1
|
Chegodaev D, Gusev V, Lvova O, Pavlova P. Possible role of ketone bodies in the generation of burst suppression electroencephalographic pattern. Front Neurosci 2022; 16:1021035. [PMID: 36590288 PMCID: PMC9800049 DOI: 10.3389/fnins.2022.1021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
|
2
|
Réus GZ, Scaini G, Titus SE, Furlanetto CB, Wessler LB, Ferreira GK, Gonçalves CL, Jeremias GC, Quevedo J, Streck EL. Methylphenidate increases glucose uptake in the brain of young and adult rats. Pharmacol Rep 2015; 67:1033-40. [PMID: 26398400 DOI: 10.1016/j.pharep.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. METHODS MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. RESULTS Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. CONCLUSIONS These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratory of Neurosciences, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Giselli Scaini
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Stephanie E Titus
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Camila B Furlanetto
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Leticia B Wessler
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Gabriela K Ferreira
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Cinara L Gonçalves
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Gabriela C Jeremias
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Emilio L Streck
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.
| |
Collapse
|
3
|
Duarte J, Schuck PF, Wenk GL, Ferreira GC. Metabolic disturbances in diseases with neurological involvement. Aging Dis 2014; 5:238-55. [PMID: 25110608 DOI: 10.14336/ad.2014.0500238] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022] Open
Abstract
Degeneration of specific neuronal populations and progressive nervous system dysfunction characterize neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. These findings are also reported in inherited diseases such as phenylketonuria and glutaric aciduria type I. The involvement of mitochondrial dysfunction in these diseases was reported, elicited by genetic alterations, exogenous toxins or buildup of toxic metabolites. In this review we shall discuss some metabolic alterations related to the pathophysiology of diseases with neurological involvement and aging process. These findings may help identifying early disease biomarkers and lead to more effective therapies to improve the quality of life of the patients affected by these devastating illnesses.
Collapse
Affiliation(s)
| | - Patrícia F Schuck
- Laboratory of inborn errors of metabolism, Universidade do Extremo Sul Catarinense, Brazil
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Gustavo C Ferreira
- Laboratory of inborn errors of metabolism, Universidade do Extremo Sul Catarinense, Brazil
| |
Collapse
|
4
|
Melo DR, Mirandola SR, Assunção NA, Castilho RF. Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism. J Neurosci Res 2012; 90:1190-9. [PMID: 22488725 DOI: 10.1002/jnr.23020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/28/2011] [Accepted: 12/08/2011] [Indexed: 11/08/2022]
Abstract
The neurodegeneration that occurs in methylmalonic acidemia is proposed to be associated with impairment of mitochondrial oxidative metabolism resulting from methylmalonate (MMA) accumulation. The present study evaluated the effects of MMA on oxygen consumption by isolated rat brain mitochondria in the presence of NADH-linked substrates (α-ketoglutarate, citrate, isocitrate, glutamate, malate, and pyruvate). Respiration supported either by glutamate or glutamate plus malate was significantly inhibited by MMA (1-10 mM), whereas no inhibition was observed when a cocktail of NADH-linked substrates was used. Measurements of glutamate transport revealed that the inhibitory effect of MMA on respiration maintained by this substrate is not due to inhibition of its mitochondrial uptake. In light of this result, the effect of MMA on the activity of relevant enzymes involved in mitochondrial glutamate metabolism was investigated. MMA had minor inhibitory effects on glutamate dehydrogenase and aspartate aminotransferase, whereas α-ketoglutarate dehydrogenase was significantly inhibited by this metabolite (K(i) = 3.65 mM). Moreover, measurements of α-ketoglutarate transport and mitochondrial MMA accumulation indicated that MMA/α-ketoglutarate exchange depletes mitochondria from this substrate, which may further contribute to the inhibition of glutamate-sustained respiration. To study the effect of chronic in vivo MMA treatment on mitochondrial function, young rats were intraperitoneally injected with MMA. No significant difference was observed in respiration between isolated brain mitochondria from control and MMA-treated rats, indicating that in vivo MMA treatment did not lead to permanent mitochondrial respiratory defects. Taken together, these findings indicate that the inhibitory effect of MMA on mitochondrial oxidative metabolism can be ascribed to concurrent inhibition of specific enzymes and lower availability of respiratory substrates.
Collapse
Affiliation(s)
- Daniela R Melo
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
5
|
Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 2011; 43:39-46. [PMID: 21271280 DOI: 10.1007/s10863-011-9330-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methylmalonic acidemia is one of the most prevalent inherited metabolic disorders involving neurological deficits. In vitro experiments, animal model studies and tissue analyses from human patients suggest extensive impairment of mitochondrial energy metabolism in this disease. This review summarizes changes in mitochondrial energy metabolism occurring in methylmalonic acidemia, focusing mainly on the effects of accumulated methylmalonic acid, and gives an overview of the results found in different experimental models. Overall, experiments to date suggest that mitochondrial impairment in this disease occurs through a combination of the inhibition of specific enzymes and transporters, limitation in the availability of substrates for mitochondrial metabolic pathways and oxidative damage.
Collapse
|
6
|
Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr 2011; 43:31-8. [PMID: 21249436 DOI: 10.1007/s10863-011-9324-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic acidurias or organic acidemias constitute a group of inherited disorders caused by deficient activity of specific enzymes of amino acids, carbohydrates or lipids catabolism, leading to large accumulation and excretion of one or more carboxylic (organic) acids. Affected patients usually present neurologic symptoms and abnormalities, sometimes accompanied by cardiac and skeletal muscle alterations, whose pathogenesis is poorly known. However, in recent years growing evidence has emerged indicating that mitochondrial dysfunction is directly or indirectly involved in the pathology of various organic acidemias. Mitochondrial impairment in some of these diseases are generally due to mutations in nuclear genes of the tricarboxylic acid cycle or oxidative phosphorylation, while in others it seems to result from toxic influences of the endogenous organic acids to the mitochondrion. In this minireview, we will briefly summarize the present knowledge obtained from human and animal studies showing that disruption of mitochondrial homeostasis may represent a relevant pathomechanism of tissue damage in selective organic acidemias. The discussion will focus on mitochondrial alterations found in patients affected by organic acidemias and by the deleterious effects of the accumulating organic acids on mitochondrial pathways that are crucial for ATP formation and transfer. The elucidation of the mechanisms of toxicity of these acidic compounds offers new perspectives for potential novel adjuvant therapeutic strategies in selected disorders of this group.
Collapse
Affiliation(s)
- Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| | | |
Collapse
|
7
|
Zanatta A, Schuck PF, Viegas CM, Knebel LA, Busanello ENB, Moura AP, Wajner M. In vitro evidence that D-serine disturbs the citric acid cycle through inhibition of citrate synthase activity in rat cerebral cortex. Brain Res 2009; 1298:186-93. [PMID: 19733154 DOI: 10.1016/j.brainres.2009.08.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/20/2009] [Accepted: 08/25/2009] [Indexed: 11/16/2022]
Abstract
The present work investigated the in vitro effects of D-serine (D-Ser) on important parameters of energy metabolism in cerebral cortex of young rats. The parameters analyzed were CO(2) generation from glucose and acetate, glucose uptake and the activities of the respiratory chain complexes I-IV, of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase and of creatine kinase and Na(+),K(+)-ATPase. Our results show that D-Ser significantly reduced CO(2) production from acetate, but not from glucose, reflecting an impairment of the citric acid cycle function. Furthermore, D-Ser did not affect glucose uptake. We also observed that the activity of the mitochondrial enzyme citrate synthase from mitochondrial preparations and purified citrate synthase was significantly inhibited by D-Ser, whereas the other activities of the citric acid cycle as well as the activities of complexes I-III, II-III, II and IV of the respiratory chain, creatine kinase and Na(+),K(+)-ATPase were not affected by this D-amino acid. We also found that L-serine did not affect citrate synthase activity from mitochondrial preparations and purified enzyme. The data indicate that D-Ser impairs the citric acid cycle activity via citrate synthase inhibition, therefore compromising energy metabolism production in cerebral cortex of young rats. Therefore, it is presumed that this mechanism may be involved at least in part in the neurological damage found in patients affected by disorders in which D-Ser metabolism is impaired, with altered cerebral concentrations of this D-amino acid.
Collapse
Affiliation(s)
- Angela Zanatta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos No. 2600-Anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Ribeiro CA, Sgaravatti AM, Rosa RB, Schuck PF, Grando V, Schmidt AL, Ferreira GC, Perry MLS, Dutra-Filho CS, Wajner M. Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease. Neurochem Res 2007; 33:114-24. [PMID: 17680360 DOI: 10.1007/s11064-007-9423-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/19/2007] [Indexed: 12/13/2022]
Abstract
In the present work we investigated the in vitro effect of the branched-chain amino acids (BCAA) accumulating in maple syrup urine disease (MSUD) on some parameters of energy metabolism in cerebral cortex of rats. 14CO2 production from [1-14C]acetate, [1-5-14C]citrate and [U-14C]glucose, as well as glucose uptake by the brain were evaluated by incubating cortical prisms from 30-day-old rats in the absence (controls) or presence of leucine (Leu), valine (Val) or isoleucine (Ile). All amino acids significantly reduced 14CO2 production by around 20-55%, in contrast to glucose utilization, which was significantly increased by up to 90%. Furthermore, Leu significantly inhibited the activity of the respiratory chain complex IV, whereas Val and Ile markedly inhibited complexes II-III, III and IV by up to 40%. We also observed that trolox (alpha-tocopherol) and creatine totally prevented the inhibitory effects provoked by the BCAA on the respiratory chain complex activities, suggesting that free radicals were involved in these effects. The results indicate that the major metabolites accumulating in MSUD disturb brain aerobic metabolism by compromising the citric acid cycle and the electron flow through the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.
Collapse
Affiliation(s)
- César A Ribeiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ferreira GC, Tonin A, Schuck PF, Viegas CM, Ceolato PC, Latini A, Perry MLS, Wyse ATS, Dutra-Filho CS, Wannmacher CMD, Vargas CR, Wajner M. Evidence for a synergistic action of glutaric and 3-hydroxyglutaric acids disturbing rat brain energy metabolism. Int J Dev Neurosci 2007; 25:391-8. [PMID: 17643899 DOI: 10.1016/j.ijdevneu.2007.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/02/2007] [Accepted: 05/30/2007] [Indexed: 11/26/2022] Open
Abstract
Glutaric acidemia type I is an inherited metabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric and 3-hydroxyglutaric acids in the brain tissue of the affected patients. Considering that a toxic role was recently postulated for quinolinic acid in the neuropathology of glutaric acidemia type I, in the present work we investigated whether the combination of quinolinic acid with glutaric or 3-hydroxyglutaric acids or the mixture of glutaric plus 3-hydroxyglutaric acids could alter brain energy metabolism. The parameters evaluated in cerebral cortex from young rats were glucose utilization, lactate formation and (14)CO(2) production from labeled glucose and acetate, as well as the activities of pyruvate dehydrogenase and creatine kinase. We first observed that glutaric (5 mM), 3-hydroxyglutaric (1 mM) and quinolinic acids (0.1 microM) per se did not alter these parameters. Similarly, no change of these parameters occurred when combining glutaric with quinolinic acids or 3-hydroxyglutaric with quinolinic acids. In contrast, co-incubation of glutaric plus 3-hydroxyglutaric acids increased glucose utilization, decreased (14)CO(2) generation from glucose, inhibited pyruvate dehydrogenase activity as well as total and mitochondrial creatine kinase activities. The glutaric plus 3-hydroxyglutaric acids-induced inhibitory effects on creatine kinase were prevented by the antioxidants glutathione and catalase plus superoxide dismutase, indicating the participation of reactive oxygen species. Our data indicate a synergic action of glutaric and 3-hydroxyglutaric acids disturbing energy metabolism in cerebral cortex of young rats.
Collapse
Affiliation(s)
- Gustavo C Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Schuck PF, Tonin A, da Costa Ferreira G, Viegas CM, Latini A, Duval Wannmacher CM, de Souza Wyse AT, Dutra-Filho CS, Wajner M. Kynurenines impair energy metabolism in rat cerebral cortex. Cell Mol Neurobiol 2007; 27:147-60. [PMID: 17151944 PMCID: PMC11517205 DOI: 10.1007/s10571-006-9124-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 09/27/2006] [Indexed: 12/22/2022]
Abstract
Growing evidence indicates that some metabolites derived from the kynurenine pathway, the major route of L-tryptophan catabolism, are involved in the neurotoxicity associated with several brain disorders, such as Huntington's disease, Parkinson's disease and Alzheimer's disease, as well as in glutaryl-CoA dehydrogenase deficiency (GAI). Considering that the pathophysiology of the brain damage in these neurodegenerative disorders is not completely defined, in the present study, we investigated the in vitro effect of L-kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HA) and anthranilic acid (AA) on some parameters of energy metabolism, namely glucose uptake, 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate, as well as on the activities of the respiratory chain complexes I-IV and Na+,K+-ATPase activity in cerebral cortex from 30-day-old rats. We observed that all compounds tested, except L-kynurenine, significantly increased glucose uptake and inhibited 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate. In addition, the activities of complexes I, II and IV of the respiratory chain were significantly inhibited by 3HK, while 3HA inhibited complexes I and II activities and AA inhibited complexes I-III activities. Moreover, Na+,K+-ATPase activity was not modified by these kynurenines. Taken together, our present data provide evidence that various kynurenine intermediates provoke impairment of brain energy metabolism.
Collapse
Affiliation(s)
- Patrícia Fernanda Schuck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Anelise Tonin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Gustavo da Costa Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Carolina Maso Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Alexandra Latini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Angela Terezinha de Souza Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Carlos Severo Dutra-Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600- Anexo, CEP 90035-003 Porto Alegre, RS Brazil
- Serviço de Genética Médica do Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
- Universidade Luterana do Brasil, Canoas, RS Brazil
| |
Collapse
|
11
|
Schuck PF, Tonin A, da Costa Ferreira G, Rosa RB, Latini A, Balestro F, Perry MLS, Wannmacher CMD, de Souza Wyse AT, Wajner M. In vitro effect of quinolinic acid on energy metabolism in brain of young rats. Neurosci Res 2006; 57:277-88. [PMID: 17126438 DOI: 10.1016/j.neures.2006.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/28/2006] [Accepted: 10/25/2006] [Indexed: 12/13/2022]
Abstract
Quinolinic acid (QA) is found at increased concentrations in brain of patients affected by various common neurodegenerative disorders, including Huntington's and Alzheimer's diseases. Considering that the neuropathology of these disorders has been recently attributed at least in part to energy deficit, in the present study we investigated the in vitro effect of QA (0.1-100 microM) on various parameters of energy metabolism, such as glucose uptake, (14)CO(2) production and lactate production, as well as on the activities of the respiratory chain complexes I-V, the citric acid cycle (CAC) enzymes, creatine kinase (CK), lactate dehydrogenase (LDH) and Na(+),K(+)-ATPase and finally the rate of oxygen consumption in brain of 30-day-old rats. We initially observed that QA significantly increased glucose uptake (55%), whereas (14)CO(2) generation from glucose, acetate and citrate was inhibited (up to 60%). Furthermore, QA-induced increase of brain glucose uptake was prevented by the NMDA receptor antagonist MK-801. Complex II activity was also inhibited (up to 35%) by QA, whereas the other activities of the respiratory chain complexes, CAC enzymes, CK and Na(+),K(+)-ATPase were not affected by the acid. Furthermore, inhibition of complex II activity was fully prevented by pre-incubating cortical homogenates with catalase plus superoxide dismutase, indicating that this effect was probably mediated by reactive oxygen species. In addition, lactate production was also not altered by QA, in contrast to the conversion of pyruvate to lactate catalyzed by LDH, which was significantly decreased (17%) by this neurotoxin. We also observed that QA did not change state III, state IV and the respiratory control ratio in the presence of glutamate/malate or succinate, suggesting that its effect on cellular respiration was rather weak. The data provide evidence that QA provokes a mild impairment of brain energy metabolism in vitro and does not support the view that the brain energy deficiency associated to certain neurodegenerative disorders could be solely endorsed to QA accumulation.
Collapse
Affiliation(s)
- Patrícia Fernanda Schuck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Delwing D, Tagliari B, Chiarani F, Wannmacher CMD, Wajner M, de Souza Wyse AT. Alpha-tocopherol and ascorbic acid administration prevents the impairment of brain energy metabolism of hyperargininemic rats. Cell Mol Neurobiol 2006; 26:177-89. [PMID: 16619133 PMCID: PMC11520703 DOI: 10.1007/s10571-006-9022-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 10/31/2005] [Indexed: 10/24/2022]
Abstract
1. We have previously demonstrated that arginine administration induces oxidative stress and compromises energy metabolism in rat hippocampus. In the present study we initially investigated the influence of pretreatment with alpha-tocopherol and ascorbic acid on the effects produced by arginine on hippocampus energy metabolism. We also tested the effect of acute administration of arginine on various parameters of energy metabolism, namely glucose uptake, lactate release and on the activities of succinate dehydrogenase, complex II and cytochrome c oxidase in rat cerebellum, as well as the influence of pretreatment with alpha-tocopherol and ascorbic acid on the effects elicited by arginine on this structure. 2. Sixty-day-old female Wistar rats were treated with a single i.p. injection of saline (control) or arginine (0.8 g/kg) and were killed 1 h later. In another set of experiments, the animals were pretreated for 1 week with daily i.p. administration of saline (control) or alpha-tocopherol (40 mg/kg) and ascorbic acid (100 mg/kg). Twelve hours after the last injection of the antioxidants the rats received one i.p. injection of arginine (0.8 g/kg) or saline and were killed 1 h later. 3. Results showed that arginine administration significantly increased lactate release and diminished glucose uptake and the activities of succinate dehydrogenase and complex II in rat cerebellum. In contrast, complex IV (cytochrome c oxidase) activity was not changed by this amino acid. Furthermore, pretreatment with alpha-tocopherol and ascorbic acid prevented the impairment of energy metabolism caused by hyperargininemia in cerebellum and hippocampus of rats.
Collapse
Affiliation(s)
- Débora Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS Brazil
| | - Bárbara Tagliari
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS Brazil
| | - Fábria Chiarani
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS Brazil
| | - Clovis M. D. Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS Brazil
| | - Angela Terezinha de Souza Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS CEP 90035-003 Brazil
| |
Collapse
|
13
|
Sgaravatti AM, Rosa RB, Schuck PF, Ribeiro CAJ, Wannmacher CMD, Wyse ATS, Dutra-Filho CS, Wajner M. Inhibition of brain energy metabolism by the alpha-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta Mol Basis Dis 2004; 1639:232-8. [PMID: 14636955 DOI: 10.1016/j.bbadis.2003.09.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurological dysfunction is a common finding in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly known. In the present study, we investigated the effect of the in vitro effect of the branched chain alpha-keto acids (BCKA) accumulating in MSUD on some parameters of energy metabolism in cerebral cortex of rats. [14CO(2)] production from [14C] acetate, glucose uptake and lactate release from glucose were evaluated by incubating cortical prisms from 30-day-old rats in Krebs-Ringer bicarbonate buffer, pH 7.4, in the absence (controls) or presence of 1-5 mM of alpha-ketoisocaproic acid (KIC), alpha-keto-beta-methylvaleric acid (KMV) or alpha-ketoisovaleric acid (KIV). All keto acids significantly reduced 14CO(2) production by around 40%, in contrast to lactate release and glucose utilization, which were significantly increased by the metabolites by around 42% in cortical prisms. Furthermore, the activity of the respiratory chain complex I-III was significantly inhibited by 60%, whereas the other activities of the electron transport chain, namely complexes II, II-III, III and IV, as well as succinate dehydrogenase were not affected by the keto acids. The results indicate that the major metabolites accumulating in MSUD compromise brain energy metabolism by blocking the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.
Collapse
Affiliation(s)
- Angela M Sgaravatti
- Departamento de Bioqui;mica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Streck EL, Delwing D, Tagliari B, Matté C, Wannmacher CMD, Wajner M, Wyse ATS. Brain energy metabolism is compromised by the metabolites accumulating in homocystinuria. Neurochem Int 2003; 43:597-602. [PMID: 12820989 DOI: 10.1016/s0197-0186(02)00230-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Homocystinuria is an inborn error of metabolism caused by severe deficiency of cystathionine beta-synthase activity. It is biochemically characterized by tissue accumulation of homocysteine (Hcy) and methionine (Met). Homocystinuric patients present a variable degree of neurological dysfunction whose pathophysiology is poorly understood. In the present study, we investigated the in vitro effect of Hcy and Met on some parameters of energy metabolism in hippocampus of rats. CO(2) production from [U-14C] acetate, glucose uptake and lactate release were assessed by incubating hippocampus prisms from 28-day-old rats in Krebs-Ringer bicarbonate buffer, pH 7.4, in the absence (controls) or presence of Hcy (10-500 microM) or Met (0.2-2.0mM). Hcy and Met decreased CO(2) production in a dose-dependent manner and increased lactate release. In contrast, glucose uptake was not altered by the metabolites. The effect of Hcy and Met on cytochrome c oxidase activity was also studied. It was observed that Met did not alter this enzyme activity, in contrast with Hcy, which significantly inhibited cytochrome c oxidase activity. It is suggested that impairment of brain energy metabolism caused by the metabolites accumulating in homocystinuria may be related to the neurological symptoms present in homocystinuric patients.
Collapse
Affiliation(s)
- Emilio L Streck
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, RS, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Delwing D, Tagliari B, Streck EL, Wannamacher CMD, Wajner M, Wyse ATDS. Reduction of energy metabolism in rat hippocampus by arginine administration. Brain Res 2003; 983:58-63. [PMID: 12914966 DOI: 10.1016/s0006-8993(03)03029-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyperargininemia is an inherited metabolic disease biochemically characterized by tissue accumulation of arginine. Mental retardation and other neurological features are common symptoms in hyperargininemic patients. Considering that the underlying mechanisms of brain damage in this disease are poorly established, in this work we investigated the effect of arginine administration to adult Wistar rats on some parameters of energy metabolism (CO(2) production, glucose uptake, lactate release and the activities of succinate dehydrogenase, complexes II and IV of the respiratory chain) in rat hippocampus. The action of L-NAME, an inhibitor of oxide nitric oxide synthase, on the effects produced by arginine was also tested. Sixty-day-old rats were treated with a single intraperitoneal injection of saline (group I, control), arginine (0.8 g/kg) (group II) or arginine (0.8 g/kg) plus L-NAME (2 mg/kg) (group III) and were killed 1 h later. Results showed that arginine administration significantly increased lactate release and diminished CO(2) production, glucose uptake, succinate dehydrogenase and complex II activities. In contrast, complex IV (cytochrome c oxidase) activity was not changed by this amino acid. Furthermore, simultaneous injection of L-NAME prevented some of these effects, except CO(2) production and lactate release. The present data indicate that in vivo arginine administration impairs some parameters of energy metabolism in hippocampus of rats probably through NO formation.
Collapse
Affiliation(s)
- Débora Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, RS, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Streck EL, Matté C, Vieira PS, Calcagnotto T, Wannmacher CMD, Wajner M, Wyse ATS. Impairment of energy metabolism in hippocampus of rats subjected to chemically-induced hyperhomocysteinemia. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:187-92. [PMID: 12697299 DOI: 10.1016/s0925-4439(03)00019-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Homocystinuria is an inherited metabolic disease biochemically characterized by tissue accumulation of homocysteine (Hcy). Mental retardation, ischemia and other neurological features, whose mechanisms are still obscure are common symptoms in homocystinuric patients. In this work, we investigated the effect of Hcy administration in Wistar rats on some parameters of energy metabolism in the hippocampus, a cerebral structure directly involved with cognition. The parameters utilized were 14CO2 production, glucose uptake, lactate release and the activities of succinate dehydrogenase and cytochrome c oxidase (COX). Chronic hyperhomocysteinemia was induced by subcutaneous administration of Hcy twice a day from the 6th to the 28th day of life in doses previously determined in our laboratory. Control rats received saline in the same volumes. Rats were killed 12 h after the last injection. Results showed that Hcy administration significantly diminished 14CO2 production and glucose uptake, as well as succinate dehydrogenase and COX activities. It is suggested that impairment of brain energy metabolism may be related to the neurological symptoms present in homocystinuric patients.
Collapse
Affiliation(s)
- Emilio L Streck
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
da Silva CG, Ribeiro CAJ, Leipnitz G, Dutra-Filho CS, Wyse AT ATS, Wannmacher CMD, Sarkis JJF, Jakobs C, Wajner M. Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by D-2-hydroxyglutaric acid in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1586:81-91. [PMID: 11781152 DOI: 10.1016/s0925-4439(01)00088-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-2-Hydroxyglutaric (LGA) and D-2-hydroxyglutaric (DGA) acids are the characteristic metabolites accumulating in the neurometabolic disorders known as L-2-hydroxyglutaric aciduria and D-2-hydroxyglutaric aciduria, respectively. Although these disorders are predominantly characterized by severe neurological symptoms, the neurotoxic mechanisms of brain damage are virtually unknown. In this study we have evaluated the role of LGA and DGA at concentrations ranging from 0.01 to 5.0 mM on various parameters of energy metabolism in cerebral cortex slices and homogenates of 30-day-old Wistar rats, namely glucose uptake, CO(2) production and the respiratory chain enzyme activities of complexes I to IV. DGA significantly decreased glucose utilization (2.5 and 5.0 mM) by brain homogenates and CO(2) production (5 mM) by brain homogenates and slices, whereas LGA had no effect on either measurement. Furthermore, DGA significantly inhibited cytochrome c oxidase activity (complex IV) (EC 1.9.3.1) in a dose-dependent manner (35-95%) at doses as low as 0.5 mM, without compromising the other respiratory chain enzyme activities. In contrast, LGA did not interfere with these activities. Our results suggest that the strong inhibition of cytochrome c oxidase activity by increased levels of DGA could be related to the neurodegeneration of patients affected by D-2-hydroxyglutaric aciduria.
Collapse
Affiliation(s)
- Cleide G da Silva
- Department of Biochemistry, Institute of Basic Sciences and Health, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wajner M, Coelho JC. Neurological dysfunction in methylmalonic acidaemia is probably related to the inhibitory effect of methylmalonate on brain energy production. J Inherit Metab Dis 1997; 20:761-8. [PMID: 9427143 DOI: 10.1023/a:1005359416197] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Methylmalonic acidaemia is an inherited metabolic disorder caused by a severe deficiency of the activity of the enzyme L-methylmalonyl-CoA mutase or its cofactor 5'-deoxyadenosylcobalamin, resulting in tissue accumulation of large quantities of methylmalonic acid. Among the various clinical features, neurological symptoms are frequently observed. Patients may present cerebral atrophy and basal ganglia abnormalities are common. In the present report, we update the current knowledge on the influence of methylmalonic acid on brain metabolism in the hope of better understanding the neurological dysfunction characteristic of methylmalonic acidaemia. We present evidence showing that the metabolite inhibits brain energy production by various mechanisms and propose that a fall in cellular ATP generation leading to excitotoxicity is crucial for the occurrence of the neurological damage observed in these patients.
Collapse
Affiliation(s)
- M Wajner
- Department of Biochemistry, UFRGS Medical Genetics Unit, HCPA, Porto Alegre, RS, Brazil
| | | |
Collapse
|
19
|
De Mattos-Dutra A, De Freitas MS, Schröder N, Zilles AC, Wajner M, Pessoa-Pureur R. Methylmalonic acid reduces the in vitro phosphorylation of cytoskeletal proteins in the cerebral cortex of rats. Brain Res 1997; 763:221-31. [PMID: 9296563 DOI: 10.1016/s0006-8993(97)00415-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present work was undertaken to determine the action of methylmalonic acid (MMA), a metabolite, which accumulates in high amounts in methylmalonic acidemia, on the endogenous phosphorylating system associated with the cytoskeletal fraction proteins of cerebral cortex of young rats. We demonstrated that pre-treatment of cerebral cortex slices of young rats with 2.5 mM buffered methylmalonic acid (MMA) is effective in decreasing in vitro incorporation of [32P]ATP into neurofilament subunits (NF-M and NF-L) and alpha- and beta-tubulins. Based on the fact that this system contains cAMP-dependent protein kinase (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII) and protein phosphatase 1 (PP1), we first tested the effect of MMA on the kinase activities by using the specific activators cAMP and Ca2+/calmodulin or the inhibitors PKAI or KN-93 for PKA and CaMKII, respectively. We observed that MMA totally inhibited the stimulatory effect of cAMP and interfered with the inhibitory effect of PKAI. In addition, the metabolite partially prevented the stimulatory effect of Ca2+/calmodulin and interfered with the effect of KN-93. Furthermore, in vitro dephosphorylation of neurofilament subunits and tubulins was totally inhibited in brain slices pre-treated with MMA. Taken together, these results suggest that MMA, at the same concentrations found in tissues of methylmalonic acidemic children, inhibits the in vitro activities of PKA, CaMKII and PP1 associated with the cytoskeletal fraction of the cerebral cortex of rats, a fact that may be involved with the pathogenesis of the neurological dysfunction characteristic of methylmalonic acidemia.
Collapse
Affiliation(s)
- A De Mattos-Dutra
- Departamento de Bioquímica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Methylmalonyl-CoA mutase induction by cerebral ischemia and neurotoxicity of the mitochondrial toxin methylmalonic acid. J Neurosci 1996. [PMID: 8929440 DOI: 10.1523/jneurosci.16-22-07336.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Differential screening of gerbil brain hippocampal cDNA libraries was used to search for genes expressed in ischemic, but not normal, brain. The methylmalonyl-CoA mutase (MCM) cDNA was highly expressed after ischemia and showed a 95% similarity to mouse and 91% similarity to the human MCM cDNAs. Transient global ischemia induced a fourfold increase in MCM mRNA on Northern blots from both hippocampus and whole forebrain. MCM protein exhibited a similar induction on Western blots of gerbil cerebral cortex 8 and 24 hr after ischemia. Treatment of primary brain astrocytes with either the branched-chain amino acid (BCAA) isoleucine or the BCAA metabolite, propionate, induced MCM mRNA fourfold. Increased concentrations of BCAAs and odd-chain fatty acids, both of which are metabolized to propionate, may contribute to inducing the MCM gene during ischemia. Methylmalonic acid, which is formed from the MCM substrate methylmalonyl-CoA and which inhibits succinate dehydrogenase (SDH), produced dose-related cell death when injected into the basal ganglia of adult rat brain. This neurotoxicity is similar to that of structurally related mitochondrial SDH inhibitors, malonate and 3-nitropropionic acid. Methylmalonic acid may contribute to neuronal injury in human conditions in which it accumulates, including MCM mutations and B12 deficiency. This study shows that methylmalonyl-CoA mutase is induced by several stresses, including ischemia, and would serve to decrease the accumulation of an endogenous cellular mitochondrial inhibitor and neurotoxin, methylmalonic acid.
Collapse
|
21
|
de Mello CF, Begnini J, Jiménez-Bernal RE, Rubin MA, de Bastiani J, da Costa E, Wajner M. Intrastriatal methylmalonic acid administration induces rotational behavior and convulsions through glutamatergic mechanisms. Brain Res 1996; 721:120-5. [PMID: 8793091 DOI: 10.1016/0006-8993(96)00117-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of intrastriatal administration of methylmalonic acid (MMA), a metabolite that accumulates in methylmalonic aciduria, on behavior of adult male Wistar rats was investigated. After cannula placing, rats received unilateral intrastriatal injections of MMA (buffered to pH 7.4 with NaOH) or NaCl. MMA induced rotational behavior toward the contralateral side of injection and clonic convulsions in a dose-dependent manner. Rotational behavior and convulsions were prevented by intrastriatal preadministration of MK-801 and attenuated by preadministration of succinate. This study provides evidence for a participation of NMDA receptors in the MMA-induced behavioral alterations, where succinate dehydrogenase inhibition seems to have a pivotal role.
Collapse
Affiliation(s)
- C F de Mello
- Departamento de Química, Universidade Federal de Santa Maria, Brazil.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dutra JC, Dutra-Filho CS, Cardozo SE, Wannmacher CM, Sarkis JJ, Wajner M. Inhibition of succinate dehydrogenase and beta-hydroxybutyrate dehydrogenase activities by methylmalonate in brain and liver of developing rats. J Inherit Metab Dis 1993; 16:147-53. [PMID: 8487494 DOI: 10.1007/bf00711328] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of methylmalonate (MMA) on succinate dehydrogenase (SDH) and beta-hydroxybutyrate dehydrogenase (HBDH) activities in brain and liver of 15-day-old rats were studied. The apparent Km of SDH for succinate was 0.45 mmol/L in brain and 0.34 mmol/L in liver. MMA inhibited the enzyme activity in both tissues with Ki values of 4.5 mmol/L and 2.3 mmol/L in brain and liver, respectively, and the inhibition was of the reversible competitive type. The calculated Km for HBDH with beta-hydroxybutyrate as substrate was 1.26 mmol/L in brain and 0.36 mmol/L in liver. MMA inhibited the enzyme with a Ki value of 0.015 mmol/L in brain and 0.275 mmol/L in liver. These results are probably relevant to our understanding of cerebral metabolism in methylmalonic acidaemic children, especially during ketoacidotic and hypoglycaemic crises, and may be related to the pathogenesis of cerebral dysfunction of methylmalonic acidaemia.
Collapse
Affiliation(s)
- J C Dutra
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Alegre-RS, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Wajner M, Dutra JC, Cardoso SE, Wannmacher CM, Motta ER. Effect of methylmalonate on in vitro lactate release and carbon dioxide production by brain of suckling rats. J Inherit Metab Dis 1992; 15:92-6. [PMID: 1583880 DOI: 10.1007/bf01800350] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Methylmalonate (MMA) accumulates in the tissues of patients with methylmalonic acidaemia, who present severe neurological signs soon after birth and later mental retardation. Attempting to understand the pathophysiology of the disorder, we investigated the effects of MMA on brain glucose uptake, lactate release and CO2 production. Glucose uptake and lactate release were studied by incubating 40 microns wide brain prisms from 15-day-old rats in Krebs-Ringer bicarbonate buffer, pH 7.0, containing 5.0 mmol/L glucose and one of three concentrations of MMA (1.0, 2.5 and 5.0 mmol/L). Controls did not contain MMA in the incubation medium. MMA induced a significant increase of lactate production in a dose-dependent pattern that was proportional to glucose uptake by the brain prisms. We also studied the influence of MMA on brain CO2 production from [2-14C]glucose and [U-14C]acetate by incubating brain prisms in the same buffer in the presence of the substrates with (experimental groups) or without (controls) 5.0 mmol/L MMA. MMA significantly reduced CO2 formation from both substrates.
Collapse
Affiliation(s)
- M Wajner
- Departamento de Bioquimica, Instituto de Biociencias, UFRGS, Alegre, RS Brazil
| | | | | | | | | |
Collapse
|
24
|
Rubin MA, Wannmacher CM, Valente GB, Camargo MM, Pureur RP. Diminished concentration of the NF-H subunit of neurofilaments in cerebral cortex of rats chronically treated with proline, methylmalonate and phenylalanine plus alpha-methylphenylalanine. J Inherit Metab Dis 1992; 15:252-60. [PMID: 1527992 DOI: 10.1007/bf01799639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wistar rats from the same litter were randomly divided into four groups and received subcutaneously from the 6th to 28th day post partum one of the following drugs: L-proline, methylmalonate, L-phenylalanine plus alpha-methylphenylalanine, or equivalent volumes of 0.9% (w/v) saline (controls). On day 30, the animals were killed, the brain was removed and the cerebral cortex and cerebellum was immediately dissected. Total intermediate filament fraction (IF) was obtained from cerebral cortex and cerebellum by using a high-salt phosphate-buffered solution supplemented by 1% Triton X-100. The pellet contained the bulk of the IF proteins. Following SDS-polyacrylamide gel electrophoresis, these proteins were identified as the 200, 150 and 68 kD subunits of neurofilaments (NF-H, NF-M and NF-L, respectively), the 66 kDa associated protein, the 57 kDa intermediate filament-like protein and the 52 kDa glial fibrillary acidic protein (GFAP). They were further scanned through densitometry from enriched fractions of controls and of animals treated with the various drugs in order to determine the effects of the treatments on their concentration. Our results showed that the concentration of IF protein in cerebellum was not affected by the treatments, whereas chronic administration of all drugs significantly decreased NF-H subunit concentration in rat cerebral cortex.
Collapse
Affiliation(s)
- M A Rubin
- Departamento de Bioquimica, Instituto de Biociências, UFRGS, Porto Alegre-RS-Brasil
| | | | | | | | | |
Collapse
|