1
|
Court L, Talbottier L, Lemarchand J, Cornilleau F, Pecnard E, Blache MC, Balthazart J, Cornil CA, Keller M, Calandreau L, Pellissier L. Exploring neuronal markers and early social environment influence in divergent quail lines selected for social motivation. Sci Rep 2024; 14:23554. [PMID: 39384852 PMCID: PMC11464888 DOI: 10.1038/s41598-024-74906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Many species, including humans exhibit a wide range of social behaviors that are crucial for the adaptation and survival of most species. Brain organization and function are shaped by genetic and environmental factors, although their precise contributions have been relatively understudied in the context of artificial selection. We used divergent lines of quail selected on their high versus low level of motivation to approach a group of conspecifics (S + and S-, respectively) to investigate the influence of genetic selection and early social environment on sociability. We observed distinct sex- and brain-region-specific expression patterns of three neuronal markers: mesotocin, and vasotocin, the avian homologues of mammalian oxytocin and vasopressin, as well as aromatase, the enzyme that converts androgens into estrogens. These markers displayed pronounced and neuroanatomically specific differences between S + and S- quail. Additionally, in a second experiment, we assessed the influence of early social environment on social skills in juvenile birds. Mixing S + and S- resulted in more S- males approaching the group without affecting the sociability of S + or other behaviors, suggesting that the early social environment may influence the results of genetic selection. In conclusion, the divergent quail lines offer a valuable model for unraveling the neuronal and behavioral mechanisms underlying social behaviors.
Collapse
Affiliation(s)
- Lucas Court
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France.
| | - Laura Talbottier
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
| | - Julie Lemarchand
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
| | | | - Emmanuel Pecnard
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
| | | | | | | | - Matthieu Keller
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France
| | | | - Lucie Pellissier
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, F-37380, France.
| |
Collapse
|
2
|
Cornil CA, Balthazart J. Contribution of birds to the study of sexual differentiation of brain and behavior. Horm Behav 2023; 155:105410. [PMID: 37567061 PMCID: PMC10543621 DOI: 10.1016/j.yhbeh.2023.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Behavioral neuroendocrinology has largely relied on mammalian models to understand the relationship between hormones and behavior, even if this discipline has historically used a larger diversity of species than other fields. Recent advances revealed the potential of avian models in elucidating the neuroendocrine bases of behavior. This paper provides a review focused mainly on the contributions of our laboratory to the study of sexual differentiation in Japanese quail and songbirds. Quail studies have firmly established the role of embryonic estrogens in the sexual differentiation of male copulatory behavior. While most sexually differentiated features identified in brain structure and physiology result from the different endocrine milieu of adults, a few characteristics are organized by embryonic estrogens. Among them, a sex difference was identified in the number and morphology of microglia which is not associated with sex differences in the concentration/expression of neuroinflammatory molecules. The behavioral role of microglia and neuroinflammatory processes requires further investigations. Sexual differentiation of singing in zebra finches is not mediated by the same endocrine mechanisms as male copulatory behavior and "direct" genetic effect, i.e., not mediated by gonadal steroids have been identified. Epigenetic contributions have also been considered. Finally sex differences in specific aspects of singing behavior have been identified in canaries after treatment of adults with exogenous testosterone suggesting that these aspects of song are differentiated during ontogeny. Integration of quail and songbirds as alternative models has thus expanded understanding of the interplay between hormones and behavior in the control of sexual differentiation.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate (Bat. B36), 4000 Liège, Belgium.
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liège, 15 Avenue Hippocrate (Bat. B36), 4000 Liège, Belgium
| |
Collapse
|
3
|
Spool JA, Bergan JF, Remage-Healey L. A neural circuit perspective on brain aromatase. Front Neuroendocrinol 2022; 65:100973. [PMID: 34942232 PMCID: PMC9667830 DOI: 10.1016/j.yfrne.2021.100973] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
This review explores the role of aromatase in the brain as illuminated by a set of conserved network-level connections identified in several vertebrate taxa. Aromatase-expressing neurons are neurochemically heterogeneous but the brain regions in which they are found are highly-conserved across the vertebrate lineage. During development, aromatase neurons have a prominent role in sexual differentiation of the brain and resultant sex differences in behavior and human brain diseases. Drawing on literature primarily from birds and rodents, we delineate brain regions that express aromatase and that are strongly interconnected, and suggest that, in many species, aromatase expression essentially defines the Social Behavior Network. Moreover, in several cases the inputs to and outputs from this core Social Behavior Network also express aromatase. Recent advances in molecular and genetic tools for neuroscience now enable in-depth and taxonomically diverse studies of the function of aromatase at the neural circuit level.
Collapse
Affiliation(s)
- Jeremy A Spool
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Joseph F Bergan
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
4
|
Balthazart J, McCormick C. Statistical rules versus biological reasoning: Some apparent conflicts and how to solve them. Horm Behav 2022; 137:104938. [PMID: 33516728 DOI: 10.1016/j.yhbeh.2021.104938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/04/2022]
|
5
|
Cornil CA, Ball GF, Balthazart J. Sexually differentiated and neuroanatomically specific co-expression of aromatase neurons and GAD67 in the male and female quail brain. Eur J Neurosci 2020; 52:2963-2981. [PMID: 32349174 DOI: 10.1111/ejn.14765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/23/2020] [Indexed: 11/30/2022]
Abstract
Testosterone aromatization into estrogens in the preoptic area (POA) is critical for the activation of male sexual behavior in many vertebrates. Yet, the cellular mechanisms mediating actions of neuroestrogens on sexual behavior remain largely unknown. We investigated in male and female Japanese quail by dual-label fluorescent in situ hybridization (FISH) whether aromatase-positive (ARO) neurons express glutamic acid decarboxylase 67 (GAD67), the rate-limiting enzyme in GABA biosynthesis. ARO cells and ARO cells double labeled with GAD67 (ARO-GAD67) were counted at standardized locations in the medial preoptic nucleus (POM) and the medial bed nucleus of the stria terminalis (BST) to produce three-dimensional distribution maps. Overall, males had more ARO cells than females in POM and BST. The number of double-labeled ARO-GAD67 cells was also higher in males than in females and greatly varied as a function of the specific position in these nuclei. Significant sex differences were however present only in the most caudal part of POM. Although both ARO and GAD67 were expressed in the VMN, no colocalization between these markers was detected. Together, these data show that a high proportion of estrogen-synthesizing neurons in POM and BST are inhibitory and the colocalization of GAD67 with ARO exhibits a high degree of anatomical specificity as well as localized sex differences. The fact that many preoptic ARO neurons project to the periaqueductal gray in male quail suggests possible mechanisms through which locally produced estrogens could activate male sexual behavior.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
6
|
Cornez G, Shevchouk OT, Ghorbanpoor S, Ball GF, Cornil CA, Balthazart J. Testosterone stimulates perineuronal nets development around parvalbumin cells in the adult canary brain in parallel with song crystallization. Horm Behav 2020; 119:104643. [PMID: 31785283 PMCID: PMC7065963 DOI: 10.1016/j.yhbeh.2019.104643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Perineuronal nets (PNN) of the extracellular matrix are dense aggregations of chondroitin-sulfate proteoglycans that usually surround fast-spiking parvalbumin-expressing inhibitory interneurons (PV). The development of PNN around PV appears specifically at the end of sensitive periods of visual learning and limits the synaptic plasticity in the visual cortex of mammals. Seasonal songbirds display a high level of adult neuroplasticity associated with vocal learning, which is regulated by fluctuations of circulating testosterone concentrations. Seasonal changes in testosterone concentrations and in neuroplasticity are associated with vocal changes between the non-breeding and breeding seasons. Increases in blood testosterone concentrations in the spring lead to the annual crystallization of song so that song becomes more stereotyped. Here we explore whether testosterone also regulates PNN expression in the song control system of male and female canaries. We show that, in both males and females, testosterone increases the number of PNN and of PV neurons in the three main telencephalic song control nuclei HVC, RA (nucleus robustus arcopallialis) and Area X and increases the PNN localization around PV interneurons. Singing activity was recorded in males and quantitative analyses demonstrated that testosterone also increased male singing rate, song duration and song energy while decreasing song entropy. Together, these data suggest that the development of PNN could provide the synaptic stability required to maintain the stability of the testosterone-induced crystallized song. This provides the new evidence for a role of PNN in the regulation of adult seasonal plasticity in seasonal songbirds.
Collapse
Affiliation(s)
- Gilles Cornez
- GIGA Neuroscience, University of Liege, Liege 4000, Belgium
| | | | | | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
7
|
de Bournonville C, Schmit M, Telle M, Court L, Ball GF, Balthazart J, Cornil CA. Effects of a novel partner and sexual satiety on the expression of male sexual behavior and brain aromatase activity in quail. Behav Brain Res 2019; 359:502-515. [PMID: 30462988 DOI: 10.1016/j.bbr.2018.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022]
Abstract
This study was designed to determine whether changes in sexual motivation acutely regulate brain estrogen synthesis by aromatase. Five experiments (Exp.1-5) were first conducted to determine the effect of recent mating and of the presentation of a new female (Coolidge effect) on sexual motivation. Exp.1-2 showed that 10 min or overnight access to copulation decreases measures of male sexual motivation when male subjects were visually exposed to the female they had copulated with and this effect is not counteracted by the view of a new female. Exp.3 showed that sexual motivation is revived by the view of a new female in previously unmated males only allowed to see another female for 10 min. After mating for 10 min (Exp.4) or overnight (Exp.5) with a female, males showed a decrease in copulatory behavior that was not reversed by access to a new female. Exp.6 and 7 confirmed that overnight copulation (Exp.6) and view of a novel female (Exp.7) respectively decreases and increases sexual behavior and motivation. Yet, these manipulations did not affect brain aromatase activity except in the tuberal hypothalamus. Together these data confirm that copulation or prolonged view of a female decrease sexual motivation but a reactivation of sexual motivation by a new female can only be obtained if males had only seen another female but not copulated with her, which is different in some degree from the Coolidge effect described in rodents. Moreover changes in brain aromatase do not simply reflect changes in motivation and more complex mechanisms must be considered.
Collapse
Affiliation(s)
| | - Mélanie Schmit
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium
| | - Maxim Telle
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium
| | - Lucas Court
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, 20742, United States
| | - Jacques Balthazart
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium
| | - Charlotte A Cornil
- Neuroendocrinology unit, GIGA Neurosciences, University of Liège, Belgium.
| |
Collapse
|
8
|
Liere P, Cornil CA, de Bournonville MP, Pianos A, Keller M, Schumacher M, Balthazart J. Steroid profiles in quail brain and serum: Sex and regional differences and effects of castration with steroid replacement. J Neuroendocrinol 2019; 31:e12681. [PMID: 30585662 PMCID: PMC6412023 DOI: 10.1111/jne.12681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/02/2023]
Abstract
Both systemic and local production contribute to the concentration of steroids measured in the brain. This idea was originally based on rodent studies and was later extended to other species, including humans and birds. In quail, a widely used model in behavioural neuroendocrinology, it was demonstrated that all enzymes needed to produce sex steroids from cholesterol are expressed and active in the brain, although the actual concentrations of steroids produced were never investigated. We carried out a steroid profiling in multiple brain regions and serum of sexually mature male and female quail by gas chromatography coupled with mass spectrometry. The concentrations of some steroids (eg, corticosterone, progesterone and testosterone) were in equilibrium between the brain and periphery, whereas other steroids (eg, pregnenolone (PREG), 5α/β-dihydroprogesterone and oestrogens) were more concentrated in the brain. In the brain regions investigated, PREG sulphate, progesterone and oestrogen concentrations were higher in the hypothalamus-preoptic area. Progesterone and its metabolites were more concentrated in the female than the male brain, whereas testosterone, its metabolites and dehydroepiandrosterone were more concentrated in males, suggesting that sex steroids present in quail brain mainly depend on their specific steroidogenic pathways in the ovaries and testes. However, the results of castration experiments suggested that sex steroids could also be produced in the brain independently of the peripheral source. Treatment with testosterone or oestradiol restored the concentrations of most androgens or oestrogens, respectively, although penetration of oestradiol in the brain appeared to be more limited. These studies illustrate the complex interaction between local brain synthesis and the supply from the periphery for the steroids present in the brain that are either directly active or represent the substrate of centrally located enzymes.
Collapse
Affiliation(s)
- Philippe Liere
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Charlotte A. Cornil
- University of Liège, GIGA Neurosciences, 1 Avenue de l’Hôpital (Bat. B36), 4000 Liège, Belgium
| | | | - Antoine Pianos
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université de Tours, Nouzilly, France
| | - Michael Schumacher
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Jacques Balthazart
- University of Liège, GIGA Neurosciences, 1 Avenue de l’Hôpital (Bat. B36), 4000 Liège, Belgium
| |
Collapse
|
9
|
Rosenfeld CS, Shay DA, Vieira-Potter VJ. Cognitive Effects of Aromatase and Possible Role in Memory Disorders. Front Endocrinol (Lausanne) 2018; 9:610. [PMID: 30386297 PMCID: PMC6199361 DOI: 10.3389/fendo.2018.00610] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Diverse cognitive functions in many vertebrate species are influenced by local conversion of androgens to 17β-estradiol (E2) by aromatase. This enzyme is highly expressed in various brain regions across species, with some inter-species variation in terms of regional brain expression. Since women with breast cancer and men and women with other disorders are often treated with aromatase inhibitors (AI), these populations might be especially vulnerable to cognitive deficits due to low neuroE2 synthesis, i.e., synthesis of E2 directly within the brain. Animal models have been useful in deciphering aromatase effects on cognitive functions. Consequences of AI administration at various life cycle stages have been assessed on auditory, song processing, and spatial memory in birds and various aspects of cognition in rodent models. Additionally, cognitive deficits have been described in aromatase knockout (ArKO) mice that systemically lack this gene throughout their lifespan. This review will consider evidence to date that AI treatment in male and female rodent models, birds, and humans results in cognitive impairments. How brain aromatase regulates cognitive function throughout the lifespan, and gaps in current knowledge will be considered, along with future directions to better define how aromatase might guide learning and memory from early development through the geriatric period. Better understanding the importance of E2 synthesis on neurobehavioral responses at various ages will likely aid in the discovery of therapeutic strategies to prevent potential cognitive deficits, including Alzheimer's Disease, in individuals treated with AI or those possessing CYP19 gene polymorphisms, as well as cognitive effects of normal aging that may be related to changes in brain aromatase activity.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
- *Correspondence: Cheryl S. Rosenfeld
| | - Dusti A. Shay
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Victoria J. Vieira-Potter
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Victoria J. Vieira-Potter
| |
Collapse
|
10
|
On the role of brain aromatase in females: why are estrogens produced locally when they are available systemically? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:31-49. [PMID: 29086012 DOI: 10.1007/s00359-017-1224-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 01/27/2023]
Abstract
The ovaries are often thought of as the main and only source of estrogens involved in the regulation of female behavior. However, aromatase, the key enzyme for estrogen synthesis, although it is more abundant in males, is expressed and active in the brain of females where it is regulated by similar mechanisms as in males. Early work had shown that estrogens produced in the ventromedial hypothalamus are involved in the regulation of female sexual behavior in musk shrews. However, the question of the role of central aromatase in general had not received much attention until recently. Here, I will review the emerging concept that central aromatization plays a role in the regulation of physiological and behavioral endpoints in females. The data support the notion that in females, brain aromatase is not simply a non-functional evolutionary vestige, and provide support for the importance of locally produced estrogens for brain function in females. These observations should also have an impact for clinical research.
Collapse
|
11
|
Balthazart J. Steroid metabolism in the brain: From bird watching to molecular biology, a personal journey. Horm Behav 2017; 93:137-150. [PMID: 28576650 PMCID: PMC5544559 DOI: 10.1016/j.yhbeh.2017.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 11/19/2022]
Abstract
Since Arnold Adolph Berthold established in 1849 the critical role of the testes in the activation of male sexual behavior, intensive research has identified many sophisticated neurochemical and molecular mechanisms mediating this action. Studies in Japanese quail demonstrated the critical role of testosterone action and of testosterone aromatization in the sexually dimorphic medial preoptic nucleus in the activation of male copulatory behavior. The development of an immunohistochemical visualization of brain aromatase in quail then allowed further refinement in the localization of the sites of neuroestrogens production. Testosterone aromatization is required for the activation of both appetitive and consummatory aspects of male sexual behavior. Brain aromatase activity is modulated by steroid-induced changes in the transcription of the corresponding gene but also more rapidly by phosphorylation processes. Sexual interactions with a female also rapidly regulate brain aromatase activity in an anatomically specific manner presumably via the release and action of endogenous glutamate. These rapid changes in estrogen production modulate sexual behavior and in particular its motivational component with latencies ranging between 15 and 30min. Brain estrogens seem to act in a manner akin to a neurotransmitter or at least a neuromodulator. More recently, assays of brain estradiol concentrations in micropunched samples or in dialysis samples obtained from behaviorally active males suggested that aromatase activity measured ex vivo might not be an accurate proxy to the rapid changes in local neuroestrogens production and concentrations. Studies of brain testosterone metabolism are thus not over and will keep scientists busy for a little longer. Elsevier SBN Keynote Address, Montreal.
Collapse
Affiliation(s)
- Jacques Balthazart
- GIGA Neurosciences, University of Liege, 15 Avenue Hippocrate, B-4000 Liège, Belgium.
| |
Collapse
|
12
|
Shevchouk OT, Ghorbanpoor S, Ball GF, Cornil CA, Balthazart J. Testosterone-induced neuroendocrine changes in the medial preoptic area precede song activation and plasticity in song control nuclei of female canaries. Eur J Neurosci 2017; 45:886-900. [DOI: 10.1111/ejn.13530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/26/2016] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Olesya T. Shevchouk
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Samar Ghorbanpoor
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Gregory F. Ball
- Department of Psychology; University of Maryland; College Park MD USA
| | - Charlotte A. Cornil
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Jacques Balthazart
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| |
Collapse
|
13
|
de Bournonville C, Balthazart J, Ball GF, Cornil CA. Non-ovarian aromatization is required to activate female sexual motivation in testosterone-treated ovariectomized quail. Horm Behav 2016; 83:45-59. [PMID: 27189762 PMCID: PMC4916015 DOI: 10.1016/j.yhbeh.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/27/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
Although aromatase is expressed in both male and female brains, its functional significance in females remains poorly understood. In female quail, sexual receptivity is activated by estrogens. However it is not known whether sexual motivation is similarly estrogen-dependent and whether estrogens locally produced in the brain contribute to these behavioral responses. Four main experiments were designed to address these questions. In Experiment 1 chronic treatment of females with the anti-estrogen tamoxifen decreased their receptivity, confirming that this response is under the control of estrogens. In Experiment 2 chronic treatment with tamoxifen significantly decreased sexual motivation as treated females no longer approached a sexual partner. In Experiment 3 (a) ovariectomy (OVX) induced a significant decrease of time spent near the male and a significantly decreased receptivity compared to gonadally intact females, (b) treatment with testosterone (OVX+T) partially restored these responses and (c) this effect of T was prevented when estradiol synthesis was inhibited by the potent aromatase inhibitor Vorozole (OVX+T+VOR). Serum estradiol concentration was significantly higher in OVX+T than in OVX or OVX+T+VOR females. Together these data demonstrate that treatment of OVX females with T increases sexual motivation and that these effects are mediated at least in part by non-gonadal aromatization of the androgen. Finally, assays of aromatase activity on brain and peripheral tissues (Experiment 4) strongly suggest that brain aromatization contributes to behavioral effects observed here following T treatment but alternative sources of estrogens (e.g. liver) should also be considered.
Collapse
Affiliation(s)
- Catherine de Bournonville
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, Avenue Hippocrate 15 (B36), 4000 Liège, Belgium
| | - Jacques Balthazart
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, Avenue Hippocrate 15 (B36), 4000 Liège, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, 2141 Tydings Hall, College Park MD20742-7201, USA
| | - Charlotte A Cornil
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, Avenue Hippocrate 15 (B36), 4000 Liège, Belgium.
| |
Collapse
|
14
|
Cornil CA, Ball GF, Balthazart J. The dual action of estrogen hypothesis. Trends Neurosci 2015; 38:408-16. [PMID: 26089224 DOI: 10.1016/j.tins.2015.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/18/2015] [Accepted: 05/24/2015] [Indexed: 11/25/2022]
Abstract
Estradiol (E2) can act in the brain in a relatively fast manner (i.e., seconds to minutes) usually through signaling initiated at the cell membrane. Brain-derived E2 has thus been considered as another type of neurotransmitter. Recent work found that behaviors indicative of male sexual motivation are activated by estrogenic metabolites of testosterone (T) in a fast manner, while sexual performance (copulatory behavior per se) is regulated by brain E2 in a slower manner via nucleus-initiated actions. This functional division between these two types of action appears to generalize to other behavioral systems regulated by E2. We propose the dual action of estrogen hypothesis to explain this functional distinction between these two different modes of action.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, University of Liege, Quartier Hôpital, 15 Avenue Hippocrate, 4000 Liège, Belgium
| | - Gregory F Ball
- Department of Psychology, 2141 Tydings Hall, University of Maryland, College Park, MD 20742-7201, USA
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liege, Quartier Hôpital, 15 Avenue Hippocrate, 4000 Liège, Belgium.
| |
Collapse
|
15
|
Brennan PLR, Adkins-Regan E. Endocrine regulation and sexual differentiation of avian copulatory sexually selected characters. Neurosci Biobehav Rev 2014; 46 Pt 4:557-66. [PMID: 25179524 DOI: 10.1016/j.neubiorev.2014.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/18/2014] [Accepted: 08/21/2014] [Indexed: 01/12/2023]
Abstract
Reproductive specializations in birds have provided intriguing model systems to better understand the role of endocrine mechanisms that regulate phenotype expression and the action of sexual selection. A comparative approach can elucidate how endocrine systems associated with control of sexual differentiation, sexual maturation, and reproductive physiology and behavior have diversified. Here we compare the copulatory sexually selected traits of two members of the galloanseriform superfamily: quail and ducks. Japanese quail have a non-intromittent penis, and they have evolved a unique foam gland that is known to be involved in post-copulatory sexual selection. In contrast, ducks have maintained a large intromittent penis that has evolved via copulatory male-male competition and has been elaborated in a sexually antagonistic race due to sexual conflict with females over mating. These adaptations function in concert with sex-specific and, in part, species-specific behaviors. Although the approaches to study these traits have been different, exploring the differences in neuroendocrine regulation of sexual behavior, development and seasonality of the foam gland and the penis side by side, allow us to suggest some areas where future research would be productive to better understand the evolution of novelty in sexually selected traits.
Collapse
Affiliation(s)
- Patricia L R Brennan
- Organismic and Evolutionary Biology Graduate Program and Departments of Psychology and of Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA.
| | - Elizabeth Adkins-Regan
- Departments of Psychology and of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
16
|
Dickens MJ, de Bournonville C, Balthazart J, Cornil CA. Relationships between rapid changes in local aromatase activity and estradiol concentrations in male and female quail brain. Horm Behav 2014; 65:154-64. [PMID: 24368290 PMCID: PMC3932376 DOI: 10.1016/j.yhbeh.2013.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 12/28/2022]
Abstract
Estradiol-17β (E2) synthesized in the brain plays a critical role in the activation of sexual behavior in many vertebrate species. Because E2 concentrations depend on aromatization of testosterone, changes in aromatase enzymatic activity (AA) are often utilized as a proxy to describe E2 concentrations. Utilizing two types of stimuli (sexual interactions and acute restraint stress) that have been demonstrated to reliably alter AA within minutes in opposite directions (sexual interactions=decrease, stress=increase), we tested in Japanese quail whether rapid changes in AA are paralleled by changes in E2 concentrations in discrete brain areas. In males, E2 in the pooled medial preoptic nucleus/medial portion of the bed nucleus of the stria terminalis (POM/BST) positively correlated with AA following sexual interactions. However, following acute stress, E2 decreased significantly (approximately 2-fold) in the male POM/BST despite a significant increase in AA. In females, AA positively correlated with E2 in both the POM/BST and mediobasal hypothalamus supporting a role for local, as opposed to ovarian, production regulating brain E2 concentrations. In addition, correlations of individual E2 in POM/BST and measurements of female sexual behavior suggested a role for local E2 synthesis in female receptivity. These data demonstrate that local E2 in the male brain changes in response to stimuli on a time course suggestive of potential non-genomic effects on brain and behavior. Overall, this study highlights the complex mechanisms regulating local E2 concentrations including rapid stimulus-driven changes in production and stress-induced changes in catabolism.
Collapse
Affiliation(s)
- M J Dickens
- GIGA Neurosciences, University of Liege, 1 Avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium
| | - C de Bournonville
- GIGA Neurosciences, University of Liege, 1 Avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium
| | - J Balthazart
- GIGA Neurosciences, University of Liege, 1 Avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium
| | - C A Cornil
- GIGA Neurosciences, University of Liege, 1 Avenue de l'Hôpital (Bat. B36), B-4000 Liège, Belgium.
| |
Collapse
|
17
|
Cornil CA, Ball GF, Balthazart J. Rapid control of male typical behaviors by brain-derived estrogens. Front Neuroendocrinol 2012; 33:425-46. [PMID: 22983088 PMCID: PMC3496013 DOI: 10.1016/j.yfrne.2012.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
Abstract
Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanisms that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, Liège, Belgium.
| | | | | |
Collapse
|
18
|
Abstract
Adult male quail show high levels of aromatase activity in the preoptic area-hypothalamus (POA-HYP), which parallels the high number of aromatase-immunoreactive cells and elevated mRNA concentrations detected in this brain region by in situ hybridisation. Interestingly, females display considerably lower aromatase activity than males but have almost equal numbers of aromatase-immunoreactive cells and express similar levels of aromatase mRNA. Aromatase activity in the male POA-HYP can be rapidly regulated by calcium-dependent phosphorylations, in the absence of changes in enzyme concentration. In the present study, we investigated whether aromatase activity is differentially regulated by phosphorylations in males and females. A linear increase in accumulation of aromatisation products was observed in both sexes as a function of time but the rate of conversion was slower in females. Saturation analysis confirmed the lower maximum velocities (V(max) ) in females but indicated a similar affinity (K(m) ) in both sexes. Aromatase activity in females reacted differentially to manipulations of intracellular calcium. In particular, chelating calcium with ethylene glycol tetraacetic acid (EGTA) resulted in a larger increase of enzymatic activity in males than in females, especially in the presence of ATP. A differential reaction to kinase inhibitors was also observed between males and females (i.e. a larger increase in aromatase activity in females than in males after exposure to specific inhibitors). These findings suggest that the nature of aromatase is conserved between the sexes, although the control of its activity by calcium appears to be different. Additional characterizations of intracellular calcium in both sexes would therefore be appropriate to better understand aromatase regulation.
Collapse
Affiliation(s)
- Anne TM Konkle
- GIGA Neurosciences, Research Group in Behavioural Neuroendocrinology, University of Liège
| | - Jacques Balthazart
- GIGA Neurosciences, Research Group in Behavioural Neuroendocrinology, University of Liège
| |
Collapse
|
19
|
Cornil CA, Ball GF, Balthazart J, Charlier TD. Organizing effects of sex steroids on brain aromatase activity in quail. PLoS One 2011; 6:e19196. [PMID: 21559434 PMCID: PMC3084794 DOI: 10.1371/journal.pone.0019196] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/22/2011] [Indexed: 01/13/2023] Open
Abstract
Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first experiment we measured AA in brain regions micropunched in adult male and female Japanese quail utilizing the novel strategy of basing the microdissections on the distribution of aromatase-immunoreactive cells. The largest sex difference was found in the medial bed nucleus of the stria terminalis (mBST) followed by the medial preoptic nucleus (POM) and the tuberal hypothalamic region. A second experiment tested the effect of embryonic treatments known to sex-reverse male copulatory behavior (i.e., estradiol benzoate [EB] or the aromatase inhibitor, Vorozole) on brain AA in gonadectomized adult males and females chronically treated as adults with testosterone. Embryonic EB demasculinized male copulatory behavior, while vorozole blocked demasculinization of behavior in females as previously demonstrated in birds. Interestingly, these treatments did not affect a measure of appetitive sexual behavior. In parallel, embryonic vorozole increased, while EB decreased AA in pooled POM and mBST, but the same effect was observed in both sexes. Together, these data indicate that the early action of estrogens demasculinizes AA. However, this organizational action of estrogens on AA does not explain the behavioral sex difference in copulatory behavior since AA is similar in testosterone-treated males and females that were or were not exposed to embryonic treatments with estrogens.
Collapse
|
20
|
Krohmer R, Lutterschmidt D. Environmental and Neuroendorcrine Control of Reproduction in Snakes. REPRODUCTIVE BIOLOGY AND PHYLOGENY OF SNAKES 2011. [DOI: 10.1201/b10879-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Seredynski AL, Ball GF, Balthazart J, Charlier TD. Specific activation of estrogen receptor alpha and beta enhances male sexual behavior and neuroplasticity in male Japanese quail. PLoS One 2011; 6:e18627. [PMID: 21533185 PMCID: PMC3077394 DOI: 10.1371/journal.pone.0018627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/07/2011] [Indexed: 01/01/2023] Open
Abstract
Two subtypes of estrogen receptors (ER), ERα and ERβ, have been identified in humans and numerous vertebrates, including the Japanese quail. We investigated in this species the specific role(s) of each receptor in the activation of male sexual behavior and the underlying estrogen-dependent neural plasticity. Castrated male Japanese quail received empty (CX) or testosterone-filled (T) implants or were daily injected with the ER general agonist diethylstilbestrol (DES), the ERα-specific agonist PPT, the ERβ-specific agonist DPN or the vehicle, propylene glycol. Three days after receiving the first treatment, subjects were alternatively tested for appetitive (rhythmic cloacal sphincter movements, RCSM) and consummatory aspects (copulatory behavior) of male sexual behavior. 24 hours after the last behavioral testing, brains were collected and analyzed for aromatase expression and vasotocinergic innervation in the medial preoptic nucleus. The expression of RCSM was activated by T and to a lesser extent by DES and PPT but not by the ERβagonist DPN. In parallel, T fully restored the complete sequence of copulation, DES was partially active and the specific activation of ERα or ERβ only resulted in a very low frequency of mount attempts in few subjects. T increased the volume of the medial preoptic nucleus as measured by the dense cluster of aromatase-immunoreactive cells and the density of the vasotocinergic innervation within this nucleus. DES had only a weak action on vasotocinergic fibers and the two specific ER agonists did not affect these neural responses. Simultaneous activation of both receptors or treatments with higher doses may be required to fully activate sexual behavior and the associated neurochemical events.
Collapse
Affiliation(s)
- Aurore L. Seredynski
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Gregory F. Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Thierry D. Charlier
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
22
|
Krohmer RW, DeMarchi GA, Baleckaitis DD, Lutterschmidt DI, Mason RT. Brain nuclei in actively courting red-sided garter snakes: A paradigm of neural trimorphism. Physiol Behav 2011; 102:532-7. [DOI: 10.1016/j.physbeh.2010.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 12/15/2010] [Accepted: 12/21/2010] [Indexed: 12/17/2022]
|
23
|
Voigt C, Ball GF, Balthazart J. Effects of sex steroids on aromatase mRNA expression in the male and female quail brain. Gen Comp Endocrinol 2011; 170:180-8. [PMID: 20951703 PMCID: PMC3010426 DOI: 10.1016/j.ygcen.2010.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/23/2010] [Accepted: 10/05/2010] [Indexed: 11/18/2022]
Abstract
Castrated male quail display intense male-typical copulatory behavior in response to exogenous testosterone but ovariectomized females do not. The behavior of males is largely mediated by the central aromatization of testosterone into estradiol. The lack of behavioral response in females could result from a lower rate of aromatization. This is probably not the case because although the enzymatic sex difference is clearly present in gonadally intact sexually mature birds, it is not reliably found in gonadectomized birds treated with testosterone, in which the behavioral sex difference is always observed. We previously discovered that the higher aromatase activity in sexually mature males as compared to females is not associated with major differences in aromatase mRNA density. A reverse sex difference (females>males) was even detected in the bed nucleus of the stria terminalis. We analyzed here by in situ hybridization histochemistry the density of aromatase mRNA in gonadectomized male and female quail that were or were not exposed to a steroid profile typical of their sex. Testosterone and ovarian steroids (presumably estradiol) increased aromatase mRNA concentration in males and females respectively but mRNA density was similar in both sexes. A reverse sex difference in aromatase mRNA density (females>males) was detected in the bed nucleus of subjects exposed to sex steroids. Together these data suggest that although the induction of aromatase activity by testosterone corresponds to an increased transcription of the enzyme, the sex difference in enzymatic activity results largely from post-transcriptional controls that remain to be identified.
Collapse
Affiliation(s)
- Cornelia Voigt
- GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
- Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Gregory F. Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
- Corresponding author: Jacques Balthazart, University of Liège, GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, Avenue de l’Hopital, 1 (BAT. B36), B-4000 Liège 1, Belgium, Phone 32-4-366 59 70 -- FAX 32-4-366 59 71 --
| |
Collapse
|
24
|
Panzica GC, Bo E, Martini MA, Miceli D, Mura E, Viglietti-Panzica C, Gotti S. Neuropeptides and enzymes are targets for the action of endocrine disrupting chemicals in the vertebrate brain. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:449-72. [PMID: 21790321 DOI: 10.1080/10937404.2011.578562] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endocrine-disrupting chemicals (EDC) are molecules that interfere with endocrine signaling pathways and produce adverse consequences on animal and human physiology, such as infertility or behavioral alterations. Some EDC act through binding to androgen or/and estrogen receptors primarily operating through a genomic mechanism regulating gene expression. This mechanism of action may induce profound developmental adverse effects, and the major targets of the EDC action are the gene products, i.e., mRNAs inducing the synthesis of various peptidic molecules, which include neuropeptides and enzymes related to neurotransmitters syntheses. Available immunohistochemical data on some of the systems that are affected by EDC in lower and higher vertebrates are detailed in this review.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology, and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Balthazart J, Charlier TD, Cornil CA, Dickens MJ, Harada N, Konkle ATM, Voigt C, Ball GF. Sex differences in brain aromatase activity: genomic and non-genomic controls. Front Endocrinol (Lausanne) 2011; 2:34. [PMID: 22645508 PMCID: PMC3355826 DOI: 10.3389/fendo.2011.00034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022] Open
Abstract
Aromatization of testosterone into estradiol in the preoptic area plays a critical role in the activation of male copulation in quail and in many other vertebrate species. Aromatase expression in quail and in other birds is higher than in rodents and other mammals, which has facilitated the study of the controls and functions of this enzyme. Over relatively long time periods (days to months), brain aromatase activity (AA), and transcription are markedly (four- to sixfold) increased by genomic actions of sex steroids. Initial work indicated that the preoptic AA is higher in males than in females and it was hypothesized that this differential production of estrogen could be a critical factor responsible for the lack of behavioral activation in females. Subsequent studies revealed, however, that this enzymatic sex difference might contribute but is not sufficient to explain the sex difference in behavior. Studies of AA, immunoreactivity, and mRNA concentrations revealed that sex differences observed when measuring enzymatic activity are not necessarily observed when one measures mRNA concentrations. Discrepancies potentially reflect post-translational controls of the enzymatic activity. AA in quail brain homogenates is rapidly inhibited by phosphorylation processes. Similar rapid inhibitions occur in hypothalamic explants maintained in vitro and exposed to agents affecting intracellular calcium concentrations or to glutamate agonists. Rapid changes in AA have also been observed in vivo following sexual interactions or exposure to short-term restraint stress and these rapid changes in estrogen production modulate expression of male sexual behaviors. These data suggest that brain estrogens display most if not all characteristics of neuromodulators if not neurotransmitters. Many questions remain however concerning the mechanisms controlling these rapid changes in estrogen production and their behavioral significance.
Collapse
Affiliation(s)
- Jacques Balthazart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
- *Correspondence: Jacques Balthazart, Research Group in Behavioral Neuroendocrinology, Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of Liège, Avenue de l’Hopital, 1 (BAT. B36), B-4000 Liège 1, Belgium. e-mail:
| | - Thierry D. Charlier
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Charlotte A. Cornil
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Molly J. Dickens
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Nobuhiro Harada
- Molecular Genetics, Fujita Health UniversityToyoake, Aichi, Japan
| | - Anne T. M. Konkle
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Cornelia Voigt
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of LiegeLiege, Belgium
| | - Gregory F. Ball
- Department of Psychological and Brain Science, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
26
|
Balthazart J, Charlier TD, Barker JM, Yamamura T, Ball GF. Sex steroid-induced neuroplasticity and behavioral activation in birds. Eur J Neurosci 2010; 32:2116-32. [PMID: 21143666 PMCID: PMC3058323 DOI: 10.1111/j.1460-9568.2010.07518.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The brain of adult homeothermic vertebrates exhibits a higher degree of morphological neuroplasticity than previously thought, and this plasticity is especially prominent in birds. In particular, incorporation of new neurons is widespread throughout the adult avian forebrain, and the volumes of specific nuclei vary seasonally in a prominent manner. We review here work on steroid-dependent plasticity in birds, based on two cases: the medial preoptic nucleus (POM) of Japanese quail in relation to male sexual behavior, and nucleus HVC in canaries, which regulates song behavior. In male quail, POM volume changes seasonally, and in castrated subjects testosterone almost doubles POM volume within 2 weeks. Significant volume increases are, however, already observable after 1 day. Steroid receptor coactivator-1 is part of the mechanism mediating these effects. Increases in POM volume reflect changes in cell size or spacing and dendritic branching, but are not associated with an increase in neuron number. In contrast, seasonal changes in HVC volume reflect incorporation of newborn neurons in addition to changes in cell size and spacing. These are induced by treatments with exogenous testosterone or its metabolites. Expression of doublecortin, a microtubule-associated protein, is increased by testosterone in the HVC but not in the adjacent nidopallium, suggesting that neuron production in the subventricular zone, the birthplace of newborn neurons, is not affected. Together, these data illustrate the high degree of plasticity that extends into adulthood and is characteristic of avian brain structures. Many questions still remain concerning the regulation and specific function of this plasticity.
Collapse
Affiliation(s)
- Jacques Balthazart
- University of Liège, GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, Avenue de l'Hopital, 1 (BAT. B36), B-4000 Liège 1, Belgium.
| | | | | | | | | |
Collapse
|
27
|
Aste N, Watanabe Y, Harada N, Saito N. Distribution and sex differences in aromatase-producing neurons in the brain of Japanese quail embryos. J Chem Neuroanat 2010; 39:272-88. [DOI: 10.1016/j.jchemneu.2010.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 01/24/2023]
|
28
|
Abstract
It was shown earlier that, in Japanese quail the mechanism controlling the induction by testosterone of aromatase activity develops between embryonic days 10 and 14. The cellular processes underlying this activation have, however, not been investigated in detail. Here, we demonstrate that the increase in aromatase activity observed in neonates treated with testosterone propionate between postnatal days 1 and 3 results from the recruitment of additional populations of aromatase-immunoreactive cells that were not expressing the enzyme at detectable levels before. This recruitment concerns all brain nuclei normally expressing the enzyme even if it is more prominent in the ventromedial hypothalamus than in other nuclei.
Collapse
|
29
|
Abstract
In Japanese quail, males will readily exhibit the full sequence of male-typical sexual behaviors but females never show this response, even after ovariectomy and treatment with male-typical concentrations of exogenous testosterone. Testosterone aromatisation plays a key-limiting role in the activation of this behavior but the higher aromatase activity in the brain of males compared to females is not sufficient to explain the behavioural sex difference. The cellular and molecular bases of this prominent sex difference in the functional consequences of testosterone have not been identified so far. We hypothesised that the differential expression of sex steroid receptors in specific brain areas could mediate this behavioural sex difference. Therefore, using radioactive in situ hybridisation histochemistry, we quantified the expression of the mRNA coding for the androgen receptor (AR) and the oestrogen receptors (ER) of the alpha and beta subtypes. All three receptors were expressed in an anatomically discrete manner in various nuclei of the hypothalamus and limbic system and, at usually lower densities, in a few other brain areas. In both sexes, the intensity of the hybridisation signal for all steroid receptors was highest in the medial preoptic nucleus (POM), a major site of testosterone action that is related to the activation of male sexual behaviour. Although no sex difference in the optical density of the AR hybridisation signal could be found in POM, the area covered by AR mRNA was significantly larger in males than in females, indicating a higher overall degree of AR expression in this region in males. By contrast, females tended to have significantly higher levels of AR expression than males in the lateral septum. ERalpha was more densely expressed in females than males throughout the medial preoptic and hypothalamic areas (including the POM and the medio-basal hypothalamus), an area implicated in the control of female receptivity) and in the mesencephalic nucleus intercollicularis. ERbeta was more densely expressed in the medio-basal hypothalamus of females but a difference in the reverse direction (males > females) was observed in the nucleus taeniae of the amygdala. These data suggest that a differential expression of steroid receptors in specific brain areas could mediate at least certain aspects of the sex differences in behavioural responses to testosterone, although they do not appear to be sufficient to explain the complete lack of activation by testosterone of male-typical copulatory behaviour in females.
Collapse
Affiliation(s)
- Cornelia Voigt
- GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
- Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Gregory F. Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jacques Balthazart
- GIGA Neurosciences, University of Liège, B-4000 Liège, Belgium
- Corresponding author: Jacques Balthazart, University of Liège, GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, Avenue de l’Hopital, 1 (BAT. B36), B-4000 Liège 1, Belgium, Phone 32-4-366 59 70 -- FAX 32-4-366 59 71 --
| |
Collapse
|
30
|
Balthazart J, Cornil CA, Charlier TD, Taziaux M, Ball GF. Estradiol, a key endocrine signal in the sexual differentiation and activation of reproductive behavior in quail. ACTA ACUST UNITED AC 2009; 311:323-45. [DOI: 10.1002/jez.464] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Enhanced neural activation in brain regions mediating sexual responses following exposure to a conditioned stimulus that predicts copulation. Neuroscience 2007; 151:644-58. [PMID: 18164139 DOI: 10.1016/j.neuroscience.2007.10.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 09/05/2007] [Accepted: 11/16/2007] [Indexed: 01/27/2023]
Abstract
Stimuli associated with sexual behavior increase reproductive success if presented prior to copulation. In Japanese quail, inseminations that take place in a context that predicts the arrival of a female are more likely to result in fertilized eggs. We demonstrate here that in male Japanese quail a sexual conditioned stimulus (CS) also enhances activity in two brain regions that mediate sexual behavior, the medial preoptic area and the medial part of the bed nucleus of the stria terminalis. C-fos expression, a marker of neural activation, was higher in these areas in subjects exposed sequentially to a sexual CS and copulation than in subjects exposed to copulation or the CS alone or in subjects exposed to no sexual stimulus, either an identical, untrained CS or an empty arena. These results suggest a link between a proximate result of sexual CS presentation, male brain activation, and a known ultimate outcome, increased fertilizations.
Collapse
|
32
|
Balthazart J, Ball GF. Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors. Front Neuroendocrinol 2007; 28:161-78. [PMID: 17624413 PMCID: PMC2100381 DOI: 10.1016/j.yfrne.2007.05.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/29/2007] [Accepted: 05/29/2007] [Indexed: 11/29/2022]
Abstract
Several studies have suggested dissociations between neural circuits underlying the expression of appetitive (e.g., courtship behavior) and consummatory components (i.e., copulatory behavior) of vertebrate male sexual behavior. The medial preoptic area (mPOA) clearly controls the expression of male copulation but, according to a number of experiments, is not necessarily implicated in the expression of appetitive sexual behavior. In rats for example, lesions to the mPOA eliminate male-typical copulatory behavior but have more subtle or no obvious effects on measures of sexual motivation. Rats with such lesions still pursue and attempt to mount females. They also acquire and perform learned instrumental responses to gain access to females. However, recent lesions studies and measures of the expression of the immediate early gene c-fos demonstrate that, in quail, sub-regions of the mPOA, in particular of its sexually dimorphic component the medial preoptic nucleus, can be specifically linked with either the expression of appetitive or consummatory sexual behavior. In particular more rostral regions can be linked to appetitive components while more caudal regions are involved in consummatory behavior. This functional sub-region variation is associated with neurochemical and hodological specializations (i.e., differences in chemical phenotype of the cells or in their connectivity), especially those related to the actions of androgens in relation to the activation of male sexual behavior, that are also present in rodents and other species. It could thus reflect general principles about POA organization and function in the vertebrate brain.
Collapse
Affiliation(s)
- Jacques Balthazart
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 1 Avenue de 1'Hôpital (Bat. B36), B-4000 Liège 1, Belgium.
| | | |
Collapse
|
33
|
Panzica GC, Viglietti-Panzica C, Mura E, Quinn MJ, Lavoie E, Palanza P, Ottinger MA. Effects of xenoestrogens on the differentiation of behaviorally-relevant neural circuits. Front Neuroendocrinol 2007; 28:179-200. [PMID: 17868795 DOI: 10.1016/j.yfrne.2007.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/11/2007] [Accepted: 07/12/2007] [Indexed: 11/18/2022]
Abstract
It has become increasingly clear that environmental chemicals have the capability of impacting endocrine function. Moreover, these endocrine disrupting chemicals (EDCs) have long term consequences on adult reproductive function, especially if exposure occurs during embryonic development thereby affecting sexual differentiation. Of the EDCs, most of the research has been conducted on the effects of estrogen active compounds. Although androgen active compounds are also present in the environment, much less information is available about their action. However, in the case of xenoestrogens, there is mounting evidence for long-term consequences of early exposure at a range of doses. In this review, we present data relative to two widely used animal models: the mouse and the Japanese quail. These two species long have been used to understand neural, neuroendocrine, and behavioral components of reproduction and are therefore optimal models to understand how these components are altered by precocious exposure to EDCs. In particular we discuss effects of bisphenol A and methoxychlor on the dopaminergic and noradrenergic systems in rodents and the impact of these alterations. In addition, the effects of embryonic exposure to diethylstilbestrol, genistein or ethylene,1,1-dichloro-2,2-bis(p-chlorophenyl) is reviewed relative to behavioral impairment and associated alterations in the sexually dimorphic parvocellular vasotocin system in quail. We point out how sexually dimorphic behaviors are particularly useful to verify adverse developmental consequences produced by chemicals with endocrine disrupting properties, by examining either reproductive or non-reproductive behaviors.
Collapse
|
34
|
Canoine V, Fusani L, Schlinger B, Hau M. Low sex steroids, high steroid receptors: Increasing the sensitivity of the nonreproductive brain. Dev Neurobiol 2007; 67:57-67. [PMID: 17443772 DOI: 10.1002/dneu.20296] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Male aggressive behavior is generally regulated by testosterone (T). In most temperate breeding males, aggressive behavior is only expressed during the reproductive period. At this time circulating T concentrations, brain steroid receptors, and steroid metabolic enzymes are elevated in many species relative to the nonreproductive period. Many tropical birds, however, display aggressive behavior both during the breeding and the nonbreeding season, but plasma levels of T can remain low throughout the year and show little seasonal fluctuation. Studies on the year-round territorial spotted antbird (Hylophylax n. naevioides) suggest that T nevertheless regulates aggressive behavior in both the breeding and nonbreeding season. We hypothesize that to regulate aggressive behaviors during the nonbreeding season, when T is at its minimum, male spotted antbirds increase brain sensitivity to steroids. This can be achieved by locally up-regulating androgen receptors (ARs), estrogen receptors (ERs), or the enzyme aromatase (AROM) that converts T into estradiol. We therefore compared mRNA expression of AR, ERalpha, and AROM in free- living male spotted antbirds across reproductive and nonreproductive seasons in two brain regions known to regulate both reproductive and aggressive behaviors. mRNA expression of ERalpha in the preoptic area and AR in the nucleus taeniae were elevated in male spotted antbirds during the nonbreeding season when circulating T concentrations were low. This unusual seasonal receptor regulation may represent a means for the year-round regulation of vertebrate aggressive behavior via steroids by increasing the brain's sensitivity to sex steroids during the nonbreeding season.
Collapse
Affiliation(s)
- Virginie Canoine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | |
Collapse
|
35
|
Martínez-Cerdeño V, Noctor SC, Kriegstein AR. Estradiol stimulates progenitor cell division in the ventricular and subventricular zones of the embryonic neocortex. Eur J Neurosci 2007; 24:3475-88. [PMID: 17229096 DOI: 10.1111/j.1460-9568.2006.05239.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two distinct populations of cerebral cortical progenitor cells that generate neurons during embryogenesis have been identified: radial glial cells and intermediate progenitor cells. Despite advances in our understanding of progenitor cell populations, we know relatively little about factors that regulate their proliferative behaviour. 17-beta-Estradiol (E2) is present in the adult and developing mammalian brain, and plays an important role in central nervous system processes such as neuronal differentiation, survival and plasticity. E2 also stimulates neurogenesis in the adult dentate gyrus. We examined the role of E2 during embryonic cortical neurogenesis through immunohistochemistry, in situ hybridization, functional enzyme assay, organotypic culture and in utero administration of estradiol-blocking agents in mice. We show that aromatase, the E2 synthesizing enzyme, is present in the embryonic neocortex, that estrogen receptor-alpha is present in progenitor cells during cortical neurogenesis, that in vitro E2 administration rapidly promotes proliferation, and that in utero blockade of estrogen receptors decreases proliferation of embryonic cortical progenitor cells. Furthermore, the E2 inhibitor alpha-fetoprotein is expressed at high levels by radial glial cells but at lower levels by intermediate progenitor cells, suggesting that E2 differentially influences the proliferation of these cortical progenitor cell types. These findings demonstrate a new functional role for E2 as a proliferative agent during critical stages of cerebral cortex development.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Neurology and Program in Developmental and Stem Cell Biology, 513 Parnassus Avenue, HSW 1201, Box 0525, University of California San Francisco, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
36
|
Voigt C, Ball GF, Balthazart J. Neuroanatomical specificity of sex differences in expression of aromatase mRNA in the quail brain. J Chem Neuroanat 2007; 33:75-86. [PMID: 17270396 DOI: 10.1016/j.jchemneu.2006.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 12/18/2006] [Accepted: 12/18/2006] [Indexed: 11/19/2022]
Abstract
In birds and mammals, aromatase activity in the preoptic-hypothalamic region (HPOA) is usually higher in males than in females. It is, however, not known whether the enzymatic sex difference reflects the differential activation of aromatase transcription or some other control mechanism. Although sex differences in aromatase activity are clearly documented in the HPOA of Japanese quail (Coturnix japonica), only minimal or even no differences at all were observed in the number of aromatase-immunoreactive (ARO-ir) cells in the medial preoptic nucleus (POM) and in the medial part of the bed nucleus striae terminalis (BSTM). We investigated by in situ hybridization the distribution and possible sex differences in aromatase mRNA expression in the brain of sexually active adult quail. The distribution of aromatase mRNA matched very closely the results of previous immunocytochemical studies with the densest signal being observed in the POM, BSTM and in the mediobasal hypothalamus (MBH). Additional weaker signals were detected in the rostral forebrain, arcopallium and mesencephalic regions. No sex difference in the optical density of the hybridization signal could be found in the POM and MBH but the area covered by mRNA was larger in males than in females, indicating a higher overall expression in males. In contrast, in the BSTM, similar areas were covered by the aromatase expression in both sexes but the density of the signal was higher in females than in males. The physiological control of aromatase is thus neuroanatomically specific and with regard to sex differences, these controls are at least partially different if one compares the level of transcription, translation and activity of the enzyme. These results also indirectly suggest that the sex difference in aromatase enzyme activity that is present in the quail HPOA largely results from differentiated controls of enzymatic activity rather than differences in enzyme concentration.
Collapse
Affiliation(s)
- Cornelia Voigt
- Center for Cellular and Molecular Neurobiology, University of Liège, B-4000 Liège, Belgium
| | | | | |
Collapse
|
37
|
Carere C, Ball GF, Balthazart J. Sex differences in projections from preoptic area aromatase cells to the periaqueductal gray in Japanese quail. J Comp Neurol 2007; 500:894-907. [PMID: 17177261 DOI: 10.1002/cne.21210] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In many vertebrate species the medial preoptic area projects to a premotor nucleus, the periaqueductal central gray (PAG). This connection plays an important role in the control of reproductive behavior. In male Japanese quail (Coturnix japonica) specifically, the medial preoptic nucleus (POM), where various types of sensory inputs converge, is a critical site for the activational action of testosterone on male sexual behavior. To activate male copulatory behavior, testosterone must be aromatized to estradiol within the POM and aromatase-immunoreactive cells in the POM are the main source of projections to the PAG. The POM-PAG connection is thus an important functional circuit integrating the sensory with premotor components of sexual behavior. Contrary to what is observed in males, testosterone does not activate male-typical copulatory behavior in females and we investigated here via retrograde tracing methods whether this behavioral sexual difference is associated with a sex difference in connectivity between POM and PAG. Fluorescent microspheres were injected in the PAG of male and female quail and retrogradely labeled fluorescent cells counted in four fields of the POM in sections that had been immunolabeled for aromatase. Males had more aromatase-immunoreactive neurons projecting to the PAG than females and this difference was most prominent in the caudolateral part of the nucleus that has been specifically implicated in the control of male copulatory behavior. These data therefore support the hypothesis that sex differences in POM-PAG connectivity are causally linked to the sex difference in the behavioral response to testosterone.
Collapse
Affiliation(s)
- Claudio Carere
- University of Liège, Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, Liège B-4000, Belgium
| | | | | |
Collapse
|
38
|
Canoine V, Fusani L, Schlinger B, Hau M. Low sex steroids, high steroid receptors: Increasing the sensitivity of the nonreproductive brain. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/neu.20296] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Abstract
Male sexual behavior in both field and laboratory settings has been studied in birds since the 19th century. Birds are valuable for the investigation of the neuroendocrine mechanisms of sexual behavior, because their behavior can be studied in the context of a large amount of field data, well-defined neural circuits related to reproductive behavior have been described, and the avian neuroendocrine system exhibits many examples of marked plasticity. As is the case in other taxa, male sexual behavior in birds can be usefully divided into an appetitive phase consisting of variable behaviors (typically searching and courtship) that allow an individual to converge on a functional outcome, copulation (consummatory phase). Based primarily on experimental studies in ring doves and Japanese quail, it has been shown that testosterone of gonadal origin plays an important role in the activation of both of these aspects of male sexual behavior. Furthermore, the conversion of androgens, such as testosterone, in the brain to estrogens, such as 17beta-estradiol, is essential for the full expression of male-typical behaviors. The localization of sex steroid receptors and the enzyme aromatase in the brain, along with lesion, hormone implant and immediate early gene expression studies, has identified many neural sites related to the control of male behavior. The preoptic area (POA) is a key site for the integration of sensory inputs and the initiation of motor outputs. Furthermore, prominent connections between the POA and the periaqueductal gray (PAG) form a node that is regulated by steroid hormones, receive sensory inputs and send efferent projections to the brainstem and spinal cord that activate male sexual behaviors. The sensory inputs regulating avian male sexual responses, in contrast to most mammalian species, are primarily visual and auditory, so a future challenge will be to identify how these senses impinge on the POA-PAG circuit. Similarly, most avian species do not have an intromittent organ, so the projections from the POA-PAG to the brainstem and spinal cord that control sexual reflexes will be of particular interest to contrast with the well characterized rodent system. With this knowledge, general principles about the organization of male sexual circuits can be elucidated, and comparative studies relating known species variation in avian male sexual behaviors to variation in neural systems can be pursued.
Collapse
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | | |
Collapse
|
40
|
Ball GF, Auger CJ, Bernard DJ, Charlier TD, Sartor JJ, Riters LV, Balthazart J. Seasonal plasticity in the song control system: multiple brain sites of steroid hormone action and the importance of variation in song behavior. Ann N Y Acad Sci 2004; 1016:586-610. [PMID: 15313796 DOI: 10.1196/annals.1298.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Birdsong, in non-tropical species, is generally more common in spring and summer when males sing to attract mates and/or defend territories. Changes in the volumes of song control nuclei, such as HVC and the robust nucleus of the arcopallium (RA), are observed seasonally. Long photoperiods in spring stimulate the recrudescence of the testes and the release of testosterone. Androgen receptors, and at times estrogen receptors, are present in HVC and RA as are co-factors that facilitate the transcriptional activity of these receptors. Thus testosterone can act directly to induce changes in nucleus volume. However, dissociations have been identified at times among long photoperiods, maximal concentrations of testosterone, large song control nuclei, and high rates of song. One explanation of these dissociations is that song behavior itself can influence neural plasticity in the song system. Testosterone can act via brain-derived neurotrophic factor (BDNF) that is also released in HVC as a result of song activity. Testosterone could enhance song nucleus volume indirectly by acting in the preoptic area, a region regulating sexual behaviors, including song, that connects to the song system through catecholaminergic cells. Seasonal neuroplasticity in the song system involves an interplay among seasonal state, testosterone action, and behavioral activity.
Collapse
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2686, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Charlier TD, Lakaye B, Ball GF, Balthazart J. Steroid receptor coactivator SRC-1 exhibits high expression in steroid-sensitive brain areas regulating reproductive behaviors in the quail brain. Neuroendocrinology 2002; 76:297-315. [PMID: 12457041 DOI: 10.1159/000066624] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The steroid receptor coactivator SRC-1 modulates ligand-dependent transactivation of several nuclear receptors, including the receptors for sex steroid hormones. Reducing the expression of SRC-1 by injection of specific antisense oligonucleotides markedly inhibits the effects of estrogens of the sexual differentiation of brain and behavior in rats and inhibits the activation of female sexual behavior in adult female rats. SRC-1 thus appears to be involved in both the development and activation of sexual behavior. In the Japanese quail brain, we amplified by RT-PCR a 3,411-bp fragment extending from the HLH domain to the activating domain-2 of the protein. The quail SRC-1 is closely related to the mammalian (m) SRC-1 and contains a high proportion of GC nucleotides (62.5%). Its amino acid sequence presents 70% identity with mammalian SRC-1 and contains the three conserved LXXLL boxes involved in the interaction with nuclear receptors. In both males and females, RT-PCR demonstrates a similarly high level of expression in the telencephalon, diencephalon, optic lobes, brain stem, spinal cord, pituitary, liver, kidney, adrenal gland, heart, lung, gonads and gonoducts. Males express significantly higher levels of SRC-1 in the preoptic area-hypothalamus than females. In both sexes, lower levels of expression are observed in the cerebellum and muscles. In situ hybridization utilizing a mixture of four digoxigenin-labeled oligonucleotides confirms at the cellular level the widespread distribution of SRC-1 mRNA in the brain and a particularly dense expression in steroid-sensitive areas that play a key role in the control of male sexual behavior. These data confirm the presence and describe for the first time the SRC-1 distribution in the brain of an avian species. They confirm its broad, nearly ubiquitous, distribution in the entire body including the brain as could be expected for a coactivator that regulates to the action of many nuclear receptors. However this distribution is heterogeneous in the brain and sexually differentiated in at least some areas. The very dense expression of SRC-1 in limbic and mesencephalic nuclei that are associated with the control of male sexual behavior is consistent with the notion that this coactivator plays a significant role in the activation of this behavior.
Collapse
Affiliation(s)
- Thierry D Charlier
- University of Liège, Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, and Laboratory of Neurochemistry, Liège, Belgium
| | | | | | | |
Collapse
|
42
|
Ball GF, Riters LV, Balthazart J. Neuroendocrinology of song behavior and avian brain plasticity: multiple sites of action of sex steroid hormones. Front Neuroendocrinol 2002; 23:137-78. [PMID: 11950243 DOI: 10.1006/frne.2002.0230] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seasonal changes in the brain of songbirds are one of the most dramatic examples of naturally occurring neuroplasticity that have been described in any vertebrate species. In males of temperate-zone songbird species, the volumes of several telencephalic nuclei that control song behavior are significantly larger in the spring than in the fall. These increases in volume are correlated with high rates of singing and high concentrations of testosterone in the plasma. Several song nuclei express either androgen receptors or estrogen receptors, therefore it is possible that testosterone acting via estrogenic or androgenic metabolites regulates song behavior by seasonally modulating the morphology of these song control nuclei. However, the causal links among these variables have not been established. Dissociations among high concentrations of testosterone, enlarged song nuclei, and high rates of singing behavior have been observed. Singing behavior itself can promote cellular changes associated with increases in the volume of the song control nuclei. Also, testosterone may stimulate song behavior by acting in brain regions outside of the song control system such as in the preoptic area or in catecholamine cell groups in the brainstem. Thus testosterone effects on neuroplasticity in the song system may be indirect in that behavioral activity stimulated by testosterone acting in sites that promote male sexual behavior could in turn promote morphological changes in the song system.
Collapse
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
43
|
Krohmer RW, Bieganski GJ, Baleckaitis DD, Harada N, Balthazart J. Distribution of aromatase immunoreactivity in the forebrain of red-sided garter snakes at the beginning of the winter dormancy. J Chem Neuroanat 2002; 23:59-71. [PMID: 11756010 DOI: 10.1016/s0891-0618(01)00145-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Until recently, it has been difficult to identify the exact location of aromatase containing cells in the brain. The development of new antibodies has provided a sensitive tool to analyze the distribution of aromatase immunoreactive (ARO-ir) material at a cellular level of resolution. In the present study we examined, for the first time, the distribution of ARO-ir cells in the brain of a reptile, the red-sided garter snake, at the beginning of the winter dormancy. ARO-ir cells were found at all rostro-caudal levels in the red-sided garter snake brain. Although weakly stained cells were distributed throughout the brain, more intensely immunoreactive cells were primarily concentrated in the preoptic area, anterior hypothalamus, septum and nucleus sphericus. Although androgens are elevated upon emergence from hibernation in the male red-sided garter snake, initiation of courtship behavior appears to be independent of direct androgen control. To date, the only known stimulus found to initiate courtship is a period of low temperature dormancy followed by exposure to warm temperatures. Circumstantial data, however, suggest an indirect role in the activation of male copulatory behavior for estrogenic metabolites of testosterone produced in the brain by aromatization during the winter dormancy. This study provides the first documentation of the distribution of ARO-ir cells in a reptilian species and demonstrates that while the aromatase enzyme occurs in most regions of the brain, the ARO-ir cells that appear to contain the highest concentration of enzyme are clustered in brain areas classically associated with the control of courtship behavior and mating in vertebrates. These data are consistent with the idea that estrogens locally produced in the brain may participate in some way to the activation of sexual behavior in this species also. This notion should now be experimentally tested by analyzing annual changes in aromatase activity and immunoreactivity and assessing the effects of pharmacological blockade of the enzyme activity at different times of the year.
Collapse
Affiliation(s)
- Randolph W Krohmer
- Department of Biology, Saint Xavier University, 3700 West 103rd Street, Chicago, IL 60655, USA.
| | | | | | | | | |
Collapse
|
44
|
Balthazart J, Baillien M, Ball GF. Phosphorylation processes mediate rapid changes of brain aromatase activity. J Steroid Biochem Mol Biol 2001; 79:261-77. [PMID: 11850233 DOI: 10.1016/s0960-0760(01)00143-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enzyme aromatase (also called estrogen synthase) that catalyzes the transformation of testosterone (T) into estradiol plays a key limiting role in the action of T on many aspects of reproduction. The distribution and regulation of aromatase in the quail brain has been studied by radioenzyme assays on microdissected brain areas, immunocytochemistry, RT-PCR and in situ hybridization. High levels of aromatase activity (AA) characterize the sexually dimorphic, steroid-sensitive medial preoptic nucleus (POM), a critical site of T action and aromatization for the activation of male sexual behavior. The boundaries of the POM are clearly outlined by a dense population of aromatase-containing cells as visualized by both immunocytochemistry and in situ hybridization histochemistry. Aromatase synthesis in the POM is controlled by T and its metabolite estradiol, but estradiol receptors alpha (ERalpha) are not normally co-localized with aromatase in this brain area. Estradiol receptor beta (ERbeta) has been recently cloned in quail and localized in POM but we do not yet know whether ERbeta occurs in aromatase cells. It is therefore not known whether estrogens regulate aromatase synthesis directly or by affecting different inputs to aromatase cells as is the case with the gonadotropin releasing hormone neurons. The presence of aromatase in presynaptic boutons suggests that locally formed estrogens may exert part of their effects by non-genomic mechanisms at the membrane level. Rapid effects of estrogens in the brain that presumably take place at the neuronal membrane level have been described in other species. If fast transduction mechanisms for estrogen are available at the membrane level, this will not necessarily result in rapid changes in brain function if the availability of the ligand does not also change rapidly. We demonstrate here that AA in hypothalamic homogenates is rapidly down-regulated by exposure to conditions that enhance protein phosphorylation (addition of Ca2+, Mg2+, ATP). This inhibition is blocked by kinase inhibitors which supports the notion that phosphorylation processes are involved. A rapid (within minutes) and reversible regulation of AA is also observed in hypothalamic explants incubated in vitro and exposed to high Ca2+ levels (K+-induced depolarization, treatment by thapsigargin, by kainate, AMPA or NMDA). The local production and availability of estrogens in the brain can therefore be rapidly changed by Ca2+ based on variation in neurotransmitter activity. Locally-produced estrogens are as a consequence available for non-genomic regulation of neuronal physiology in a manner more akin to the action of a neuropeptide/neurotransmitter than previously thought.
Collapse
Affiliation(s)
- J Balthazart
- Research Group in Behavioral Neuroendocrinology, Center for Cellular and Molecular Neurobiology, 17 Place Delcour (Bat. L1), University of Liège, B-4020, Liège, Belgium.
| | | | | |
Collapse
|
45
|
Absil P, Baillien M, Ball GF, Panzica GC, Balthazart J. The control of preoptic aromatase activity by afferent inputs in Japanese quail. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:38-58. [PMID: 11744073 DOI: 10.1016/s0165-0173(01)00122-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review summarizes current knowledge on the mechanisms that control aromatase activity in the quail preoptic area, a brain region that plays a key role in the control of reproduction. Aromatase and aromatase mRNA synthesis in the preoptic area are enhanced by testosterone and its metabolite estradiol, but estradiol receptors of the alpha subtype are not regularly colocalized with aromatase. Estradiol receptors of the beta subtype are present in the preoptic area but it is not yet known whether these receptors are colocalized with aromatase. The regulation by estrogen of aromatase activity may be, in part, trans-synaptically mediated, in a manner that is reminiscent of the ways in which steroids control the activity of gonadotropic hormone releasing hormone neurons. Aromatase-immunoreactive neurons are surrounded by dense networks of vasotocin-immunoreactive and tyrosine hydroxylase-immunoreactive fibers and punctate structures. These inputs are in part steroid-sensitive and could therefore mediate the effects of steroids on aromatase activity. In vivo pharmacological experiments indicate that catecholaminergic depletions significantly affect aromatase activity presumably by modulating aromatase transcription. In addition, in vitro studies on brain homogenates or on preoptic-hypothalamic explants show that aromatase activity can be rapidly modulated by a variety of dopaminergic compounds. These effects do not appear to be mediated by the membrane dopamine receptors and could involve changes in the phosphorylation state of the enzyme. Together, these results provide converging evidence for a direct control of aromatase activity by catecholamines consistent with the anatomical data indicating the presence of a catecholaminergic innervation of aromatase cells. These dopamine-induced changes in aromatase activity are observed after several hours or days and presumably result from changes in aromatase transcription but rapid non-genomic controls have also been identified. The potential significance of these processes for the physiology of reproduction is critically evaluated.
Collapse
Affiliation(s)
- P Absil
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 17 place Delcour, B-4020, Liège, Belgium
| | | | | | | | | |
Collapse
|
46
|
Absil P, Riters LV, Balthazart J. Preoptic aromatase cells project to the mesencephalic central gray in the male Japanese quail (Coturnix japonica). Horm Behav 2001; 40:369-83. [PMID: 11673910 DOI: 10.1006/hbeh.2001.1702] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous tract-tracing studies demonstrated the existence of projections from the medial preoptic nucleus (POM) to the mesencephalic central gray (GCt) in quail. GCt contains a significant number of aromatase-immunoreactive (ARO-ir) fibers and punctate structures, but no ARO-ir cells are present in this region. The origin of the ARO-ir fibers of the GCt was investigated here by retrograde tract-tracing combined with immunocytochemistry for aromatase. Following injection of fluorescent microspheres in GCt, retrogradely labeled cells were found in a large number of hypothalamic and mesencephalic areas and in particular within the three main groups of ARO-ir cells located in the POM, the ventromedial nucleus of the hypothalamus, and the bed nucleus striae terminalis. Labeling of these cells for aromatase by immunocytochemistry demonstrated, however, that aromatase-positive retrogradely labeled cells are observed almost exclusively within the POM. Double-labeled cells were abundant in both the rostral and caudal parts of the POM and their number was apparently not affected by the location of the injection site within GCt. At both rostro-caudal levels of the POM, ARO-ir retrogradely labeled cells were, however, more frequent in the lateral than in the medial POM. These data indicate that ARO-ir neurons located in the lateral part of the POM may control the premotor aspects of male copulatory behavior through their projection to GCt and suggest that GCt activity could be affected by estrogens released from the terminals of these ARO-ir neurons.
Collapse
Affiliation(s)
- P Absil
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 17 place Delcour, B-4020 Liège, Belgium
| | | | | |
Collapse
|
47
|
Riters LV, Eens M, Pinxten R, Duffy DL, Balthazart J, Ball GF. Seasonal changes in courtship song and the medial preoptic area in male European starlings (Sturnus vulgaris). Horm Behav 2000; 38:250-61. [PMID: 11104643 DOI: 10.1006/hbeh.2000.1623] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In male starlings (Sturnus vulgaris) courtship song plays a critical role in mate attraction. During the breeding season courtship song occurs prior to copulation and appears to reflect male sexual arousal. Outside the breeding season starlings sing, but song appears unrelated to reproduction. The aromatization of testosterone (T), likely within the medial preoptic nucleus (POM), is critical for the expression of male sexual arousal. The present study was performed to determine whether seasonal changes in the POM might relate to seasonal changes in courtship singing behavior in male starlings. T concentrations, the volume of the POM, and aromatase within the POM were examined both during and outside of the breeding season in male starlings. Song was also recorded at these times both with and without a female present. The POM was largest and contained dense aromatase immunostaining only during the spring breeding season, when T concentrations were highest and males responded to a female with an increase in courtship song. Outside the breeding season the volume of the POM was small, T concentrations were low, and males displayed no changes in song expression in response to female conspecifics. Song bout length was positively related to POM volume, and males sang longer songs in spring. Only males with nestboxes in spring responded to a female, and the POM tended to be larger in these males, suggesting that nestbox possession might influence neuroplasticity within the POM. Overall, the findings suggest that T-dependent plasticity and aromatase activity within the POM might regulate courtship singing in a wild songbird.
Collapse
Affiliation(s)
- L V Riters
- Department of Psychology, Behavioral Neuroendocrinology Group, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Balthazart J, Tlemçani O, Harada N, Baillien M. Ontogeny of aromatase and tyrosine hydroxylase activity and of aromatase-immunoreactive cells in the preoptic area of male and female Japanese quail. J Neuroendocrinol 2000; 12:853-66. [PMID: 10971810 DOI: 10.1046/j.1365-2826.2000.00532.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aromatization of testosterone into oestrogens plays a key role in the control of many behavioural and physiological aspects of reproduction. In the quail preoptic area (POA), aromatase activity and the number of aromatase-immunoreactive (ARO-ir) cells are sexually differentiated (males > females). This sex difference is implicated in the control of the sexually dimorphic behavioural response of quail to testosterone. We analysed the ontogenetic development of this sex difference by measuring aromatase activity and counting ARO-ir cells in the POA of males and females from day 1 post hatch to sexual maturity. We investigated in parallel another enzyme: tyrosine hydroxylase, the rate limiting step in catecholamine synthesis. Between hatching and 4 weeks of age, aromatase activity levels were low and equal in males and females. Aromatase activity then markedly increased in both sexes when subjects initiated their sexual maturation but this increase was more pronounced in males so that a marked difference in aromatase activity was present in 6 and 8 week-old subjects. Tyrosine hydroxylase activity progressively increased with age starting immediately after hatching and there was no abrupt modification in the slope of this increase when birds became sexually mature. No sex difference was detected in the activity of this enzyme. The number of ARO-ir cells in the POA progressively increased with age starting at hatching. No sex difference in ARO-ir cell numbers could be detected before subjects reached full sexual maturity. The analysis of the three-dimensional organization of ARO-ir cells in the POA revealed that, with increasing ages, ARO-ir cells acquire a progressively more lateral position: they are largely periventricular in young birds but they are found at higher density in the lateral part of the medial preoptic nucleus in adults. These data indicate that aromatase activity differentiates sexually when birds reach sexual maturity presumably under the activating effects of the increased testosterone levels in males. The number of ARO-ir cells, however, begins to increase in a non sexually differentiated manner before the rise in plasma testosterone in parallel with the increased tyrosine hydroxylase activity. Whether this temporal coincidence results from a general ontogenetic pattern or from more direct causal links remains to be established.
Collapse
Affiliation(s)
- J Balthazart
- University of Liège, Laboratory of Biochemistry, Liège, Belgium.
| | | | | | | |
Collapse
|
49
|
Saldanha CJ, Schultz JD, London SE, Schlinger BA. Telencephalic aromatase but not a song circuit in a sub-oscine passerine, the golden collared manakin (Manacus vitellinus). BRAIN, BEHAVIOR AND EVOLUTION 2000; 56:29-37. [PMID: 11025342 DOI: 10.1159/000006675] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In oscine passerines, the telencephalon expresses high levels of the estrogen synthetic enzyme aromatase. In contrast, forebrain aromatase is limited to low levels at discrete limbic loci in non-passerines. The function of forebrain aromatase in oscines is unknown, however, estrogen-sensitive elements of the telencephalic song circuit (an oscine characteristic) may be influenced by local aromatization. Very few studies have investigated the neuroendocrine characteristics of sub-oscine passerines. Species of this passerine sub-order are taxonomically similar to oscines, but do not appear to learn how to sing as oscines, and show no evidence of a song circuit. The neural expression of aromatase in these birds is unknown. We asked whether the golden-collared manakin, a sub-oscine, (a) showed evidence of a song circuit, and (b) expressed aromatase in the telencephalon at high levels like the zebra finch (oscine passerine) or at low levels like the quail (non-passerine). Nissl stains and immunocytochemistry for microtubule associated proteins showed no evidence of a song circuit in manakins of either sex, whereas both techniques delineate all song nuclei in the zebra finch. However, biochemical and immunocytochemical measures reveal that in the manakin, several telencephalic loci, including the hippocampus, caudomedial neostriatum, nucleus taeniae, and the lateral neostriatum express aromatase. Assays run in parallel show low to undetectable levels of aromatase in the telencephalon of the quail (nonpasserine) and abundant levels in the zebra finch (oscine passerine), suggesting a dissociation between the presence of a song circuit and forebrain aromatase expression in this sub-oscine. These data suggest that forebrain aromatase may have evolved in sub-oscine songbirds before the evolution of a song circuit and singing behavior in oscines. Alternatively, forebrain aromatase may serve functions distinct from singing behavior.
Collapse
Affiliation(s)
- C J Saldanha
- Department of Physiological Science, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
50
|
Cornil C, Foidart A, Minet A, Balthazart J. Immunocytochemical localization of ionotropic glutamate receptors subunits in the adult quail forebrain. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001225)428:4<577::aid-cne1>3.0.co;2-k] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|