1
|
Abstract
West syndrome (WS) is an early life epileptic encephalopathy associated with infantile spasms, interictal electroencephalography (EEG) abnormalities including high amplitude, disorganized background with multifocal epileptic spikes (hypsarrhythmia), and often neurodevelopmental impairments. Approximately 64% of the patients have structural, metabolic, genetic, or infectious etiologies and, in the rest, the etiology is unknown. Here we review the contribution of etiologies due to various metabolic disorders in the pathology of WS. These may include metabolic errors in organic molecules involved in amino acid and glucose metabolism, fatty acid oxidation, metal metabolism, pyridoxine deficiency or dependency, or acidurias in organelles such as mitochondria and lysosomes. We discuss the biochemical, clinical, and EEG features of these disorders as well as the evidence of how they may be implicated in the pathogenesis and treatment of WS. The early recognition of these etiologies in some cases may permit early interventions that may improve the course of the disease.
Collapse
Affiliation(s)
- Seda Salar
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
2
|
Patel KP, O’Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab 2012; 106:385-94. [PMID: 22896851 PMCID: PMC4003492 DOI: 10.1016/j.ymgme.2012.03.017] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. OBJECTIVE We reviewed 371 cases of PDC deficiency, published between 1970 and 2010, that involved defects in subunits E1α and E1β and components E1, E2, E3 and the E3 binding protein of the complex. DATA SOURCES AND EXTRACTION English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. RESULTS Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. CONCLUSIONS Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio ≤ 20.
Collapse
Affiliation(s)
- Kavi P. Patel
- Department of Medicine (Division of Endocrinology, Metabolism and
Diabetes), College of Medicine, University of Florida, Gainesville, FL 32611,
USA
| | - Thomas W. O’Brien
- Department of Biochemistry and Molecular Biology, College of
Medicine, University of Florida, Gainesville, FL 32611, USA
| | | | - Jonathan Shuster
- Department of Epidemiology and Health Policy Research, College of
Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Peter W. Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and
Diabetes), College of Medicine, University of Florida, Gainesville, FL 32611,
USA
- Department of Biochemistry and Molecular Biology, College of
Medicine, University of Florida, Gainesville, FL 32611, USA
- Corresponding author at: UF College of Medicine, 1600 SW
Archer Road M2-238, P.O. Box 100226, Gainesville, FL 32610, USA. Fax: +1
352 273 9013. (P.W. Stacpoole)
| |
Collapse
|
3
|
Patel KP, O'Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab 2012; 105:34-43. [PMID: 22079328 PMCID: PMC3754811 DOI: 10.1016/j.ymgme.2011.09.032] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/27/2011] [Accepted: 09/27/2011] [Indexed: 01/01/2023]
Abstract
CONTEXT Pyruvate dehydrogenase complex (PDC) deficiency is a genetic mitochondrial disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration and, usually, death during childhood. There has been no recent comprehensive analysis of the natural history and clinical course of this disease. OBJECTIVE We reviewed 371 cases of PDC deficiency, published between 1970 and 2010, that involved defects in subunits E1α and E1β and components E1, E2, E3 and the E3 binding protein of the complex. DATA SOURCES AND EXTRACTION English language peer-reviewed publications were identified, primarily by using PubMed and Google Scholar search engines. RESULTS Neurodevelopmental delay and hypotonia were the commonest clinical signs of PDC deficiency. Structural brain abnormalities frequently included ventriculomegaly, dysgenesis of the corpus callosum and neuroimaging findings typical of Leigh syndrome. Neither gender nor any clinical or neuroimaging feature differentiated the various biochemical etiologies of the disease. Patients who died were younger, presented clinically earlier and had higher blood lactate levels and lower residual enzyme activities than subjects who were still alive at the time of reporting. Survival bore no relationship to the underlying biochemical or genetic abnormality or to gender. CONCLUSIONS Although the clinical spectrum of PDC deficiency is broad, the dominant clinical phenotype includes presentation during the first year of life; neurological and neuromuscular degeneration; structural lesions revealed by neuroimaging; lactic acidosis and a blood lactate:pyruvate ratio ≤20.
Collapse
Affiliation(s)
- Kavi P. Patel
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Thomas W. O'Brien
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | | | - Jonathan Shuster
- Epidemiology and Health Policy Research College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Peter W. Stacpoole
- Department of Medicine (Division of Endocrinology and Metabolism), College of Medicine, University of Florida, Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Mew NA, Loewenstein JB, Kadom N, Lichter-Konecki U, Gropman AL, Martin JM, Vanderver A. MRI features of 4 female patients with pyruvate dehydrogenase E1 alpha deficiency. Pediatr Neurol 2011; 45:57-9. [PMID: 21723463 PMCID: PMC3129538 DOI: 10.1016/j.pediatrneurol.2011.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/24/2010] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
Pyruvate dehydrogenase complex is a key intramitochondrial multienzyme complex required for the conversion of pyruvate to acetyl-CoA. Most patients with pyruvate dehydrogenase deficiency have a defect in the E1 alpha subunit, associated with mutations in the PDHA1 gene. In this report, we submit detailed magnetic resonance images in 4 affected female patients with PDHA1 mutations who had with severe cortical atrophy, dilated ventricles, and an incomplete corpus callosum. In one of these patients, the magnetic resonance imaging pattern prompted molecular diagnostic testing when enzymatic testing was normal. We underscore that this constellation of features, which may be misdiagnosed as periventricular leukomalacia, illustrates a pattern highly suggestive of a deficiency of pyruvate dehydrogenase E1 alpha in female patients and should trigger appropriate diagnostic investigations.
Collapse
Affiliation(s)
- Nicholas Ah Mew
- Division of Genetics and Metabolism, Children’s National Medical Center, Washington, DC
| | | | - Nadja Kadom
- Department of Diagnostic Imaging and Radiology, Children’s National Medical Center, Washington, DC
| | - Uta Lichter-Konecki
- Division of Genetics and Metabolism, Children’s National Medical Center, Washington, DC
| | - Andrea L. Gropman
- Department of Neurology, Children’s National Medical Center, Washington, DC
| | - Jodie M. Martin
- Department of Neurology, Children’s National Medical Center, Washington, DC
| | - Adeline Vanderver
- Department of Neurology, Children’s National Medical Center, Washington, DC
| |
Collapse
|
5
|
Shah NS, Mitchell WG, Boles RG. Mitochondrial disorders: a potentially under-recognized etiology of infantile spasms. J Child Neurol 2002; 17:369-72. [PMID: 12150585 DOI: 10.1177/088307380201700511] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Infantile spasms represent an age-dependent response of the immature brain to a wide variety of insults. An unselected group of children with infantile spasms were reviewed to determine etiology; a metabolic work-up was undertaken if the etiology was unclear from history and examination (cryptogenic). Of the 56 infants, 34 had a recognizable etiology (symptomatic), 1 had normal development (idiopathic), and 21 had cryptogenic infantile spasms. Among the latter, results of plasma lactate and pyruvate or urine organic acids were available in 17. In 2 infants (monozygotic twins), mitochondrial DNA testing revealed the relatively common A3243G mitochondrial mutation. In these twins and 11 of the remaining 15, body fluid metabolite testing suggested possible defective energy metabolism. Our twins and previous reports suggest that mitochondrial disorders should be considered in the differential diagnosis of infantile spasms. Among our cases remaining cryptogenic, signs of abnormal energy metabolism were prevalent, suggesting that metabolic derangements may be common causes or secondary consequences of infantile spasms.
Collapse
Affiliation(s)
- Namrata S Shah
- Division of Neurology, Childrens Hospital Los Angeles, CA, USA
| | | | | |
Collapse
|
6
|
Parra D, González A, Mugueta C, Martínez A, Monreal I. Laboratory approach to mitochondrial diseases. J Physiol Biochem 2001; 57:267-84. [PMID: 11800289 DOI: 10.1007/bf03179820] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dysfunction in mitochondrial processes has been related to several pathologies. In these disorders, the cell suffers oxidative imbalance that is mostly due to defects in pyruvate metabolism, mitochondrial fatty acids oxidation, the citric acid cycle or electron transport by the mitochondrial respiratory chain. These metabolic alterations produce mitochondrial diseases that have been related to inherited syndromes, such as MERRF or MELAS. The main affected organs are brain, skeletal muscle, kidney, heart and liver, because of the high energetic demand and the oxidative metabolism. Moreover, the relationship between mitochondrial dysfunction and neurodegenerative processes, such as Parkinson disease or Alzheimer disease, as well as ageing, has been shown. Because mitochondrias are the target of several xenobiotics, such as aspirin, AZT or alcohol consumption, mitochondrial impairment has also been proposed as a mechanism of toxicity. Most laboratory tests that are available in the diagnosis of mitochondrial illness are assayed in tissue biopsies and are usually difficult to interpret. Recently, it has been shown that non-invasive techniques, such as nuclear magnetic resonance or the 2-keto[1-(13)C]isocaproic acid breath test, may be useful to assess mitochondrial function. This article attempts to show the laboratory approach to mitochondrial diseases, reviewing new techniques that could be of great value in the research of mitochondrial function, such as the 2-keto[1-(13)C]isocaproic breath test.
Collapse
Affiliation(s)
- D Parra
- Department of Clinical Biochemistry, Clínica Universitaria de Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
7
|
Bednarek N, Ezzédine H, Sommer C, Leroux B, Morville P. [Brain malformations and metabolic diseases]. Arch Pediatr 2000; 7 Suppl 2:336s-337s. [PMID: 10904765 DOI: 10.1016/s0929-693x(00)80092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- N Bednarek
- Service de pédiatrie B, American Memorial Hospital, Reims, France
| | | | | | | | | |
Collapse
|
8
|
Abstract
West syndrome is a multi-etiological condition. Recent progress in perinatal medicine and the recent development of new neuroimaging techniques may have changed the etiological panorama of West syndrome. Our recent study has disclosed an increasing percentage of the perinatal group and a decreasing percentage of the doubtful group. The increase of the perinatal group is due to an increased proportion of very low-birthweight infants and periventricular leucomalacia (PVL). Among various etiological factors added to the long list of causes of West syndrome, focal cortical dysplasia is another newly emerging etiological factor associated with this syndrome. Patients with unilateral focal dysplasia more commonly have partial seizures, but may show infantile spasms transiently during infancy. They may have partial seizures preceding, in combination with or following infantile spasms. Follow-up MRI is necessary to detect delayed myelination because it is not disclosed at common ages of onset of this syndrome. PET is useful to further differentiate the cryptogenic group. Although West syndrome is regarded as one of the intractable epilepsies, the prognosis differs widely according to etiology. Follow-up PET is also useful to predict seizure and psychomotor prognosis.
Collapse
Affiliation(s)
- K Watanabe
- Department of Pediatrics, Nagoya University School of Medicine, Japan.
| |
Collapse
|