1
|
Lei S, Hu B. Ionic and signaling mechanisms involved in neurotensin-mediated excitation of central amygdala neurons. Neuropharmacology 2021; 196:108714. [PMID: 34271017 DOI: 10.1016/j.neuropharm.2021.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Neurotensin (NT) serves as a neuromodulator in the brain where it regulates a variety of physiological functions. Whereas the central amygdala (CeA) expresses NT peptide and NTS1 receptors and application of NT has been shown to excite CeA neurons, the underlying cellular and molecular mechanisms have not been determined. We found that activation of NTS1 receptors increased the neuronal excitability of the lateral nucleus (CeL) of CeA. Both phospholipase Cβ (PLCβ) and phosphatidylinositol 4,5-bisphosphate (PIP2) depletion were required, whereas intracellular Ca2+ release and PKC were unnecessary for NT-elicited excitation of CeL neurons. NT increased the input resistance and time constants of CeL neurons, suggesting that NT excites CeL neurons by decreasing a membrane conductance. Depressions of the inwardly rectifying K+ (Kir) channels including both the Kir2 subfamily and the GIRK channels were required for NT-elicited excitation of CeL neurons. Activation of NTS1 receptors in the CeL led to GABAergic inhibition of medial nucleus of CeA neurons, suggesting that NT modulates the network activity in the amygdala. Our results may provide a cellular and molecular mechanism to explain the physiological functions of NT in vivo.
Collapse
Affiliation(s)
- Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA.
| | - Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
2
|
IL-37 is increased in brains of children with autism spectrum disorder and inhibits human microglia stimulated by neurotensin. Proc Natl Acad Sci U S A 2019; 116:21659-21665. [PMID: 31591201 DOI: 10.1073/pnas.1906817116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) does not have a distinct pathogenesis or effective treatment. Increasing evidence supports the presence of immune dysfunction and inflammation in the brains of children with ASD. In this report, we present data that gene expression of the antiinflammatory cytokine IL-37, as well as of the proinflammatory cytokines IL-18 and TNF, is increased in the amygdala and dorsolateral prefrontal cortex of children with ASD as compared to non-ASD controls. Gene expression of IL-18R, which is a receptor for both IL-18 and IL-37, is also increased in the same brain areas of children with ASD. Interestingly, gene expression of the NTR3/sortilin receptor is reduced in the amygdala and dorsolateral prefrontal cortex. Pretreatment of cultured human microglia from normal adult brains with human recombinant IL-37 (1 to 100 ng/mL) inhibits neurotensin (NT)-stimulated secretion and gene expression of IL-1β and CXCL8. Another key finding is that NT, as well as the proinflammatory cytokines IL-1β and TNF increase IL-37 gene expression in cultured human microglia. The data presented here highlight the connection between inflammation and ASD, supporting the development of IL-37 as a potential therapeutic agent of ASD.
Collapse
|
3
|
Steele FF, Whitehouse SC, Aday JS, Prus AJ. Neurotensin NTS 1 and NTS 2 receptor agonists produce anxiolytic-like effects in the 22-kHz ultrasonic vocalization model in rats. Brain Res 2017; 1658:31-35. [PMID: 28089664 DOI: 10.1016/j.brainres.2017.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 12/29/2022]
Abstract
Neurotensin is a neuropeptide neurotransmitter that interacts with multiple neurotransmitter systems, including those regulating amygdalar function, via NTS1 and NTS2 receptors. Both receptors are expressed in the amygdala and agonists for NTS1 or NTS2 receptors have exhibited anxiolytic effects in animal models. Systemic adminstration of NTS1 receptor agonist PD149163 was recently shown to reduce footshock conditioned 22-kHz ultrasonic vocalizations in rats, suggesting that PD149163 produced an anxiolytic effect. The effects that neurotensin may have or a selective NTS2 receptor agonist may have on 22-kHz vocalizations has yet to be examined. The current study evaluated the effects of intracerebroventricularly administered neurotensin (0.1-10.0μg), PD149163 (0.1-10.0ng), or the NTS2 receptor agonist JMV-431 (0.1-1.0μg) on footshock conditioned 22-kHz vocalizations in male Wistar rats. Neurotensin, PD149163, and JMV-431 all significantly reduced the number 22-kHz calls. No changes in call duration were found, suggesting that non-specific drug effects do not account for the reductions in 22-kHz calls. These data support anxiolytic effects produced by activation of NTS1 or NTS2 receptors, and suggest that neurotensin plays a natural role in the expression of conditioned USVs. These data suggest that both receptor subtypes are putative pharmacologic targets.
Collapse
Affiliation(s)
- Floyd F Steele
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Shannon C Whitehouse
- Psychology Department, Northern Michigan University, Marquette, MI, United States
| | - Jacob S Aday
- Psychology Department, Northern Michigan University, Marquette, MI, United States
| | - Adam J Prus
- Psychology Department, Northern Michigan University, Marquette, MI, United States.
| |
Collapse
|
4
|
Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry 2016; 6:e844. [PMID: 27351598 PMCID: PMC4931610 DOI: 10.1038/tp.2016.77] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASDs) affect as many as 1 in 45 children and are characterized by deficits in sociability and communication, as well as stereotypic movements. Many children also show severe anxiety. The lack of distinct pathogenesis and reliable biomarkers hampers the development of effective treatments. As a result, most children with ASD are prescribed psychopharmacologic agents that do not address the core symptoms of ASD. Autoantibodies against brain epitopes in mothers of children with ASD and many such children strongly correlate with allergic symptoms and indicate an aberrant immune response, as well as disruption of the blood-brain barrier (BBB). Recent epidemiological studies have shown a strong statistical correlation between risk for ASD and either maternal or infantile atopic diseases, such as asthma, eczema, food allergies and food intolerance, all of which involve activation of mast cells (MCs). These unique tissue immune cells are located perivascularly in all tissues, including the thalamus and hypothalamus, which regulate emotions. MC-derived inflammatory and vasoactive mediators increase BBB permeability. Expression of the inflammatory molecules interleukin (IL-1β), IL-6, 1 L-17 and tumor necrosis factor (TNF) is increased in the brain, cerebrospinal fluid and serum of some patients with ASD, while NF-kB is activated in brain samples and stimulated peripheral blood immune cells of other patients; however, these molecules are not specific. Instead the peptide neurotensin is uniquely elevated in the serum of children with ASD, as is corticotropin-releasing hormone, secreted from the hypothalamus under stress. Both peptides trigger MC to release IL-6 and TNF, which in turn, stimulate microglia proliferation and activation, leading to disruption of neuronal connectivity. MC-derived IL-6 and TGFβ induce maturation of Th17 cells and MCs also secrete IL-17, which is increased in ASD. Serum IL-6 and TNF may define an ASD subgroup that benefits most from treatment with the natural flavonoid luteolin. Atopic diseases may create a phenotype susceptible to ASD and formulations targeting focal inflammation of the brain could have great promise in the treatment of ASD.
Collapse
Affiliation(s)
- T C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Program in Cell, Molecular and Developmental Biology, Tufts University, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - I Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - A B Patel
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Program in Cell, Molecular and Developmental Biology, Tufts University, Boston, MA, USA
| | - R Doyle
- Department of Child Psychiatry, Harvard Medical School, Massachusetts General Hospital and McLean Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Palomares-Castillo E, Hernández-Pérez OR, Pérez-Carrera D, Crespo-Ramírez M, Fuxe K, Pérez de la Mora M. The intercalated paracapsular islands as a module for integration of signals regulating anxiety in the amygdala. Brain Res 2012; 1476:211-34. [DOI: 10.1016/j.brainres.2012.03.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
|
6
|
Finnegan TF, Chen SR, Pan HL. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. J Pharmacol Exp Ther 2005; 312:441-8. [PMID: 15388784 DOI: 10.1124/jpet.104.074633] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids are potent analgesics, but the sites of their action and cellular mechanisms are not fully understood. The central nucleus of the amygdala (CeA) is important for opioid analgesia through the projection to the periaquaductal gray (PAG). In this study, we examined the effects of mu opioid receptor stimulation on inhibitory and excitatory synaptic inputs to PAG-projecting CeA neurons retrogradely labeled with a fluorescent tracer injected into the ventrolateral PAG of rats. Whole-cell voltage-clamp recordings were performed on labeled CeA neurons in brain slices. The specific mu opioid receptor agonist, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO, 1 microM), significantly reduced the frequency of miniature inhibitory postsynaptic currents (mIPSCs) without altering the amplitude and decay constant of mIPSCs in 47.6% (10 of 21) of cells tested. DAMGO also significantly decreased the peak amplitude of evoked IPSCs in 69% (9 of 13) of cells examined. However, DAMGO did not significantly alter the frequency of miniature excitatory postsynaptic currents (EPSCs) and the amplitude of evoked EPSCs in 69% (9 of 13) and 83% (10 of 12) of labeled cells, respectively. The IPSCs were blocked by the GABA(A) receptor antagonist bicuculline, whereas the EPSCs were largely abolished by the non-N-methyl-d-aspartate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. The immunoreactivity of mu opioid receptors was colocalized with synaptophysin, a presynaptic marker, in close appositions to labeled CeA neurons. These results suggest that activation of mu opioid receptors on presynaptic terminals primarily attenuates GABAergic synaptic inputs to PAG-projecting neurons in the CeA.
Collapse
Affiliation(s)
- Thomas F Finnegan
- Department of Anesthesiology, H187, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
7
|
Chapter VI Neurotensin receptors in the central nervous system. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Heimer L, de Olmos J, Alheid G, Pearson J, Sakamoto N, Shinoda K, Marksteiner J, Switzer R. The human basal forebrain. Part II. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|