1
|
Shelkowitz E, Gantz MG, Ridenour TA, Scheimann AO, Strong T, Bohonowych J, Duis J. Neuropsychiatric features of Prader-Willi syndrome. Am J Med Genet A 2022; 188:1457-1463. [PMID: 35098642 DOI: 10.1002/ajmg.a.62662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 01/21/2023]
Abstract
Prader-Willi syndrome (PWS) is a genetic disorder characterized by hypotonia and poor feeding in infancy which progresses to hyperphagia in early-mid childhood, as well as developmental delays, a spectrum of behavioral and psychiatric concerns, endocrinopathies, orthopedic issues, and less commonly, seizures, sleep apnea, and narcolepsy with or without cataplexy. This study used data in the Global PWS Registry (N = 893) to explore the onset and severity over time of the neuropsychiatric features reported in individuals with PWS and explored its associations with sleep disorders, seizures, and psychiatric symptoms. Results demonstrate that seizures are more common in the deletion subtype and that narcolepsy and cataplexy are more common in individuals who have sleep-related seizures. Finally, this work shows that anxiety and compulsive behaviors are persistent features of PWS that may arise early in childhood, and that anxiety is associated with higher frequency of other comorbid psychiatric diagnoses. In conclusion, this study is one of the largest to date characterizing sleep disorders and neuropsychiatric characteristics of individuals with PWS and reports on the novel association between sleep disorders and seizures. This study is also one of the first to offer details on the nature of the progression of these features in individuals with PWS.
Collapse
Affiliation(s)
- Emily Shelkowitz
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Campus, Aurora, Colorado, USA
| | | | | | - Ann O Scheimann
- Division of Gastroenterology, Department of Pediatrics, John Hopkins University, Baltimore, Maryland, USA
| | - Theresa Strong
- Foundation for Prader-Willi Research, Pasadena, California, USA
| | | | - Jessica Duis
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Hou SJ, Tsai SJ, Kuo PH, Lin WY, Liu YL, Yang AC, Lin E, Lan TH. An association study in the Taiwan Biobank elicits the GABAA receptor genes GABRB3, GABRA5, and GABRG3 as candidate loci for sleep duration in the Taiwanese population. BMC Med Genomics 2021; 14:223. [PMID: 34530807 PMCID: PMC8447520 DOI: 10.1186/s12920-021-01083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-aminobutyric acid type A (GABAA) receptors mainly mediate the effects of gamma-aminobutyric acid, which is the primary inhibitory neurotransmitter in the central nervous system. Abundant evidence suggests that GABAA receptors play a key role in sleep-regulating processes. No genetic association study has explored the relationships between GABAA receptor genes and sleep duration, sleep quality, and sleep timing in humans. METHODS We determined the association between single-nucleotide polymorphisms (SNPs) in the GABAA receptor genes GABRA1, GABRA2, GABRB3, GABRA5, and GABRG3 and sleep duration, sleep quality, and sleep timing in the Taiwan Biobank with a sample of 10,127 Taiwanese subjects. There were 10,142 subjects in the original study cohort. We excluded 15 subjects with a medication history of sedative-hypnotics. RESULTS Our data revealed an association of the GABRB3-GABRA5-GABRG3 gene cluster with sleep duration, which has not been previously identified: rs79333046 (beta = - 0.07; P = 1.21 × 10-3) in GABRB3, rs189790076 (beta = 0.92; P = 1.04 × 10-3) in GABRA5, and rs147619342 (beta = - 0.72; P = 3.97 × 10-3) in GABRG3. The association between rs189790076 in GABRA5 and sleep duration remained significant after Bonferroni correction. A variant (rs12438141) in GABRB3 was also found to act as a potential expression quantitative trait locus. Additionally, we discovered interactions between variants in the GABRB3-GABRA5-GABRG3 gene cluster and lifestyle factors, such as tea and coffee consumption, smoking, and physical activity, that influenced sleep duration, although some interactions became nonsignificant after Bonferroni correction. We also found interactions among GABRB3, GABRA5, and GABRG3 that affected sleep duration. Furthermore, we identified an association of rs7165524 (beta = - 0.06; P = 2.20 × 10-3) in GABRA5 with sleep quality and an association of rs79465949 (beta = - 0.12; P = 3.95 × 10-3) in GABRB3 with sleep timing, although these associations became nonsignificant after Bonferroni correction. However, we detected no evidence of an association of individual SNPs in GABRA1 and GABRA2. CONCLUSIONS Our results indicate that rs189790076 in GABRA5 and gene-gene interactions among GABRB3, GABRA5, and GABRG3 may contribute to sleep duration in the Taiwanese population.
Collapse
Affiliation(s)
- Sheue-Jane Hou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Yu Lin
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Eugene Lin
- Department of Biostatistics, University of Washington, 3980 15th Avenue NE, Box 351617, Seattle, WA, 98195, USA.
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Tsuo-Hung Lan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan.
| |
Collapse
|
3
|
Belelli D, Hales TG, Lambert JJ, Luscher B, Olsen R, Peters JA, Rudolph U, Sieghart W. GABA A receptors in GtoPdb v.2021.3. IUPHAR/BPS GUIDE TO PHARMACOLOGY CITE 2021; 2021. [PMID: 35005623 DOI: 10.2218/gtopdb/f72/2021.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABA A receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236]. Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and β - subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].
Collapse
|
4
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
5
|
Fatemi SH, Folsom TD. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophr Res 2015; 167:42-56. [PMID: 25432637 PMCID: PMC5301472 DOI: 10.1016/j.schres.2014.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/24/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota Medical School, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | - Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Fatemi SH, Reutiman TJ, Folsom TD, Rustan OG, Rooney RJ, Thuras PD. Downregulation of GABAA receptor protein subunits α6, β2, δ, ε, γ2, θ, and ρ2 in superior frontal cortex of subjects with autism. J Autism Dev Disord 2014; 44:1833-45. [PMID: 24668190 DOI: 10.1007/s10803-014-2078-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABAA) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABAA and GABAB subunits and overall reduced protein expression for GABAA receptor alpha 6 (GABRα6), GABAA receptor beta 2 (GABRβ2), GABAA receptor delta (GABRδ), GABAA receptor epsilon (GABRε), GABAA receptor gamma 2 (GABRγ2), GABAA receptor theta (GABRθ), and GABAA receptor rho 2 (GABRρ2) in superior frontal cortex from subjects with autism. Our data demonstrate systematic changes in GABAA&B subunit expression in brains of subjects with autism, which may help explain the presence of cognitive abnormalities in subjects with autism.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Division of Neuroscience Research, Department of Psychiatry, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN, 55455, USA,
| | | | | | | | | | | |
Collapse
|
7
|
Fatemi SH, Folsom TD, Rooney RJ, Thuras PD. Expression of GABAA α2-, β1- and ε-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder. Transl Psychiatry 2013; 3:e303. [PMID: 24022508 PMCID: PMC3784760 DOI: 10.1038/tp.2013.64] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/17/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022] Open
Abstract
There is abundant evidence that dysfunction of the γ-aminobutyric acid (GABA)ergic signaling system is implicated in the pathology of schizophrenia and mood disorders. Less is known about the alterations in protein expression of GABA receptor subunits in brains of subjects with schizophrenia and mood disorders. We have previously demonstrated reduced expression of GABA(B) receptor subunits 1 and 2 (GABBR1 and GABBR2) in the lateral cerebella of subjects with schizophrenia, bipolar disorder and major depressive disorder. In the current study, we have expanded these studies to examine the mRNA and protein expression of 12 GABA(A) subunit proteins (α1, α2, α3, α5, α6, β1, β2, β3, δ, ε, γ2 and γ3) in the lateral cerebella from the same set of subjects with schizophrenia (N=9-15), bipolar disorder (N=10-15) and major depression (N=12-15) versus healthy controls (N=10-15). We found significant group effects for protein levels of the α2-, β1- and ε-subunits across treatment groups. We also found a significant group effect for mRNA levels of the α1-subunit across treatment groups. New avenues for treatment, such as the use of neurosteroids to promote GABA modulation, could potentially ameliorate GABAergic dysfunction in these disorders.
Collapse
Affiliation(s)
- S H Fatemi
- Division of Neuroscience Research, Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA,Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA,Division of Neuroscience Research, Department of Psychiatry, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA. E-mail:
| | - T D Folsom
- Division of Neuroscience Research, Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - P D Thuras
- Department of Psychiatry, VA Medical Center Minneapolis, MN, USA
| |
Collapse
|
8
|
Enoch MA, Baghal B, Yuan Q, Goldman D. A factor analysis of global GABAergic gene expression in human brain identifies specificity in response to chronic alcohol and cocaine exposure. PLoS One 2013; 8:e64014. [PMID: 23717525 PMCID: PMC3661725 DOI: 10.1371/journal.pone.0064014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022] Open
Abstract
Although expression patterns of GABAergic genes in rodent brain have largely been elucidated, no comprehensive studies have been performed in human brain. The purpose of this study was to identify global patterns of GABAergic gene expression in healthy adults, including trans and cis effects in the GABAA gene clusters, before determining the effects of chronic alcohol and cocaine exposure on gene expression in the hippocampus. RNA-Seq data from ‘BrainSpan’ was obtained across 16 brain regions from postmortem samples from nine adults. A factor analysis was performed on global expression of 21 GABAergic pathway genes. Factor specificity for response to chronic alcohol/cocaine exposure was subsequently determined from the analysis of RNA-Seq data from postmortem hippocampus of eight alcoholics, eight cocaine addicts and eight controls. Six gene expression factors were identified. Most genes loaded (≥0.5) onto one factor; six genes loaded onto two. The largest factor (0.30 variance) included the chromosome 5 gene cluster that encodes the most common GABAA receptor, α1β2γ2, and genes encoding the α3β3γ2 receptor. Genes within this factor were largely unresponsive to chronic alcohol/cocaine exposure. In contrast, the chromosome 4 gene cluster factor (0.14 variance) encoding the α2β1γ1 receptor was influenced by chronic alcohol/cocaine exposure. Two other factors (0.17 and 0.06 variance) showed expression changes in alcoholics/cocaine addicts; these factors included genes involved in GABA synthesis and synaptic transport. Finally there were two factors that included genes with exceptionally low (0.10 variance) and high (0.09 variance) expression in the cerebellum; the former factor was unaffected by alcohol/cocaine exposure. This study has shown that there appears to be specificity of GABAergic gene groups, defined by covariation in expression, for response to chronic alcohol/cocaine exposure. These findings might have implications for combating stress-related craving and relapse.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
9
|
Clément Y, Prut L, Saurini F, Mineur YS, Le Guisquet AM, Védrine S, Andres C, Vodjdani G, Belzung C. Gabra5-gene haplotype block associated with behavioral properties of the full agonist benzodiazepine chlordiazepoxide. Behav Brain Res 2012; 233:474-82. [PMID: 22677273 DOI: 10.1016/j.bbr.2012.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023]
Abstract
The gabra5 gene is associated with pharmacological properties (myorelaxant, amnesic, anxiolytic) of benzodiazepines. It is tightly located (0.5 cM) close to the pink-eyed dilution (p) locus which encodes for fur color on mouse chromosome 7. We tested the putative role of the gabra5 gene in pharmacological properties of the full non specific agonist chlordiazepoxide (CDP), using behavioral and molecular approaches in mutated p/p mice and wild type F2 from crosses between two multiple markers inbred strain ABP/Le and C57BL/6By strain. From our results, using rotarod, light-dark box, elevated maze and radial arm maze tests, we demonstrate that p/p mice are more sensitive than WT to the sensory motor, anxiolytic and amnesic effect of CDP. This is associated with the presence of a haplotypic block on the murine chromosome 7 and with an up regulation of gabra5 mRNAs in hippocampi of p/p F2 mice.
Collapse
Affiliation(s)
- Y Clément
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, 75651 Paris Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Saari TI, Uusi-Oukari M, Ahonen J, Olkkola KT. Enhancement of GABAergic activity: neuropharmacological effects of benzodiazepines and therapeutic use in anesthesiology. Pharmacol Rev 2011; 63:243-67. [PMID: 21245208 DOI: 10.1124/pr.110.002717] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
GABA is the major inhibitory neurotransmitter in the central nervous system (CNS). The type A GABA receptor (GABA(A)R) system is the primary pharmacological target for many drugs used in clinical anesthesia. The α1, β2, and γ2 subunit-containing GABA(A)Rs located in the various parts of CNS are thought to be involved in versatile effects caused by inhaled anesthetics and classic benzodiazepines (BZD), both of which are widely used in clinical anesthesiology. During the past decade, the emergence of tonic inhibitory conductance in extrasynaptic GABA(A)Rs has coincided with evidence showing that these receptors are highly sensitive to the sedatives and hypnotics used in anesthesia. Anesthetic enhancement of tonic GABAergic inhibition seems to be preferentially increased in regions shown to be important in controlling memory, awareness, and sleep. This review focuses on the physiology of the GABA(A)Rs and the pharmacological properties of clinically used BZDs. Although classic BZDs are widely used in anesthesiological practice, there is a constant need for new drugs with more favorable pharmacokinetic and pharmacodynamic effects and fewer side effects. New hypnotics are currently developed, and promising results for one of these, the GABA(A)R agonist remimazolam, have recently been published.
Collapse
Affiliation(s)
- Teijo I Saari
- Department of Anesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku University Hospital, P.O. Box 52 (Kiinamyllynkatu 4-8), FI-20520 Turku, Finland.
| | | | | | | |
Collapse
|
11
|
Sander T, Kretz R, Williamson MP, Elmslie FV, Rees M, Hildmann T, Bianchi A, Bauer G, Sailer U, Scaramelli A, Schmitz B, Gardiner RM, Janz D, Beck-Mannagetta G. Linkage analysis between idiopathic generalized epilepsies and the GABAA receptor α5, β3 and γ3 subunit gene cluster on chromosome 15. Acta Neurol Scand 2009. [DOI: 10.1111/j.1600-0404.1997.tb00230.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Agrawal A, Pergadia ML, Saccone SF, Hinrichs AL, Lessov-Schlaggar CN, Saccone NL, Neuman RJ, Breslau N, Johnson E, Hatsukami D, Montgomery GW, Heath AC, Martin NG, Goate AM, Rice JP, Bierut LJ, Madden PAF. Gamma-aminobutyric acid receptor genes and nicotine dependence: evidence for association from a case-control study. Addiction 2008; 103:1027-38. [PMID: 18482426 DOI: 10.1111/j.1360-0443.2008.02236.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The gamma-aminobutyric acid receptor A (GABRA) gene clusters on chromosomes 4 and 5 have been examined previously for their association with alcohol and drug dependence phenotypes. Compelling evidence suggests that GABRA2 is associated with alcohol and drug dependence. However, no study has investigated whether genes in the GABA(A) gene clusters are associated with nicotine dependence, an important phenotype with a high correlation to persistent smoking, the single most preventable cause of mortality world-wide. DESIGN Using data on 1050 nicotine-dependent cases and 879 non-dependent smoking controls, we used logistic regression to examine the association between single nucleotide polymorphisms (SNPs) in 13 genes in the GABA(A) receptor system as well as GABBR2 (a GABA(B) gene). FINDINGS We found evidence for association between four SNPs in GABRA4, two SNPs in GABRA2 and one SNP in GABRE with nicotine dependence. These included a synonymous polymorphism in GABRA2 (rs279858), lying in a highly conserved region, which has been shown previously to be associated with alcohol and drug dependence. A non-synonymous polymorphism (rs16859834/rs2229940) in GABRA4, also highly conserved, was associated at P-value of 0.03. Significant haplotypes associated with nicotine dependence were found for GABRA2. No evidence for epistatic interactions were noted. Our study did not find evidence for an association between GABBR2 gene and nicotine dependence. CONCLUSIONS Given the potential role of compounds that enhance GABAergic neurotransmission in smoking cessation research, these findings have enormous potential for informing the wider field of addiction research.
Collapse
Affiliation(s)
- Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Henschel O, Gipson KE, Bordey A. GABAA receptors, anesthetics and anticonvulsants in brain development. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:211-24. [PMID: 18537647 PMCID: PMC2557552 DOI: 10.2174/187152708784083812] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GABA, acting via GABA(A) receptors, is well-accepted as the main inhibitory neurotransmitter of the mature brain, where it dampens neuronal excitability. The receptor's properties have been studied extensively, yielding important information about its structure, pharmacology, and regulation that are summarized in this review. Several GABAergic drugs have been commonly used as anesthetics, sedatives, and anticonvulsants for decades. However, findings that GABA has critical functions in brain development, in particular during the late embryonic and neonatal period, raise worthwhile questions regarding the side effects of GABAergic drugs that may lead to long-term cognitive deficits. Here, we will review some of these drugs in parallel with the control of CNS development that GABA exerts via activation of GABA(A) receptors. This review aims to provide a basic science and clinical perspective on the function of GABA and related pharmaceuticals acting at GABA(A) receptors.
Collapse
Affiliation(s)
- Oliver Henschel
- Department of Neurosurgery, Yale University, New Haven, CT 06520-8082, USA
| | | | | |
Collapse
|
14
|
Yip J, Soghomonian JJ, Blatt GJ. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 2007; 113:559-68. [PMID: 17235515 DOI: 10.1007/s00401-006-0176-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/14/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
The recent identification of decreased protein levels of glutamate decarboxylase (GAD) 65 and 67 isoforms in the autistic cerebellar tissue raises the possibility that abnormal regulation of GABA production in individual neurons may contribute to the clinical features of autism. Reductions in Purkinje cell number have been widely reported in autism. It is not known whether the GAD changes also occur in Purkinje cells at the level of transcription. Using a novel approach, the present study quantified GAD67 mRNA, the most abundant isoform in Purkinje cells, using in situ hybridization in adult autistic and control cases. The results indicate that GAD67 mRNA level was reduced by 40% in the autistic group (P < 0.0001; two-tailed t test), suggesting that reduced Purkinje cell GABA input to the cerebellar nuclei potentially disrupts cerebellar output to higher association cortices affecting motor and/or cognitive function. These findings may also contribute to the understanding of previous reports of alterations in the GABAergic system in limbic and cerebro-cortical areas contributing to a more widespread pathophysiology in autistic brains.
Collapse
Affiliation(s)
- Jane Yip
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany St, R1003, Boston, MA 02118, USA
| | | | | |
Collapse
|
15
|
Park CS, Park SY, Lee CS, Sohn JW, Hahn GH, Kim BJ. Association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population. J Korean Med Sci 2006; 21:533-8. [PMID: 16778401 PMCID: PMC2729963 DOI: 10.3346/jkms.2006.21.3.533] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Family, twin, and adoption studies have demonstrated that genes play an important role in the development of alcoholism. We investigated the association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population. The genotype of the GABAA receptor gene polymorphisms were determined by performing polymerase chain reaction genotyping for 172 normal controls and 162 male alcoholics who are hospitalized in alcoholism treatment institute. We found a significant association between the genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene and alcoholism. The GG genotype of the GABAA alpha1 receptor gene was associated with the onset age of alcoholism and alcohol withdrawal symptoms, and a high score on the Korean version of the ADS. However, there was no association between the genetic polymorphisms of the GABAA beta2 and gamma2 receptor gene and alcoholisms. Our finding suggest that genetic polymorphisms of the GABAA alpha1 and GABAA alpha6 receptor gene may be associated with the development of alcoholism and that the GG genotype of the GABAA alpha1 receptor gene play an important role in the development of the early onset and the severe type of alcoholism.
Collapse
Affiliation(s)
- Chul-Soo Park
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - So-Young Park
- Department of Psychiatry, Changwon Hospital, Changwon, Korea
| | - Chul-Soon Lee
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Jin-Wook Sohn
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Gyu-Hee Hahn
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Bong-Jo Kim
- Department of Psychiatry, College of Medicine, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
16
|
Curran S, Roberts S, Thomas S, Veltman M, Browne J, Medda E, Pickles A, Sham P, Bolton PF. An association analysis of microsatellite markers across the Prader-Willi/Angelman critical region on chromosome 15 (q11-13) and autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 2005; 137B:25-8. [PMID: 15952184 DOI: 10.1002/ajmg.b.30126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autism (OMIM 209850) is a neurodevelopmental disorder with a significant genetic component of a complex nature. Cytogenetic abnormalities in the Prader-Willi/Angelman syndrome critical region (PWACR) on chromosome 15 (q11-13) have been described in several individuals with autism. We have examined five microsatellite markers spread across the 4 Mb PWACR for linkage disequilibrium (LD) in 148 families with autism spectrum disorder (ASD) and a subset of 82 families with autism using the extended transmission disequilibrium test (ETDT). The markers examined were D15S11, D15S128, D15S1506, GABRB3, and D15S1002. In addition we have examined the microsatellite D15S822 for hemizygous deletion status in our sample as it had been previously reported to be increased in autism. We found no significant LD with any of the markers tested either in the ASD or autism families when looking at paternal and maternal meioses combined. However, as there are known imprinted genes in the region, including possibly GABRB3, we also examined for LD in paternal and maternal meioses separately. Examining paternal transmissions only, we found marginal evidence for LD with a protective allele at marker D15S11 in the ASD families (Chi-sq 7 df, P = 0.05) and marginal evidence for risk alleles at markers D15S1506 (Chi-sq 13.7, 6 df, P = 0.06), GABRB3 (Chi-sq 15.9, 8 df, P = 0.11) and D15S1002 (Chi-sq 17.7, 9 df, P = 0.08) in the autism only families. The allele responsible for the association with GABRB3 is the 191 allele which was previously reported to be overtransmitted. Hemizygous deletion of the microsatellite D15S822 was found in 3 out of 340 independent chromosomes in our sample; a rate of 0.8%. This is not significantly different to the frequency in the general population. In conclusion, our results did not rule out the involvement of this chromosomal region, but provided further evidence, albeit very limited, to implicate GABRB3. Further more systematic work in larger samples is required and confirmation that GABRB3 is imprinted is desirable.
Collapse
Affiliation(s)
- Sarah Curran
- MRC Social, Genetic and Developmental Pyschiatry Centre, Institute of Pyschiatry, De Crespigny Park, London SE5 8AF, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA. Analysis of the Set of GABAA Receptor Genes in the Human Genome. J Biol Chem 2004; 279:41422-35. [PMID: 15258161 DOI: 10.1074/jbc.m401354200] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genes of the ionotropic gamma-aminobutyric acid receptor (GABR) subunits have shown an unusual chromosomal clustering, but only now can this be fully specified by analyses of the human genome. We have characterized the genes encoding the 18 known human GABR subunits, plus one now located here, for their precise locations, sizes, and exon/intron structures. Clusters of 17 of the 19, distributed between five chromosomes, are specified in detail, and their possible significance is considered. By applying search algorithms designed to recognize sequences of all known GABR-type subunits in species from man down to nematodes, we found no new GABR subunit is detectable in the human genome. However, the sequence of the human orthologue of the rat GABR rho3 receptor subunit was uncovered by these algorithms, and its gene could be analyzed. Consistent with those search results, orthologues of the beta4 and gamma4 subunits from the chicken, not cloned from mammals, were not detectable in the human genome by specific searches for them. The relationships are consistent with the mammalian subunit being derived from the beta line and epsilon from the gamma line, with mammalian loss of beta4 and gamma4. In their structures the human GABR genes show a basic pattern of nine coding exons, with six different genomic mechanisms for the alternative splicing found in various subunits. Additional noncoding exons occur for certain subunits, which can be regulatory. A dicysteine loop and its exon show remarkable constancy between all GABR subunits and species, of deduced functional significance.
Collapse
Affiliation(s)
- Joseph Simon
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Steiger JL, Russek SJ. GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors. Pharmacol Ther 2004; 101:259-81. [PMID: 15031002 DOI: 10.1016/j.pharmthera.2003.12.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The type A gamma-aminobutyric acid (GABA(A)) receptors mediate the majority of fast inhibitory neurotransmission in the CNS, and alterations in GABA(A) receptor function is believed to be involved in the pathology of several neurological and psychiatric illnesses, such as epilepsy, anxiety, Alzheimer's disease, and schizophrenia. GABA(A) receptors can be assembled from eight distinct subunit families defined by sequence similarity: alpha(1-6), beta(1-3), gamma(1-3), delta, pi, theta, and rho(1-3). The regulation of GABA(A) receptor function in the brain is a highly compensating system, influencing both the number and the composition of receptors at the cell surface. While transcriptional and translational points of control operate in parallel, it is becoming increasingly evident that many functional changes in GABA(A) receptors reflect the differential gene regulation of its subunits. The fact that certain GABA(A) receptor subunit genes are transcribed in distinct cell types during specific periods of development strongly suggests that genetic control plays a major role in the choice of subunit variants available for receptor assembly. This review focuses on the physiological conditions that alter subunit mRNA levels, the promoters that may control such levels, and the use of a conceptual framework created by bioinformatics to study coordinate and independent GABA(A) receptor subunit gene regulation. As this exciting field moves closer to identifying the language hidden inside the chromatin of GABA(A) receptor subunit gene clusters, future experiments will be aimed at testing models generated by computational analysis with biologically relevant in vivo and in vitro assays. It is hoped that through this functional genomic approach there will be the identification of new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Janine L Steiger
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
19
|
Gole L, Crolla JA, Thomas SN, Jacobs PA, Dennis NR. Characterization of breakpoints in theGABRG3 andTSPY genes in a family with a t(Y;15)(p11.2;q12). ACTA ACUST UNITED AC 2004; 125A:177-80. [PMID: 14981720 DOI: 10.1002/ajmg.a.20482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report the clinical, cytogenetic, and molecular findings in a family in which a t(Y;15)(p11.2;q12) is segregating. The Y chromosome breakpoint disrupts the DYZ5 sequence containing the TSPY genes that are exclusively expressed in the testes while the chromosome 15 breakpoint is within the GABRG3 gene. The father and his son who both carried the balanced form of the translocation are clinically normal. A daughter who carried the der Y had the clinical features of Prader-Willi syndrome while a son who carries the der 15 has mild developmental delay and hypogonadism. The relationship of the translocation to the clinical phenotypes is discussed.
Collapse
Affiliation(s)
- Leena Gole
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
20
|
Kiyosawa H, Yamanaka I, Osato N, Kondo S, Hayashizaki Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res 2003; 13:1324-34. [PMID: 12819130 PMCID: PMC403655 DOI: 10.1101/gr.982903] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used the FANTOM2 mouse cDNA set (60,770 clones), public mRNA data, and mouse genome sequence data to identify 2481 pairs of sense-antisense transcripts and 899 further pairs of nonantisense bidirectional transcription based upon genomic mapping. The analysis greatly expands the number of known examples of sense-antisense transcript and nonantisense bidirectional transcription pairs in mammals. The FANTOM2 cDNA set appears to contain substantially large numbers of noncoding transcripts suitable for antisense transcript analysis. The average proportion of loci encoding sense-antisense transcript and nonantisense bidirectional transcription pairs on autosomes was 15.1 and 5.4%, respectively. Those on the X chromosome were 6.3 and 4.2%, respectively. Sense-antisense transcript pairs, rather than nonantisense bidirectional transcription pairs, may be less prevalent on the X chromosome, possibly due to X chromosome inactivation. Sense and antisense transcripts tended to be isolated from the same libraries, where nonantisense bidirectional transcription pairs were not apparently coregulated. The existence of large numbers of natural antisense transcripts implies that the regulation of gene expression by antisense transcripts is more common that previously recognized. The viewer showing mapping patterns of sense-antisense transcript pairs and nonantisense bidirectional transcription pairs on the genome and other related statistical data is available on our Web site.
Collapse
Affiliation(s)
- Hidenori Kiyosawa
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
21
|
Song J, Koller DL, Foroud T, Carr K, Zhao J, Rice J, Nurnberger JI, Begleiter H, Porjesz B, Smith TL, Schuckit MA, Edenberg HJ. Association of GABA(A) receptors and alcohol dependence and the effects of genetic imprinting. Am J Med Genet B Neuropsychiatr Genet 2003; 117B:39-45. [PMID: 12555233 DOI: 10.1002/ajmg.b.10022] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GABA receptor genes have been postulated as candidates affecting the risk for alcoholism. The potential association between genes encoding five subunits of the GABA(A) receptors and alcoholism (alcohol dependence) was analyzed in the multiplex alcoholic pedigrees collected by the Collaborative Study on the Genetics of Alcoholism (COGA) using family-based association tests. We found consistent, although weak, linkage disequilibrium between GABRB1 (located on chromosome 4) and alcoholism (P < 0.03). Genes encoding GABRA1 and GABRA6, on chromosome 5, did not provide evidence for association with alcoholism. GABRA5 and GABRB3, on chromosome 15, were reported to be expressed uniparentally from the paternal chromosome. Analyses of paternal transmission of alleles of GABRA5 provided evidence for association with alcoholism, particularly in the Caucasian population and with the stricter ICD-10 definition of alcoholism (P < 0.004). Evidence of association was also observed during paternal transmission with GABRB3 in the Caucasian population (P < 0.007). Maternal transmissions provided no evidence for association. These data are consistent with an association between the expressed alleles in the GABA(A)-gene cluster on chromosome 15 and alcoholism that is modulated by genetic imprinting.
Collapse
Affiliation(s)
- Jiuzhou Song
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202-5122, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:1-47. [PMID: 11837891 DOI: 10.1016/s0074-7696(02)13011-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyrate (GABA) is a major inhibitory neurotransmitter in the adult mammalian brain. GABA is also considered to be a multifunctional molecule that has different situational functions in the central nervous system, the peripheral nervous system, and in some nonneuronal tissues. GABA is synthesized primarily from glutamate by glutamate decarboxylase (GAD), but alternative pathways may be important under certain situations. Two types of GAD appear to have significant physiological roles. GABA functions appear to be triggered by binding of GABA to its ionotropic receptors, GABA(A) and GABA(C), which are ligand-gated chloride channels, and its metabotropic receptor, GABA(B). The physiological, pharmacological, and molecular characteristics of GABA(A) receptors are well documented, and diversity in the pharmacologic properties of the receptor subtypes is important clinically. In addition to its role in neural development, GABA appears to be involved in a wide variety of physiological functions in tissues and organs outside the brain.
Collapse
|
23
|
Menold MM, Shao Y, Wolpert CM, Donnelly SL, Raiford KL, Martin ER, Ravan SA, Abramson RK, Wright HH, Delong GR, Cuccaro ML, Pericak-Vance MA, Gilbert JR. Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. J Neurogenet 2002; 15:245-59. [PMID: 12092907 DOI: 10.3109/01677060109167380] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, acting via the GABAA receptors. The GABAA receptors are comprised of several different homologous subunits, forming a group of receptors that are both structurally and functionally diverse. Three of the GABAA receptor subunit genes (GABRB3, GABRA5 and GABRG3) form a cluster on chromosome 15q11-q13, in a region that has been genetically associated with autistic disorder (AutD). Based on these data, we examined 16 single nucleotide polymorphisms (SNPs) located within GABRB3, GABRA5 and GABRG3 for linkage disequilibrium (LD) in 226 AutD families (AutD patients and parents). Genotyping was performed using either OLA (oligonucleotide ligation assay), or SSCP (single strand conformation polymorphism) followed by DNA sequencing. We tested for LD using the Pedigree Disequilibrium Test (PDT). PDT results gave significant evidence that AutD is associated with two SNPs located within the GABRG3 gene (exon5_539T/C, p=0.02 and intron5_687T/C, p=0.03), suggesting that the GABRG3 gene or a gene nearby contributes to genetic risk in AutD.
Collapse
Affiliation(s)
- M M Menold
- Department of Medicine and the Center for Human Genetics, Duke University Medical Center, Durham NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Silva AE, Vayego-Lourenco SA, Fett-Conte AC, Goloni-Bertollo EM, Varella-Garcia M. Tetrasomy 15q11-q13 identified by fluorescence in situ hybridization in a patient with autistic disorder. ARQUIVOS DE NEURO-PSIQUIATRIA 2002; 60:290-4. [PMID: 12068363 DOI: 10.1590/s0004-282x2002000200021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a female child with tetrasomy of the 15q11-q13 chromosomal region, and autistic disorder associated with mental retardation, developmental problems and behavioral disorders. Combining classical and molecular cytogenetic approaches by fluorescence in situ hybridization technique, the karyotype was demonstrated as 47,XX,+mar.ish der(15)(D15Z1++,D15S11++,GABRB3++,PML-). Duplication of the 15q proximal segment represents the most consistent chromosomal abnormality reported in association with autism. The contribution of the GABA receptor subunit genes, and other genes mapped to this region, to the clinical symptoms of the disease is discussed.
Collapse
Affiliation(s)
- Ana Elizabete Silva
- Departamento de Biologia, IBILCE, State University of São Paulo, São José do Rio Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
25
|
Estécio M, Fett-Conte AC, Varella-Garcia M, Fridman C, Silva AE. Molecular and cytogenetic analyses on Brazilian youths with pervasive developmental disorders. J Autism Dev Disord 2002; 32:35-41. [PMID: 11916331 DOI: 10.1023/a:1017952123258] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Pervasive Developmental Disorders (PDDs) constitute a group of behavioral and neurobiological impairment conditions whose main features are delayed communicative and cognitive development. Genetic factors are reportedly associated with PDDs and particular genetic abnormalities are frequently found in specific diagnostic subgroups such as the autism spectrum disorders. This study evaluated cytogenetic and molecular parameters in 30 youths with autism or other PDDs. The fragile X syndrome was the most common genetic abnormality detected, presented by 1 patient with autism and 1 patient with PPD not-otherwise specified (PPD-NOS). One girl with PDD-NOS was found to have tetrasomy for the 15q11-q13 region, and one patient with autism exhibited in 2/100 metaphases an inv(7)(p35q36), thus suggesting a mosaicism 46,XX/46,XX,inv(7)(p15q36) or representing a coincidental finding. The high frequency of chromosomopathies support the hypothesis that PDDs may develop as a consequence to chromosomal abnormalities and justify the cytogenetic and molecular assessment in all patients with PDDs for establishment of diagnosis.
Collapse
Affiliation(s)
- MarcosRobertoHigino Estécio
- Laboratório de Citogenética e Biologia Molecular, Instituto de Bio ciências, Letras e Ciências Exatas-UNESP Campus de São José do Rio Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
26
|
Jiang S, Yu J, Wang J, Tan Z, Xue H, Feng G, He L, Yang H. Complete genomic sequence of 195 Kb of human DNA containing the gene GABRG2. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:373-82. [PMID: 11328646 DOI: 10.3109/10425170009033988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
GABA (gamma-aminobutyric acid), as the main inhibitory neurotransmitter in the brain, plays an essential role for the overall balance between neuronal excitation and inhibition by acting on GABAA receptors, which are ligand-gated chloride channels. Impaired GABAergic function contributes to certain forms of epilepsy, schizophrenia, Alzheimer's Disease, and other neurological disorders. In order to identify possible genetic features and to further study biological regulation of GABAA receptor genes whose promoter elements and sequence anomalies may contribute to epileptic disorders, as an initial step, we shot-gun sequenced a BAC clone, dj082c10 (195,909-bp in size), encompassing human gamma(2) subunit of GABAA receptor (GABRG2). It is, we believe, the first genomic sequence of the GABA receptor gamma subunit family. Four contigs were assembled from 2950 reads prior to gap in an average redundancy of eight folds over the entire region. The precision of the consensus sequence was predicted to be 99.999% after closing gaps and finishing weak regions. The nine exons of GABRG2 spans an 85-kb region that had 81 SINEs comprising 22.32%, and nine L1 elements comprising 3.40%, respectively. However, the density of L1 in the regions flanking GABRG2 gene (29.45% by 45 elements) is significantly higher than that within the gene. The length of GABRG2 introns varies in the range of 1.5 kb to 38.1 kb.
Collapse
Affiliation(s)
- S Jiang
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
GABA(A) receptor epsilon and theta subunits display unusual structural variation between species and are enriched in the rat locus ceruleus. J Neurosci 2000. [PMID: 10804200 DOI: 10.1523/jneurosci.20-10-03588.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previously, GABA(A) receptor epsilon and theta subunits have been identified only in human. Here, we describe properties of the epsilon and theta subunit genes from mouse and rat that reveal an unusually high level of divergence from their human homologs. In addition to a low level of amino acid sequence conservation ( approximately 70%), the rodent epsilon subunit cDNAs encode a unique Pro/Glx motif of approximately 400 residues within the N-terminal extracellular domain of the subunits. Transcripts of the rat epsilon subunit were detected in brain and heart, whereas the mouse theta subunit mRNA was detectable in brain, lung, and spleen by Northern blot analysis. In situ hybridization revealed a particularly strong signal for both subunit mRNAs in rat locus ceruleus in which expression was detectable from the first postnatal day. Lower levels of coexpression were also detected in other brainstem nuclei and in the hypothalamus. However, the expression pattern of theta subunit mRNA was more widespread than that of epsilon subunit, being found also in the cerebral cortex of rat pups. In contrast to primate brain, neither subunit was expressed in the hippocampus or substantia nigra. The results indicate that GABA(A) receptor epsilon and theta subunits are evolving at a much faster rate than other known GABA(A) receptor subunits and that their expression patterns and functional properties may differ significantly between species.
Collapse
|
28
|
Loh EW, Higuchi S, Matsushita S, Murray R, Chen CK, Ball D. Association analysis of the GABA(A) receptor subunit genes cluster on 5q33-34 and alcohol dependence in a Japanese population. Mol Psychiatry 2000; 5:301-7. [PMID: 10889533 DOI: 10.1038/sj.mp.4000719] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent investigations suggest that genetic susceptibility to alcohol dependence may be conferred by GABA(A) receptor subunit genes. In this study, three RFLPs at the GABA(A)beta2, GABAAalpha6, GABA(A)alpha1 and two at the GABA(A)gamma2 receptor subunit genes, were examined for association with alcohol dependence in 189 subjects meeting DSM-III-R criteria for this disorder and 152 unrelated controls from a Japanese population. The results demonstrated no association between the AlwNI RFLP at the GABA(A)alpha6 receptor subunit gene and alcohol dependence (P = 0.059). However, the NciI RFLP at the GABA(A)gamma2 receptor subunit gene was associated with alcohol dependence comorbid with antisocial personality disorder (P = 0.021). This supports a recent finding reporting an association between the GABA(A)gamma2 receptor subunit gene and alcohol dependence with criminal record in a Finnish population. Taking into account the effects of multiple comparisons, this result should be interpreted with caution pending replication.
Collapse
Affiliation(s)
- E W Loh
- Social, Genetic and Developmental Psychiatry Research Centre (SGDPRC), Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | | | | | | | | | |
Collapse
|
29
|
Takeda Y, Baba A, Nakamura F, Ito M, Honma H, Koyama T. Symptomatic generalized epilepsy associated with an inverted duplication of chromosome 15. Seizure 2000; 9:145-50. [PMID: 10845741 DOI: 10.1053/seiz.1999.0367] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An inverted duplication of chromosome 15 (inv dup[15] chromosome) is the most common supernumerary marker chromosome in humans. Inv dup(15) chromosomes are commonly associated with mental retardation, epilepsy, behavioral problems and structural malformations. Though epilepsies associated with inv dup(15) chromosomes are often intractable, there have been very few reports regarding the seizure manifestations or types. We report a patient with severe mental retardation and intractable epilepsy, associated with an inv dup(15) chromosome. The seizures recorded with EEG-VTR monitoring were axial and generalized tonic seizures, and our case was diagnosed as symptomatic generalized epilepsy. Molecular and cytogenetic analysis showed an inv dup(15) chromosome containing the Prader-Willi syndrome/Angelman syndrome region mapped within bands 15q 11-q13.
Collapse
Affiliation(s)
- Y Takeda
- Department of Psychiatry and Neurology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Durner M, Shinnar S, Resor SR, Moshe SL, Rosenbaum D, Cohen J, Harden C, Kang H, Hertz S, Wallace S, Luciano D, Ballaban-Gil K, Greenberg DA. No evidence for a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 96:49-52. [PMID: 10686551 DOI: 10.1002/(sici)1096-8628(20000207)96:1<49::aid-ajmg10>3.0.co;2-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Juvenile myoclonic epilepsy (JME) is a distinct epileptic syndrome with a complex mode of inheritance. Several studies found evidence for a locus involved in JME on chromosome 6 near the HLA region. Recently, Elmslie et al. [1997] reported evidence of linkage in JME to chromosome 15q14 assuming a recessive mode of inheritance with 50% penetrance and 65% linked families. The area on chromosome 15q14 encompasses the location of the gene for the alpha-7 subunit of the nicotinic acetylcholine receptor. This could fit the hypothesis that there are two interacting loci, one on chromosome 6 and on chromosome 15 or that there is genetic heterogeneity in JME. In an independent dataset of JME families, we tested for linkage to chromosome 15 but found little evidence for linkage. Moreover, families with more than one family member affected with JME provide a lodscore of 3.4 for the HLA-DR/DQ haplotype on chromosome 6. The lodscore for these same families on chromosome 15q14 is <-2 assuming homogeneity and the maximum lodscore is 0.2 assuming alpha =.25. Only one of these families has a negative lodscore on chromosome 6 and a positive lodscore of 0.5 on chromosome 15q14. Our results indicate that this possible gene on chromosome 15 plays at most a minor role in our JME families. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:49-52, 2000.
Collapse
Affiliation(s)
- M Durner
- Department of Psychiatry and Department of Biostatistics, Mount Sinai Medical Center, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Maddox LO, Menold MM, Bass MP, Rogala AR, Pericak-Vance MA, Vance JM, Gilbert JR. Autistic disorder and chromosome 15q11-q13: construction and analysis of a BAC/PAC contig. Genomics 1999; 62:325-31. [PMID: 10644429 DOI: 10.1006/geno.1999.6017] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2-10/10,000 individuals. Chromosome 15q11-q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the gamma-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11-q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11-q13.
Collapse
Affiliation(s)
- L O Maddox
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lengeling A, Wiltshire T, Otmani C, Bućan M. A Sequence-Ready BAC Contig of the GABA A Receptor Gene Cluster Gabrg1–Gabra2–Gabrb1 on Mouse Chromosome 5. Genome Res 1999. [DOI: 10.1101/gr.9.8.732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The type-A receptors for the neurotransmitter GABA (γ-aminobutyric acid) are ligand-gated chloride channels that mediate postsynaptic inhibition. The functional diversity of these receptors comes from the use of a large repertoire of subunits encoded by separate genes, as well as from differences in subunit composition of individual receptors. In mammals, a majority of GABAAreceptor subunit genes are located in gene clusters that may be important for their regulated expression and function. We have established a high-resolution physical map of the cluster of genes encoding GABAA receptor subunits α2 (Gabra2), β1 (Gabrb1), and γ1 (Gabrg1) on mouse chromosome 5. Rat cDNA probes and specific sequence probes for all three GABAA receptor subunit genes have been used to initiate the construction of a sequence-ready contig of bacterial artificial chromosomes (BACs) encompassing this cluster. In the process of contig construction clones from 129/Sv and C57BL/6J BAC libraries were isolated. The assembled 1.3-Mb contig, consisting of 45 BACs, gives five- to sixfold coverage over the gene cluster and provides an average resolution of one marker every 32 kb. A number of BAC insert ends were sequenced, generating 30 new sequence tag sites (STS) in addition to 6 Gabr gene-based and 3 expressed sequence tag (EST)-based markers. STSs from, and surrounding, theGabrg1–Gabra2–Gabrb1 gene cluster were mapped in the T31 mouse radiation hybrid panel. The integration of the BAC contig with a map of loci ordered by radiation hybrid mapping suggested the most likely genomic orientation of this cluster on mouse chromosome 5: cen–D5Mit151–Gabrg1–Gabra2–Gabrb1–D5Mit58–tel. This established contig will serve as a template for genomic sequencing and for functional analysis of the GABAA gene cluster on mouse chromosome 5 and the corresponding region on human chromosome 4.The sequence data described in this paper have been submitted to the GenBank/GSS data libraries under accession nos.AF156490 and AQ589406–AQ589436.
Collapse
|
33
|
Abstract
Nowhere is the record of receptor evolution more accessible than in the organization of the 19 vertebrate genes coding for subunits of the major inhibitory neurotransmitter receptor in the central nervous system, the gamma-aminobutyric acid receptor (GABAAR). Co-expression of alpha, beta, and gamma subunit genes is necessary for the formation of a GABAAR that is potentiated by widely used anxiolytics, anticonvulsants, and hypnotics. The identification of alpha, beta, and gamma genes on chromosomes 4, 5, and 15 suggests that co-localization of a gamma gene with an alpha and beta may be important for brain function. We have now directly examined the organization of GABAAR subunit genes on human chromosomes. Estimates of physical distance using in situ hybridization to cells in interphase, and gene localization using hybridization to cells in metaphase demonstrate the existence of beta-alpha-alpha-gamma gene clusters in cytogenetic bands on chromosomes 4(p12) and 5(q34). Sequencing of PAC clones establishes intercluster conservation of a unique head-to-head configuration for alpha and beta genes on chromosomes 4, 5, and 15. Remarkably, phylogenetic tree analysis predicts the existence of a beta-alpha-gamma ancestral gene cluster in which internal duplication of an ancestral alpha was followed by cluster duplication, resulting in the relative chromosomal positions of modern GABAAR subunit genes in the human genome.
Collapse
Affiliation(s)
- S J Russek
- Laboratory of Molecular Neurobiology, Department of Pharmacology, 80 East Concord Street, Boston University School of Medicine, Boston MA 02118, USA.
| |
Collapse
|
34
|
Noble EP, Zhang X, Ritchie T, Lawford BR, Grosser SC, Young RM, Sparkes RS. D2 dopamine receptor and GABA(A) receptor beta3 subunit genes and alcoholism. Psychiatry Res 1998; 81:133-47. [PMID: 9858031 DOI: 10.1016/s0165-1781(98)00084-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As the dopaminergic and GABAergic systems have been implicated in alcohol-related behaviors, variants of the D2 dopamine receptor (DRD2) and GABA(A) receptor beta3 subunit (GABRB3) genes were determined in a population-based association study of Caucasian non-alcoholic and alcoholic subjects. In severe alcoholics, compared to non-alcoholics, a significant increase was found in the prevalence (P = 1.7 x 10(-5)) and frequency (P = 1.6 x 10(-5)) of the DRD2 minor (A1) allele. Moreover, a significant progressive increase was observed in A1 allelic prevalence (P = 3.1 x 10(-6)) and frequency (P = 2.7 x 10(-6)) in the order of non-alcoholics, less severe and severe alcoholics. In severe alcoholics, compared to non-alcoholics, a significant decrease was found in the prevalence (P = 4.5 x 10(-3)) and frequency (P = 2.7 x 10(-2)) of the GABRB3 major (G1) allele. Furthermore, a significant progressive decrease was noted in G1 allelic prevalence (P = 2.4 x 10(-3)) and frequency (P = 1.9 x 10(-2)) in non-alcoholics, less severe and severe alcoholics, respectively. In sum, in the same population of non-alcoholics and alcoholics studied, variants of both the DRD2 and GABRB3 genes independently contribute to the risk for alcoholism, with the DRD2 variants revealing a stronger effect than the GABRB3 variants. However, when the DRD2 and the GABRB3 variants are combined, the risk for alcoholism is more robust than when these variants are considered separately.
Collapse
Affiliation(s)
- E P Noble
- Alcohol Research Center and Department of Psychiatry and Biobehavioral Sciences, UCLA, Neuropsychiatric Institute, Los Angeles, CA 90024-1759, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Papadimitriou GN, Dikeos DG, Karadima G, Avramopoulos D, Daskalopoulou EG, Vassilopoulos D, Stefanis CN. Association between the GABAA receptor ?5 subunit gene locus (GABRA5) and bipolar affective disorder. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19980207)81:1<73::aid-ajmg14>3.0.co;2-t] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Christian SL, Bhatt NK, Martin SA, Sutcliffe JS, Kubota T, Huang B, Mutirangura A, Chinault AC, Beaudet AL, Ledbetter DH. Integrated YAC contig map of the Prader-Willi/Angelman region on chromosome 15q11-q13 with average STS spacing of 35 kb. Genome Res 1998; 8:146-57. [PMID: 9477342 PMCID: PMC310691 DOI: 10.1101/gr.8.2.146] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prader-Willi syndrome and Angelman syndrome are associated with parent-of-origin-specific abnormalities of chromosome 15q11-q13, most frequently a deletion of an approximately 4-Mb region. Because of genomic imprinting, paternal deficiency of this region leads to PWS and maternal deficiency to AS. Additionally, this region is frequently involved in other chromosomal rearrangements including duplications, triplications, or supernumerary marker formation. A detailed physical map of this region is important for elucidating the genes and mechanisms involved in genomic imprinting, as well as for understanding the mechanism of recurrent chromosomal rearrangments. An initial YAC contig extended from D15S18 to D15S12 and was comprised of 23 YACs and 21 STSs providing an average resolution of about one STS per 200 kb. To close two gaps in this contig, YAC screening was performed using two STSs that flank the gap between D15S18 and 254B5R and three STSs located distal to the GABRA5-149A9L gap. Additionally, we developed 11 new STSs, including seven polymorphic markers. Although several groups have developed whole-genome genetic and radiation hybrid maps, the depth of coverage for 15q11-q13 has been somewhat limited and discrepancies in marker order exist between the maps. To resolve the inconsistencies and to provide a more detailed map order of STSs in this region, we have constructed an integrated YAC STS-based physical map of chromosome 15q11-q13 containing 118 YACs and 118 STSs, including 38 STRs and 49 genes/ESTs. Using an estimate of 4 Mb for the size of this region, the map provides an average STS spacing of 35 kb. This map provides a valuable resource for identification of disease genes localized to this region as well as a framework for complete DNA sequencing.
Collapse
Affiliation(s)
- S L Christian
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brett PM, Curtis D, Robertson MM, Gurling HM. Neuroreceptor subunit genes and the genetic susceptibility to Gilles de la Tourette syndrome. Biol Psychiatry 1997; 42:941-7. [PMID: 9359981 DOI: 10.1016/s0006-3223(97)00140-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Segregation studies have shown that Gilles de la Tourette Syndrome (GTS) is probably transmitted as an autosomal dominant gene disorder and can therefore be studied by classical linkage analysis to identify susceptibility loci. Many neurotransmitter systems have been implicated in the etiology of GTS. Most recently the alpha-1 subunit of the glycine receptor etiologically responsible for hyperekplexia has been hypothesized as the cause of the susceptibility to GTS. Because of this and the high concentration of other neuroreceptor genes at 5q33-35, it was decided to study this region and the associated gene cluster on chromosome 4p12-16 in a large British kindred multiply affected with GTS and chronic motor tics. The genotypes of the microsatellite markers at these loci were determined by polymerase chain reaction. The allele data were analyzed using both parametric and nonparametric methods. Approximate multipoint maps were constructed across the regions of interest using FASTLINK. All of the lod scores produced were negative, showing no evidence of linkage to GTS in the family studied. The multipoint maps showed good exclusion across these regions. The glycine receptor gene responsible for hyperekplexia and the other neuroreceptor genes examined in this paper are not involved in the etiology of GTS in this large pedigree.
Collapse
Affiliation(s)
- P M Brett
- Academic Department of Psychiatry, University College London Medical School, United Kingdom
| | | | | | | |
Collapse
|
38
|
Meguro M, Mitsuya K, Sui H, Shigenami K, Kugoh H, Nakao M, Oshimura M. Evidence for uniparental, paternal expression of the human GABAA receptor subunit genes, using microcell-mediated chromosome transfer. Hum Mol Genet 1997; 6:2127-33. [PMID: 9328477 DOI: 10.1093/hmg/6.12.2127] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have constructed mouse A9 hybrids containing a single normal human chromosome 15, via microcell-mediated chromosome transfer. Cytogenetic and DNA-polymorphic analyses identified mouse A9 hybrids that contained either a paternal or maternal human chromosome 15. Paternal specific expression of the known imprinted genes SNRPN (small nuclear ribonucleoprotein-associated polypeptide N gene) and IPW (imprinted gene in the Prader-Willi syndrome region) was maintained in the A9 hybrids. Using this system, we first demonstrated that human GABAAreceptor subunit genes, GABRB3 , GABRA5 and GABRG3 , were expressed exclusively from the paternal allele and that E6-AP (E6-associated protein or UBE3A ) was biallelically expressed. Moreover, the 5' portion of the GABRB3 gene was found to be hypermethylated on the paternal allele. Our data imply that GABAAreceptor subunit genes are imprinted and are possible candidates for Prader-Willi syndrome, and that this human monochromosomal hybrid system enables the efficient analysis of imprinted loci.
Collapse
Affiliation(s)
- M Meguro
- Department of Molecular and Cell Genetics, School of Life Sciences, Faculty of Medicine, Tottori University, Nishimachi 86, Yonago, Tottori 683, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Wilke K, Gaul R, Klauck SM, Poustka A. A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABAA neurotransmitter receptor. Genomics 1997; 45:1-10. [PMID: 9339354 DOI: 10.1006/geno.1997.4885] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated and sequenced a novel human gene (GABRE) of the GABAA neurotransmitter receptor family. A cDNA sequence of the gene coding for a 506 amino acid protein was identified, representing a member of a putative new class (epsilon) of the GABAA receptor. The gene is transcribed at least at low level in several different tissues, with the highest levels being detected in adult heart and placenta. Alternative splicing of GABRE transcripts isolated from different tissues was observed at multiple positions of the gene, yielding an unusually complex variety of cDNA variants. The structure of the 5' region of most cDNAs is compatible with expression of protein sequence epsilon only in adult brain, whereas in other tissues, the majority of transcripts code for truncated protein sequences. The GABRE gene extends over 14 kb and is clustered together with the alpha 3 and the putative beta 4 GABAA receptor subunit genes in an approximately 0.8-Mb interval in chromosome band Xq28, located in the candidate regions of two different neurologic diseases. Based on features of conservation of protein sequences, gene structure, and genomic organization of GABAA receptor gene clusters, we propose that the epsilon and gamma subunit genes have a common ancestor and that GABAA receptor gene clusters in the human genome have diverged by multiple duplication events of an ancestral gene cluster containing one each alpha, beta, and gamma/epsilon precursor gene.
Collapse
Affiliation(s)
- K Wilke
- Deutsches Krebsforschungszentrum, Abteilung Molekulare Genomanalyse, Heidelberg, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
This paper reviews the present knowledge on the genetics of the epilepsies. Main clinical features, gene localization and pattern of inheritance of the idiopathic epilepsies, the progressive myoclonus epilepsies, and some other genetic disorders often associated with epilepsy, are described.
Collapse
Affiliation(s)
- P M Callenbach
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | | |
Collapse
|
41
|
Kim Y, Glatt H, Xie W, Sinnett D, Lalande M. Human gamma-aminobutyric acid-type A receptor alpha5 subunit gene (GABRA5): characterization and structural organization of the 5' flanking region. Genomics 1997; 42:378-87. [PMID: 9205108 DOI: 10.1006/geno.1997.4770] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gamma-aminobutyric acid-type A receptor alpha5 subunit gene (GABRA5) is widely expressed in brain and localized to the imprinted human chromosome 15q11-q13. A combination of cDNA library screening and 5' RACE analysis led to identification of three distinct mRNA isoforms of GABRA5 in human adult and fetal brain tissues, each of which differs only in the noncoding 5' UTR sequence. Alignment of the genomic and cDNA sequences of GABRA5 revealed that the mRNA isoforms resulted from three alternative first exons 1A, 1B, and 1C. Northern blot analysis showed that the expression of GABRA5 was not only tissue specific but region specific in brain. CAT reporter assays revealed promoter elements in the 5' proximity of each first exon. The GABRA5 promoter regions lacked TATA and CCAAT boxes but contained several other consensus transcriptional factor recognition sequences. These findings suggest that the differential exon 1 usage of GABRA5 arises as a consequence of alternative promoter activation.
Collapse
Affiliation(s)
- Y Kim
- Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
42
|
Homanics GE, DeLorey TM, Firestone LL, Quinlan JJ, Handforth A, Harrison NL, Krasowski MD, Rick CE, Korpi ER, Mäkelä R, Brilliant MH, Hagiwara N, Ferguson C, Snyder K, Olsen RW. Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci U S A 1997; 94:4143-8. [PMID: 9108119 PMCID: PMC20582 DOI: 10.1073/pnas.94.8.4143] [Citation(s) in RCA: 382] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
gamma-Aminobutyric acid type A receptors (GABA(A)-Rs) mediate the bulk of rapid inhibitory synaptic transmission in the central nervous system. The beta3 subunit is an essential component of the GABA(A)-R in many brain regions, especially during development, and is implicated in several pathophysiologic processes. We examined mice harboring a beta3 gene inactivated by gene targeting. GABA(A)-R density is approximately halved in brain of beta3-deficient mice, and GABA(A)-R function is severely impaired. Most beta3-deficient mice die as neonates; some neonatal mortality, but not all, is accompanied by cleft palate. beta3-deficient mice that survive are runted until weaning but achieve normal body size by adulthood, although with reduced life span. These mice are fertile but mothers fail to nurture offspring. Brain morphology is grossly normal, but a number of behaviors are abnormal, consistent with the widespread location of the beta3 subunit. The mice are very hyperactive and hyperresponsive to human contact and other sensory stimuli, and often run continuously in tight circles. When held by the tail, they hold all paws in like a ball, which is frequently a sign of neurological impairment. They have difficulty swimming, walking on grids, and fall off platforms and rotarods, although they do not have a jerky gait. beta3-deficient mice display frequent myoclonus and occasional epileptic seizures, documented by electroencephalographic recording. Hyperactivity, lack of coordination, and seizures are consistent with reduced presynaptic inhibition in spinal cord and impaired inhibition in higher cortical centers and/or pleiotropic developmental defects.
Collapse
Affiliation(s)
- G E Homanics
- Department of Anesthesiology/Critical Care Medicine, University of Pittsburgh School of Medicine, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Garrett KM, Haque D, Berry D, Niekrasz I, Gan J, Rotter A, Seale TW. The GABAA receptor alpha 6 subunit gene (Gabra6) is tightly linked to the alpha 1-gamma 2 subunit cluster on mouse chromosome 11. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 45:133-7. [PMID: 9105679 DOI: 10.1016/s0169-328x(96)00290-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have established that the GABAA receptor alpha 6 (Gabra6) and alpha 1 (Gabra 1) subunit genes are tightly linked on mouse chromosome 11 by analysing the strain distribution patterns of RFLPs for the two genes and microsatellite markers flanking these genes in 26 BXD recombinant inbred strains. These results further demonstrate clustering of the GABAA receptor subunit genes on mouse chromosomes and the synteny for these clusters between the mouse and human genomes.
Collapse
Affiliation(s)
- K M Garrett
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The genes encoding the gamma-aminobutyric acid (GABA) type-A receptor subunits beta 3 (GABRB3), alpha 5 (GABRA5), and gamma 3 (GABRG3) map to chromosome 15q11-q13. The three genes are contained within roughly 800 kb of the distal part of the imprinted Prader-Willi and Angelman syndrome region. A 570-kb contig encompassing GABRB3 and GABRA5 has been constructed in P1, lambda phage, and PAC clones. GABRB3 spans 250 kb of DNA and is organized into 9 exons that range from 68 to 504 bp, while GABRA5 is encoded by 11 exons (65 to 924 bp in length) within 86 kb. The exon/intron borders for both genes have been characterized and, primers have been designed to amplify each of the individual exons. Two reference STR markers have been positioned in the contig. The reference STR for GABRB3 is in fact located at least 60 kb beyond the 3' terminus of GABRB3, while D15S97 is contained within intron 4 of GABRB3. The detailed physical map of this GABAA receptor subunit gene cluster should not only be useful in genetic studies of the 15q11-q13 region, but will also be important for investigating the evolution and expression of the GABAA receptor gene superfamily.
Collapse
Affiliation(s)
- K Glatt
- Genetics Division, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
45
|
Sander T, Hildmann T, Janz D, Wienker TF, Bianchi A, Bauer G, Sailer U, Scaramelli A, Neitzel H, Schmitz B, Bailey ME, Beck-Mannagetta G, Johnson KJ, Darlison MG. Exclusion of linkage between idiopathic generalized epilepsies and the GABAA receptor alpha 1 and gamma 2 subunit gene cluster on chromosome 5. Epilepsy Res 1996; 23:235-44. [PMID: 8739126 DOI: 10.1016/0920-1211(95)00098-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hereditary factors play a major role in the etiology of idiopathic generalized epilepsies (IGEs). The pivotal function of ionotropic gamma-aminobutyric acid type A receptors (GABRs) in inhibitory neurotransmission in the mammalian central nervous system suggests that they may be involved in epileptogenesis and genetic predisposition to IGEs. Dinucleotide repeat polymorphisms associated with the human GABAA receptor alpha 1 (GABRA1) and gamma 2 subunit (GABRG2) gene cluster on chromosome 5q32-q35 offer the opportunity to test whether these candidate genes confer susceptibility to IGEs. Our linkage analyses in 63 families ascertained through IGE patients with either juvenile myoclonic epilepsy, juvenile absence epilepsy or childhood absence epilepsy do not support the hypothesis that variants within the GABRA1 and GABRG2 gene cluster contribute a frequent major gene effect to the expression of the common familial IGEs.
Collapse
Affiliation(s)
- T Sander
- Department of Psychiatry, University Hospital Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
GABAA receptors are a heterogeneous family of ligand-gated ion channels responsible for mediating inhibitory neurotransmission in the CNS. Since the identification of mammalian cDNAs encoding 13 GABAA-receptor subunits, the composition of native receptor molecules and their localization in the brain has been an area of intense study. We conclude that the number of major subtypes is probably less than ten but their physiological roles have yet to be clearly defined and this represents the next step in GABAA-receptor research.
Collapse
Affiliation(s)
- R M McKernan
- Dept of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, UK
| | | |
Collapse
|
47
|
Hadingham KL, Wafford KA, Thompson SA, Palmer KJ, Whiting PJ. Expression and pharmacology of human GABAA receptors containing gamma 3 subunits. Eur J Pharmacol 1995; 291:301-9. [PMID: 8719414 DOI: 10.1016/0922-4106(95)90070-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A cDNA encoding the gamma 3 subunit of the human GABAA receptor has been obtained by molecular cloning. Its deduced amino acid sequence shows a high level of sequence identity with the published mouse and rat sequences (96%). The ligand binding pharmacology of the benzodiazepine site formed by stably-expressed human alpha 5 beta 3 gamma 2S and alpha 5 beta 3 gamma 3 GABAA receptor subtypes have been compared for a number of ligands, Benzodiazepine site ligands were found to be either non-selective or gamma 2-selective, with the exception of CL218,872, which was found to be 10-fold selective for the alpha 5 beta 3 gamma 3-containing subtype Two benzodiazepine site ligands. Ro15-4513 and FG8205 were more efficacious at alpha 5 beta 3 gamma 3 receptors than alpha 5 beta 3 gamma 2 receptors expressed in Xenopus oocytes, CL218,872, which is a partial agonist at alpha 1 containing receptors, had no intrinsic activity at either alpha 5 beta 3 gamma 2 or alpha 5 beta 3 gamma 3, alpha 1 beta 2 gamma 2S and alpha 1 beta 2 gamma 3 human GABAA receptors were also expressed in Xenopus oocytes and their benzodiazepine pharmacology investigated. Both the EC50 and efficacy of benzodiazepine site ligands were influenced by the type of gamma subunit coexpressed with alpha 1 and beta 2.
Collapse
Affiliation(s)
- K L Hadingham
- Merch Sharp and Dohme Research Laborotories, Neuroscience Research Centre Harlow, Essex, UK
| | | | | | | | | |
Collapse
|