1
|
Li X, Guo S, Sun Y, Ding J, Chen C, Wu Y, Li P, Sun T, Wang X. GABRG2 mutations in genetic epilepsy with febrile seizures plus: structure, roles, and molecular genetics. J Transl Med 2024; 22:767. [PMID: 39143639 PMCID: PMC11323400 DOI: 10.1186/s12967-024-05387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 08/16/2024] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.
Collapse
Affiliation(s)
- Xinxiao Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Shengnan Guo
- Department of Rehabilitative Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China
| | - Jiangwei Ding
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Yuehui Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Peidong Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
2
|
Belelli D, Hales TG, Lambert JJ, Luscher B, Olsen R, Peters JA, Rudolph U, Sieghart W. GABA A receptors in GtoPdb v.2021.3. IUPHAR/BPS GUIDE TO PHARMACOLOGY CITE 2021; 2021. [PMID: 35005623 DOI: 10.2218/gtopdb/f72/2021.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABA A receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236]. Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and β - subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].
Collapse
|
3
|
Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA. Analysis of the Set of GABAA Receptor Genes in the Human Genome. J Biol Chem 2004; 279:41422-35. [PMID: 15258161 DOI: 10.1074/jbc.m401354200] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genes of the ionotropic gamma-aminobutyric acid receptor (GABR) subunits have shown an unusual chromosomal clustering, but only now can this be fully specified by analyses of the human genome. We have characterized the genes encoding the 18 known human GABR subunits, plus one now located here, for their precise locations, sizes, and exon/intron structures. Clusters of 17 of the 19, distributed between five chromosomes, are specified in detail, and their possible significance is considered. By applying search algorithms designed to recognize sequences of all known GABR-type subunits in species from man down to nematodes, we found no new GABR subunit is detectable in the human genome. However, the sequence of the human orthologue of the rat GABR rho3 receptor subunit was uncovered by these algorithms, and its gene could be analyzed. Consistent with those search results, orthologues of the beta4 and gamma4 subunits from the chicken, not cloned from mammals, were not detectable in the human genome by specific searches for them. The relationships are consistent with the mammalian subunit being derived from the beta line and epsilon from the gamma line, with mammalian loss of beta4 and gamma4. In their structures the human GABR genes show a basic pattern of nine coding exons, with six different genomic mechanisms for the alternative splicing found in various subunits. Additional noncoding exons occur for certain subunits, which can be regulatory. A dicysteine loop and its exon show remarkable constancy between all GABR subunits and species, of deduced functional significance.
Collapse
Affiliation(s)
- Joseph Simon
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
4
|
Traupe H. Functional X-chromosomal mosaicism of the skin: Rudolf Happle and the lines of Alfred Blaschko. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 85:324-9. [PMID: 10398252 DOI: 10.1002/(sici)1096-8628(19990806)85:4<324::aid-ajmg2>3.0.co;2-o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this article, the contribution of Rudolf Happle to the understanding of X-linked skin diseases is reviewed. In 1977 he proposed functional X-chromosomal mosaicism as the genetic mechanism underlying cutaneous anomalies that were seen in a number of X-linked skin diseases such as incontinentia pigmenti or focal dermal hypoplasia. Moreover, he recognized that these cutaneous anomalies followed the lines of Blaschko and thus he could tie in the development of the lines of Blaschko with a datable embryonic event. Convincing proof for the concept of functional X-chromosomal mosaicism was later provided by his group from functional sweat studies in female carriers of the X-linked gene defect hypohidrotic ectodermal dysplasia showing again on the back of the patient a gross, fountain-like mosaic typical of the lines of Blaschko. Moreover, in the years 1977 to 1981 he recognized the mosaic pattern in a syndrome of chondrodysplasia punctata, linear ichthyosis, patchy cicatricial alopecia, unilateral cataracts, and short stature again as a functional X-chromosomal mosaic becoming manifest exclusively in women and proposed that this syndrome, which is today named after him, is because of an X-linked dominant gene defect. Finally, the puzzling molecular genetics of the Happle syndrome are reviewed. Most likely, the Happle syndrome gene is not lethal for hemizygously affected males but rather similar to the example of epilepsy with mental retardation limited to females, the gene actually spares male gene carriers.
Collapse
Affiliation(s)
- H Traupe
- Department of Dermatology, University of Münster, Münster, Germany.
| |
Collapse
|
5
|
de Gouyon B, Chatterjee A, Monaco A, Quaderi N, Brown SD, Herman GE. Comparative mapping on the mouse X chromosome defines a myotubular myopathy equivalent region. Mamm Genome 1996; 7:575-9. [PMID: 8678976 DOI: 10.1007/s003359900172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The gene for X-linked myotubular myopathy (MTM1) has been localized to a 300-kb critical region in human Xq28 between IDS and GABRA3. As part of an effort to clone this gene, we developed a YAC contig on the mouse X Chromosome (Chr) which includes loci homologous to those within the human MTM1 critical region. The murine contig consists of 18 YACs and spans 2.5-3.0 Mb. We have aligned the human and murine physical maps by isolating conserved mouse genomic fragments, including CpG islands and trapped exons. We believe that the simultaneous isolation of genes from both mouse and human and continued comparative mapping will prove helpful in the eventual identification of MTM1 and other genes in the region.
Collapse
Affiliation(s)
- B de Gouyon
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza 821T, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
6
|
Levin ML, Chatterjee A, Pragliola A, Worley KC, Wehnert M, Zhuchenko O, Smith RF, Lee CC, Herman GE. A comparative transcription map of the murine bare patches (Bpa) and striated (Str) critical regions and human Xq28. Genome Res 1996; 6:465-77. [PMID: 8828036 DOI: 10.1101/gr.6.6.465] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The X-linked developmental mouse mutations bare patches (Bpa) and striated (Str) may be homologous to human X-linked dominant chondrodysplasia punctata (CDPX2) and incontinentia pigmenti (IP2), respectively, based on their genetic mapping and clinical phenotypes. Bpa and Str have been localized to an overlapping critical region of 600 kb that demonstrates conserved gene order with loci in human Xq28 between DXS1104 and DXS52. As part of efforts to isolate the genes involved in these disorders, we have begun to develop a comparative transcription map spanning this region in both species. Using techniques of cross-species conservation and hybridization, exon trapping, and cDNA selection we have identified four known genes or members of gene families--caltractin, a member of the gamma-aminobutyric acid (GABAA) receptor gene family, a member of the melanoma antigen gene (MAGE) family, and several members of the murine-specific, X-linked lymphocyte regulated gene (Xlr3) family. Trapped exons and, in some cases, longer cDNAs have been isolated for potentially 7-9 additional genes. One cDNA demonstrates highly significant homology with members of the Krüppel family of zinc finger transcription factors. A second novel cDNA demonstrates homology at the 3' end of the predicted amino acid sequence to a LIM domain consensus. Gene order appears conserved among those cDNAs determined to be present in both human and mouse. Three of the murine transcripts appear to be present in multiple copies within the Bpa/Str critical region and could be associated with a predisposition to genomic rearrangements. Reverse transcriptase PCR (RT-PCR) and Northern analysis demonstrate that several of the transcripts are expressed in mid-gestation murine embryos and neonatal skin, making them candidates for the Bpa and Str mutations and their respective homologous human disorders.
Collapse
Affiliation(s)
- M L Levin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Angel TA, Faust CJ, Gonzales JC, Kenwrick S, Lewis RA, Herman GE. Genetic mapping of the X-linked dominant mutations striated (Str) and bare patches (Bpa) to a 600-kb region of the mouse X chromosome: implications for mapping human disorders in Xq28. Mamm Genome 1993; 4:171-6. [PMID: 8439729 DOI: 10.1007/bf00352233] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Striated (Str) and bare patches (Bpa) are X-irradiation-induced, X-linked dominant mouse mutations that are lethal prenatally in hemizygous males. To map the Str mutation, we generated a backcross involving Mus castaneus. Pedigree analysis of 193 affected female and normal male progeny from the cross places Str extremely close to DXMIT1 and favors a gene order of (Cf-9)-Ids-Gabra3-DXS1104h-(Str, DXMIT1)-F8a-DXPas8-DXBay6-DXMIT6 for the loci studied. This region of the mouse X Chromosome (Chr) is syntenic with proximal human Xq28. Based on the mode of inheritance and clinical phenotype, Str may be a homolog of human familial incontinentia pigmenti (IP2). Further refinement of our genetic mapping of bare patches positions that locus between DXS1104h and DXPas8 in the same region as Str, raising the possibility that Bpa and Str may be allelic or are due to mutations in overlapping contiguous genes.
Collapse
Affiliation(s)
- T A Angel
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
8
|
Chatterjee A, Faust CJ, Herman GE. Genetic and physical mapping of the biglycan gene on the mouse X chromosome. Mamm Genome 1993; 4:33-6. [PMID: 8093671 DOI: 10.1007/bf00364660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A human cDNA for biglycan (BGN) has recently been mapped to proximal Xq28. We have mapped the murine locus, Bgn, approximately 50 kb distal to DXPas8, using a combination of genetic mapping in an interspecific backcross of B6CBA-Aw-J/A-Bpa x Mus spretus and physical mapping using pulsed field gel electrophoresis and analysis of murine yeast artificial chromosomes (YACs) containing both DXPas8 and Bgn. Our mapping studies also appear to exclude Bgn as a candidate gene for the bare patches (Bpa) mutation and for the homologous human disorder X-linked dominant chondrodysplasia punctata (CDPX2).
Collapse
Affiliation(s)
- A Chatterjee
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | | | | |
Collapse
|
9
|
Traupe H, Müller D, Atherton D, Kalter DC, Cremers FP, van Oost BA, Ropers HH. Exclusion mapping of the X-linked dominant chondrodysplasia punctata/ichthyosis/cataract/short stature (Happle) syndrome: possible involvement of an unstable pre-mutation. Hum Genet 1992; 89:659-65. [PMID: 1355069 DOI: 10.1007/bf00221958] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Homology with the mouse bare patches mutant suggests that the gene for the X-linked dominant chondrodysplasia punctata/ichthyosis/cataract/short stature syndrome (Happle syndrome) is located in the human Xq28 region. To test this hypothesis, we performed a linkage study in three families comprising a total of 12 informative meioses. Multiple recombinations appear to exclude the Xq28 region as the site of the gene. Surprisingly, multiple crossovers were also found with 26 other markers spread along the rest of the X chromosome. Two-point linkage analysis and analysis of recombination chromosomes seem to exclude the gene from the entire X chromosome. Three different mechanisms are discussed that could explain the apparent exclusion of an X-linked gene from the X chromosome by linkage analysis: (a) different mutations on the X chromosome disturbing X inactivation, (b) metabolic interference, i.e. allele incompatibility of an X-linked gene, and (c) an unstable pre-mutation that can become silent in males. We favour the last explanation, as it would account for the unexpected sex ratio (M:F) of 1.2:1 among surviving siblings, and for the striking clinical variability of the phenotype, including stepwise increases in disease expression in successive generations.
Collapse
Affiliation(s)
- H Traupe
- Department of Human Genetics, University Hospital, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Faust CJ, Levinson B, Gitschier J, Herman GE. Extension of the physical map in the region of the mouse X chromosome homologous to human Xq28 and identification of an exception to conserved linkage. Genomics 1992; 13:1289-95. [PMID: 1354645 DOI: 10.1016/0888-7543(92)90048-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have extended our pulsed-field gel map of the region of the mouse X chromosome homologous to human Xq28 to include the loci Gdx (DXS254Eh), P3 (DXS253Eh), G6pd, Cf-8, and F8a. Gdx, P3, and G6pd are demonstrated to be physically linked to the X-linked visual pigment locus (Rsvp) within a maximal distance of 340 kb, while G6pd and Cf-8 are approximately 900 kb apart. These studies favor a gene order of cen-Rsvp-Gdx-P3-G6pd-(Cf-8)-tel and extend the physical map of this region to 5 million bp. In conjunction with previous physical mapping studies in both mouse and human, the results suggest conserved linkage for loci in this region of the mouse X chromosome and human Xq28. However, employing pulsed-field gel electrophoresis and genetic pedigree analysis of interspecific backcross progeny, we have found close linkage of a clone encoding a mouse homolog for human factor VIII-associated gene A (F8A) to DXPas8, thus revealing the first exception to conserved gene order between murine and human loci in the region.
Collapse
Affiliation(s)
- C J Faust
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
11
|
Nadeau JH, Davisson MT, Doolittle DP, Grant P, Hillyard AL, Kosowsky MR, Roderick TH. Comparative map for mice and humans. Mamm Genome 1992; 3:480-536. [PMID: 1392257 DOI: 10.1007/bf00778825] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J H Nadeau
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | | | | | | | | | | | |
Collapse
|
12
|
Traupe H, van den Ouweland AM, van Oost BA, Vogel W, Vetter U, Warren ST, Rocchi M, Darlison MG, Ropers HH. Fine mapping of the human biglycan (BGN) gene within the Xq28 region employing a hybrid cell panel. Genomics 1992; 13:481-3. [PMID: 1612609 DOI: 10.1016/0888-7543(92)90279-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human biglycan is a small proteoglycan that is expressed at high levels in the growing skeleton and in human skin at the cell surface of differentiating keratinocytes. The human gene for biglycan (BGN) has previously been mapped by in situ hybridization to the Xq27-q28 region. Employing somatic hybrid cell lines with human X chromosome breakpoints within this region, we performed a fine mapping of the gene within Xq28. Our results indicate that the biglycan gene is proximal to the red/green cone pigment genes, G6PD, and coagulation factor VIII and is distal to DXS304, DXS305, and GABRA3. The biglycan gene precisely maps to a region of the X chromosome, where, by comparative gene mapping, one would expect to find the gene for X-linked dominant chondrodysplasia punctata/ichthyosis/short stature (Happle) syndrome. Hence, BGN is a candidate gene for the Happle syndrome.
Collapse
Affiliation(s)
- H Traupe
- Department of Human Genetics, University Hospital, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Faust CJ, Verkerk AJ, Wilson PJ, Morris CP, Hopwood JJ, Oostra BA, Herman GE. Genetic mapping on the mouse X chromosome of human cDNA clones for the fragile X and Hunter syndromes. Genomics 1992; 12:814-7. [PMID: 1572654 DOI: 10.1016/0888-7543(92)90314-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Murine X-linked genes corresponding to the human Fragile X (FMR1) and Hunter syndrome (IDS) loci have been mapped in an interspecific backcross between B6CBA-Aw-J/A-Bpa and Mus spretus using human cDNA clones. Pedigree analysis of recombinants from a total of 248 backcross progeny favors a gene order of (Cf-9, Mcf-2)-(Fmr-1)-Ids-Gabra3-Rsvp. Gene order is conserved between the species, although no fragile site has been detected in the mouse in this region of the murine X chromosome.
Collapse
Affiliation(s)
- C J Faust
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | | | | |
Collapse
|
14
|
Laval SH, Blair HJ, Hirst MC, Davies KE, Boyd Y. Mapping of FMR1, the gene implicated in fragile X-linked mental retardation, on the mouse X chromosome. Genomics 1992; 12:818-21. [PMID: 1572655 DOI: 10.1016/0888-7543(92)90315-j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A genetic map of the Cf-9 to Dmd region of the mouse X chromosome has been established by typing 100 offspring from a Mus musculus x Mus spretus interspecific backcross for the four loci Cf-9, Cdr, Gabra3, and Dmd. The following order and genetic distances in centimorgans were determined: (Cf-9)-2.4 +/- 1.7-(Cdr)-2.0 +/- 1.4-(Gabra3)-4.1 +/- 2.0-(Dmd). Six backcross offspring carrying X chromosomes with recombination events in the Cdr-Dmd region were identified. These recombination events were used to define the position of Fmr-1, the murine homologue of FMR1, which is the gene implicated in the fragile X syndrome in man, and that of DXS296h, the murine homologue of DXS296. Both Fmr-1 and DXS296h were mapped into the same recombination interval as Gabra3 on the mouse X chromosome. These findings provide strong support for the concept that the order of loci lying in the Cf-9 to Gabra3 segment of the X chromosome is highly conserved between human and mouse.
Collapse
Affiliation(s)
- S H Laval
- Genetics Division, Medical Research Council Radiobiology Unit, Didcot, Oxon, England
| | | | | | | | | |
Collapse
|
15
|
Dietrich A, Korn B, Poustka A. Completion of the physical map of Xq28: the location of the gene for L1CAM on the human X chromosome. Mamm Genome 1992; 3:168-72. [PMID: 1617223 DOI: 10.1007/bf00352462] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene for the neural cell adhesion molecule L1 (L1CAM) has been shown to be located close to the color vision pigment genes in mouse and man. This location has been confirmed by a number of different mapping strategies in both species. With pulsed field gel electrophoresis it has been proposed that L1CAM lies between the RCP, GCP, and GDX, G6PD loci. We report here a reinterpretation of the location of this gene, based on the physical linkage of L1CAM to the more proximal locus DXS15. This places L1CAM between this marker and the color vision genes (RCP, GCP), a region very dense in CpG islands, expected to contain a large fraction of the disease genes assigned to the Xq28 region. In combination with the physical mapping data on Xq28 described previously, this closes the last remaining gap in the map of the Xq27-Xq28 region. This removes the last contradiction between the maps of this region in the genomes of man and mouse, and confirms the close similarity of order and distances of markers between these organisms.
Collapse
Affiliation(s)
- A Dietrich
- Deutsches Krebsforschungszentrum, Heidelberg, FRG
| | | | | |
Collapse
|
16
|
Affiliation(s)
- S D Brown
- Department of Biochemistry and Molecular Genetics, St. Mary's Hospital Medical School, London, UK
| | | | | |
Collapse
|
17
|
Faust CJ, Herman GE. Physical mapping of the loci Gabra3, DXPas8, CamL1, and Rsvp in a region of the mouse X chromosome homologous to human Xq28. Genomics 1991; 11:154-64. [PMID: 1684949 DOI: 10.1016/0888-7543(91)90112-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using pulsed-field gel electrophoresis, a 3 million-bp physical map containing the X-linked loci Gabra3, DXPas8, CamL1, and Rsvp has been constructed for a segment of the mouse X chromosome homologous to human Xq28. Detailed mapping was performed using single and double digestions with rare-cutter restriction enzymes. Gabra3 and DXPas8 have been shown to be physically linked within a maximal distance of 1600 kb, DXPas8 and CamL1 within 750 kb, and CamL1 and Rsvp within 450 kb. In addition, several CpG islands have been detected in the region encompassing CamL1 and Rsvp. These studies confirm a gene order of cen-Gabra3-DXPas8-CamL1-Rsvp-tel determined by genetic mapping in interspecific backcrosses (A.S. Ryder-Cook et al., 1988, EMBO J. 7: 3017-3021; G.E. Herman et al., 1991, Genomics 9: 670-677). Physical distances for the loci studied agree with the calculated genetic distances. Assuming that there is conserved linkage between man and mouse in the region, the physical mapping data presented here may help to clarify the uncertain gene order for some human Xq28 loci.
Collapse
Affiliation(s)
- C J Faust
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
18
|
Herman GE, Berry M, Munro E, Craig IW, Levy ER. The construction of human somatic cell hybrids containing portions of the mouse X chromosome and their use to generate DNA probes via interspersed repetitive sequence polymerase chain reaction. Genomics 1991; 10:961-70. [PMID: 1916827 DOI: 10.1016/0888-7543(91)90186-i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interspersed repetitive sequence polymerase chain reaction (IRS-PCR) has become a powerful tool for the rapid generation of DNA probes from human chromosomes present in rodent somatic cell hybrids. We have constructed a somatic cell hybrid containing a major portion of the mouse X chromosome in a human background (clone 8.0). IRS-PCR was developed for the specific amplification of mouse DNA using either of two primers from the rodent-specific portion of the murine B1 repeat. Amplification was subsequently performed with clone 8.0 and a subclone, 8.1/1, which retains a small murine X-chromosomal fragment including Hprt and the Gdx locus. A total of 15-20 discrete PCR products ranging in size from less than 500 to greater than 3000 bp were obtained from clone 8.0 with each primer. In clone 8.1/1, a subset of these bands plus some additional bands were observed. Nine bands amplified from clone 8.1/1 have been excised from gels and used as probes on Southern blots. All of the fragments behaved as single-copy probes and detected domesticus/spretus variation. They have been regionally mapped using an interspecific backcross. The probe locations are compatible with those of markers known to be present in clone 8.1/1. These results demonstrate the feasibility of this method as applied to the mouse genome and the high likelihood of generating useful DNA probes from a targeted region.
Collapse
Affiliation(s)
- G E Herman
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
19
|
Maconochie MK, Brown SD, Greenfield AJ. Sequence analysis of two exons from the murine dystrophin locus. Mamm Genome 1991; 2:64-8. [PMID: 1543903 DOI: 10.1007/bf00570441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have isolated two genomic clones from the murine dystrophin locus, containing single exons encoding protein sequence from the putative actin-binding domain of the amino-terminus and the terminal portion of the triple helical domain. Using interspecific backcross progeny mice, both clones were shown to be X-linked. Sequence analysis indicated that the amino-terminal clone contains a 173 bp exon exhibiting 90% nucleotide sequence identity to human dystrophin exon 6, whilst the C-terminal clone contains a 61 bp exon with 93% nucleotide sequence identity to the human cDNA sequence.
Collapse
Affiliation(s)
- M K Maconochie
- Department of Biochemistry and Molecular Genetics, St. Mary's Hospital Medical School, Norfolk Place, London, UK
| | | | | |
Collapse
|
20
|
Affiliation(s)
- S D Brown
- Department of Biochemistry and Molecular Genetics, St. Mary's Hospital Medical School, London, UK
| | | | | | | | | |
Collapse
|