SOR levels and urinary SOR excretion were significantly higher in diabetic patients than in nondiabetic patients. The same results were obtained in the animal models. In diabetic rats, the urinary SOR excretion was about five times higher than that in control rats, and the AR activity in whole blood was also significantly higher. The increase in urinary SOR excretion and whole blood SOR levels, as well as AR activity, in blood in the diabetic state was inhibited by ARI administration. The influence of the diabetic state and the efficacy of the ARI were more marked in urinary SOR excretion than in whole blood SOR levels. These data indicate that determinations of urinary SOR excretion and AR activity are easily measurable and of benefit to assessing the diabetic condition.
Collapse
Affiliation(s)
- Itsuko Nakano
- Department of Internal Medicine, Fujita Health University School of Medicine, Aichi 470-1192, Toyoake, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shanmugam N, Reddy MA, Guha M, Natarajan R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 2003; 52:1256-64. [PMID: 12716761 DOI: 10.2337/diabetes.52.5.1256] [Citation(s) in RCA: 396] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monocyte activation and adhesion to the endothelium play important roles in inflammatory and cardiovascular diseases. These processes are further aggravated by hyperglycemia, leading to cardiovascular complications in diabetes. We have previously shown that high glucose (HG) treatment activates monocytes and induces the expression of tumor necrosis factor (TNF)-alpha via oxidant stress and nuclear factor-kB transcription factor. To determine the effects of HG on the expression of other inflammatory genes, in the present study, HG-induced gene profiling was performed in THP-1 monocytes using cytokine gene arrays containing 375 known genes. HG treatment upregulated the expression of 41 genes and downregulated 15 genes that included chemokines, cytokines, chemokines receptors, adhesion molecules, and integrins. RT-PCR analysis further confirmed that HG significantly increased the expression of monocyte chemoattractant protein-1 (MCP-1), TNF-alpha, beta(2)-integrin, interleukin-1beta, and others. HG treatment increased transcription of the MCP-1 gene, MCP-1 protein levels, and adhesion of THP-1 cells to endothelial cells. HG-induced MCP-1 mRNA expression and monocyte adhesion were blocked by specific inhibitors of oxidant stress, protein kinase C, ERK1/2, and p38 mitogen-activated protein kinases. These results show for the first time that multiple inflammatory cytokines and chemokines relevant to the pathogenesis of diabetes complications are induced by HG via key signaling pathways.
Collapse
Affiliation(s)
- Narkunaraja Shanmugam
- Department of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
31
|
Miwa K, Nakamura J, Hamada Y, Naruse K, Nakashima E, Kato K, Kasuya Y, Yasuda Y, Kamiya H, Hotta N. The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res Clin Pract 2003; 60:1-9. [PMID: 12639759 DOI: 10.1016/s0168-8227(02)00248-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pathogenesis of pericyte loss, an initial deficit in the early stage of diabetic retinopathy, remains unclear. Recent studies have suggested that polyol pathway hyperactivity and apoptosis may be involved in pericyte loss. The mechanisms of the glucose-induced apoptosis in retinal pericytes were investigated to evaluate the pathogenesis of diabetic retinopathy. Under the 20 mM glucose condition, intracellular calcium concentrations and caspase-3 activities were significantly increased, and reduced glutathione (GSH) contents were significantly decreased compared with those under the 5.5 mM glucose condition. These abnormalities were all significantly prevented by an aldose reductase inhibitor, SNK-860. Glucose-induced apoptosis was partially but significantly prevented by SNK-860, an inhibitor of calcium-dependent cysteine protease, calpain, or GSH supplementation, and completely normalized by a caspase-3 inhibitor. These observations suggest that glucose-induced apoptosis in retinal pericytes, as one of the pathogenic factors of diabetic retinopathy, would be mediated through an aldose reductase-sensitive pathway including calcium-calpain cascade and increased oxidative stress, and that caspase-3 would be located furthest downstream of these apoptotic signals.
Collapse
Affiliation(s)
- Kazuma Miwa
- The Third Department of Internal Medicine, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ekberg K, Brismar T, Johansson BL, Jonsson B, Lindström P, Wahren J. Amelioration of sensory nerve dysfunction by C-Peptide in patients with type 1 diabetes. Diabetes 2003; 52:536-41. [PMID: 12540632 DOI: 10.2337/diabetes.52.2.536] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies have demonstrated that proinsulin C-peptide stimulates the activities of Na(+),K(+)-ATPase and endothelial nitric oxide synthase, both of which are enzyme systems of importance for nerve function and known to be deficient in type 1 diabetes. The aim of this randomized double-blind placebo-controlled study was to investigate whether C-peptide replacement improves nerve function in patients with type 1 diabetes. Forty-nine patients without symptoms of peripheral neuropathy were randomized to either 3 months of treatment with C-peptide (600 nmol/24 h, four doses s.c.) or placebo. Forty-six patients (15 women and 31 men, aged 29 years, diabetes duration 10 years, and HbA(1c) 7.0%) completed the study. Neurological and neurophysiological measurements were performed before and after 6 and 12 weeks of treatment. At baseline the patients showed reduced nerve conduction velocities in the sural nerve (sensory nerve conduction velocity [SCV]: 50.9 +/- 0.70 vs. 54.2 +/- 1.2 m/s, P < 0.05) and peroneal nerve (motor nerve conduction velocity: 45.7 +/- 0.55 vs. 53.5 +/- 1.1 m/s, P < 0.001) compared with age-, height-, and sex-matched control subjects. In the C-peptide treated group there was a significant improvement in SCV amounting to 2.7 +/- 0.85 m/s (P < 0.05 compared with placebo) after 3 months of treatment, representing 80% correction of the initial reduction in SCV. The change in SCV was accompanied by an improvement in vibration perception in the patients receiving C-peptide (P < 0.05 compared with placebo), whereas no significant change was detectable in cold or heat perception. In conclusion, C-peptide administered for 3 months as replacement therapy to patients with early signs of diabetic neuropathy ameliorates nerve dysfunction.
Collapse
Affiliation(s)
- Karin Ekberg
- Department of Surgical Sciences, Section of Clinical Physiology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Peponis V, Papathanasiou M, Kapranou A, Magkou C, Tyligada A, Melidonis A, Drosos T, Sitaras NM. Protective role of oral antioxidant supplementation in ocular surface of diabetic patients. Br J Ophthalmol 2002; 86:1369-73. [PMID: 12446368 PMCID: PMC1771432 DOI: 10.1136/bjo.86.12.1369] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AIM To investigate the effect of vitamin C and E supplementation in the levels of nitrite, nitric oxide (NO) related metabolite, and ocular surface parameters in diabetic patients. METHODS 50 patients with non-insulin dependent diabetes mellitus were given vitamin C (1000 mg/day) and vitamin E (400 IU/day) supplementation for 10 days. Nitrite levels in tears were measured by photometric determination before and after vitamin supplementation. Tear function parameters (Schirmer test I, BUT, ocular ferning test) and brush cytology analysis of the conjunctival epithelium were also evaluated. RESULTS Nitrite levels were found to be significantly reduced (p<0.05) after 10 days of vitamin C and E supplementation. Improved values for Schirmer test, BUT test, and ocular ferning test were also found. Goblet cell density and grading of squamous metaplasia showed a significant improvement. CONCLUSIONS Oxidative stress and free radical production are elevated in diabetes mellitus. Antioxidants, such as vitamin C and vitamin E, probably have an important role in reducing the oxidative damage produced by nitric oxide and other free radicals and improving the ocular surface milieu.
Collapse
Affiliation(s)
- V Peponis
- Department of Ophthalmology, General Hospital of Piraeus Tzaneion, Greece
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Delpierre G, Collard F, Fortpied J, Van Schaftingen E. Fructosamine 3-kinase is involved in an intracellular deglycation pathway in human erythrocytes. Biochem J 2002; 365:801-8. [PMID: 11975663 PMCID: PMC1222720 DOI: 10.1042/bj20020325] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Revised: 04/17/2002] [Accepted: 04/25/2002] [Indexed: 02/02/2023]
Abstract
Fructosamine 3-kinase, which phosphorylates low-molecular-mass and protein-bound fructosamines on the third carbon of their deoxyfructose moiety, is quite active in erythrocytes, and was proposed to initiate a process removing fructosamine residues from proteins. In the present study, we show that incubation of human erythrocytes with 200 mM glucose not only caused the progressive formation of glycated haemoglobin, but also increased the level of an anionic form of haemoglobin containing alkali-labile phosphate, to approx. 5% of total haemoglobin. 1-Deoxy-1-morpholinofructose (DMF), a substrate and competitive inhibitor of fructosamine 3-kinase, doubled the rate of accumulation of glycated haemoglobin, but markedly decreased the amount of haemoglobin containing alkali-labile phosphate. The latter corresponds therefore to haemoglobin bound to a fructosamine 3-phosphate group (FN3P-Hb). Returning erythrocytes incubated with 200 mM glucose and DMF to a low-glucose medium devoid of DMF caused a decrease in the amount of glycated haemoglobin, a transient increase in FN3P-Hb and a net decrease in the sum (glycated haemoglobin+FN3P-Hb). These effects were prevented by DMF, indicating that fructosamine 3-kinase is involved in the removal of fructosamine residues. The second step of this 'deglycation' process is most likely a spontaneous decomposition of the fructosamine 3-phosphate residues to a free amine, 3-deoxyglucosone and P(i). This is consistent with the findings that 2-oxo-3-deoxygluconate, the product of 3-deoxyglucosone oxidation, is formed in erythrocytes incubated for 2 days with 200 mM glucose in a sufficient amount to account for the removal of fructosamine residues from proteins, and that DMF appears to inhibit the formation of 2-oxo-3-deoxygluconate from elevated glucose concentrations.
Collapse
Affiliation(s)
- Ghislain Delpierre
- Laboratoire de Chimie Physiologique, UCL and ICP, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
35
|
Hotta N, Toyota T, Matsuoka K, Shigeta Y, Kikkawa R, Kaneko T, Takahashi A, Sugimura K, Koike Y, Ishii J, Sakamoto N. Clinical efficacy of fidarestat, a novel aldose reductase inhibitor, for diabetic peripheral neuropathy: a 52-week multicenter placebo-controlled double-blind parallel group study. Diabetes Care 2001; 24:1776-82. [PMID: 11574441 DOI: 10.2337/diacare.24.10.1776] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the efficacy of fidarestat, a novel aldose reductase (AR) inhibitor, in a double-blind placebo controlled study in patients with type 1 and type 2 diabetes and associated peripheral neuropathy. RESEARCH DESIGN AND METHODS A total of 279 patients with diabetic neuropathy were treated with placebo or fidarestat at a daily dose of 1 mg for 52 weeks. The efficacy evaluation was based on change in electrophysiological measurements of median and tibial motor nerve conduction velocity, F-wave minimum latency, F-wave conduction velocity (FCV), and median sensory nerve conduction velocity (forearm and distal), as well as an assessment of subjective symptoms. RESULTS Over the course of the study, five of the eight electrophysiological measures assessed showed significant improvement from baseline in the fidarestat-treated group, whereas no measure showed significant deterioration. In contrast, in the placebo group, no electrophysiological measure was improved, and one measure significantly deteriorated (i.e., median nerve FCV). At the study conclusion, the fidarestat-treated group was significantly improved compared with the placebo group in two electrophysiological measures (i.e., median nerve FCV and minimal latency). Subjective symptoms (including numbness, spontaneous pain, sensation of rigidity, paresthesia in the sole upon walking, heaviness in the foot, and hypesthesia) benefited from fidarestat treatment, and all were significantly improved in the treated versus placebo group at the study conclusion. At the dose used, fidarestat was well tolerated, with an adverse event profile that did not significantly differ from that seen in the placebo group. CONCLUSIONS The effects of fidarestat-treatment on nerve conduction and the subjective symptoms of diabetic neuropathy provide evidence that this treatment alters the progression of diabetic neuropathy.
Collapse
Affiliation(s)
- N Hotta
- Third Department of Internal Medicine, Nagoya University School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nakayama M, Nakamura J, Hamada Y, Chaya S, Mizubayashi R, Yasuda Y, Kamiya H, Koh N, Hotta N. Aldose reductase inhibition ameliorates pupillary light reflex and F-wave latency in patients with mild diabetic neuropathy. Diabetes Care 2001; 24:1093-8. [PMID: 11375376 DOI: 10.2337/diacare.24.6.1093] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The present study was conducted to investigate the effect of an aldose reductase inhibitor, epalrestat, on autonomic and somatic neuropathy at an early stage in type 2 diabetic patients by assessing the pupillary light reflex and minimum latency of the F-wave. RESEARCH DESIGN AND METHODS A total of 30 diabetic patients with subclinical or mild diabetic neuropathy were randomly allocated to a control group (n = 15) and epalrestat (150 mg/day) group (n = 15). After 24 weeks, the pupillary light reflex test, cardiovascular autonomic function tests, and nerve conduction study were performed. RESULTS The beneficial effect of epalrestat on the pupillary light reflex was observed in the minimum diameter after light stimuli (P = 0.044), constriction ratio (P = 0.014), and maximum velocity of constriction (P = 0.008). Among cardiovascular autonomic nerve functions, the ratio of the longest expiratory R-R interval to the shortest inspiratory R-R interval during deep breathing was significantly improved by epalrestat (P = 0.037). Minimum latencies of F-wave of median and tibial motor nerves were significantly shortened by epalrestat (P = 0.002 and P = 0.001, respectively); however, no significant effects were observed in motor or sensory nerve conduction velocity. CONCLUSIONS These observations suggest that epalrestat may have therapeutic value at the early stage of diabetic neuropathy and that the pupillary light reflex and minimum latency of F-wave may be useful indicators of diabetic neuropathy.
Collapse
Affiliation(s)
- M Nakayama
- Third Department of Internal Medicine, Nagoya University School of Medicine, 65 Tsurama-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Takakura S, Minoura H, Shimoshige Y, Minoura K, Kawamura I, Fujiwara T, Saitoh T, Shimojo F, Seki J, Goto T. Enzyme specificity and tissue distribution of zenarestat, an aldose reductase inhibitor, and its relevance in the use of zenarestat as a therapeutic agent against diabetic neuropathy. Drug Dev Res 2001. [DOI: 10.1002/ddr.1201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Naruse K, Nakamura J, Hamada Y, Nakayama M, Chaya S, Komori T, Kato K, Kasuya Y, Miwa K, Hotta N. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes. Exp Eye Res 2000; 71:309-15. [PMID: 10973739 DOI: 10.1006/exer.2000.0882] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathogenesis of pericyte loss, an initial deficit in the early stage of diabetic retinopathy, remains unclear. Polyol pathway hyperactivity has been implicated in the pathogenesis of diabetic retinopathy, and recent studies have suggested that apoptosis may be involved in pericyte loss. The present study was conducted to investigate whether high glucose induces apoptosis in cultured bovine retinal pericytes. The effect of an aldose reductase inhibitor, SNK-860, was also examined. After a 5 day incubation with various concentrations of glucose (5.5-40 m M) in the presence or absence of SNK-860, the cell viability and the percentages of dead cells were measured, and staining with the TUNEL method and Hoechst 33342, and DNA electrophoresis were performed. High glucose reduced the viability and increased the percentages of dead cells. TUNEL-positive cells were observed in pericytes under high glucose, but not in those under 5.5 m M glucose. In the staining of nuclei with Hoechst 33342, the percentage of apoptotic cells in total cells counted under high glucose was higher than that under 5.5 m M glucose. DNA electrophoresis of pericytes cultured with high glucose demonstrated a 'ladder pattern'. Hyperosmolarity also induced apoptosis in pericytes, but less than that by high glucose. SNK-860 inhibited the glucose-induced apoptosis in pericytes. These observations suggest that the pericyte loss in diabetic retinopathy involves an apoptotic process, and that the polyol pathway hyperactivity plays an important role in inducing apoptosis in pericytes by high glucose.
Collapse
Affiliation(s)
- K Naruse
- The Third Department of Internal Medicine, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|