1
|
Zeng L, Sun M, Fasullo M. Checkpoint and recombination pathways independently suppress rates of spontaneous homology-directed chromosomal translocations in budding yeast. Front Genet 2025; 16:1479307. [PMID: 40255487 PMCID: PMC12006765 DOI: 10.3389/fgene.2025.1479307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Homologous recombination between short repeated sequences, such as Alu sequences, can generate pathogenic chromosomal rearrangements. We used budding yeast to measure homologous recombination between short repeated his3 sequences located on non-homologous chromosomes to identify pathways that suppress spontaneous and radiation-associated translocations. Previous published data demonstrated that genes that participate in RAD9-mediated G2 arrest, the S phase checkpoint, and recombinational repair of double-strand breaks (DSBs) suppressed ectopic recombination between small repeats. We determined whether these pathways are independent in suppressing recombination by measuring frequencies of spontaneous recombination in single and double mutants. In the wild-type diploid, the rate of spontaneous recombination was (3 ± 1.2) × 10-8. This rate was increased 10-30-fold in the rad51, rad55, rad57, mre11, rad50, and xrs2 mutants, seven-fold in the rad9 checkpoint mutant, and 23-fold in the mec1-21 S phase checkpoint mutant. Double mutants defective in both RAD9 and in either RAD51, RAD55, or RAD57 increased spontaneous recombination rates by ∼40 fold, while double mutants defective in both the MEC1 (ATR/ATM ortholog) and RAD51 genes increased rates ∼100 fold. Compared to frequencies of radiation-associated translocations in wild type, radiation-associated frequencies increased in mre11, rad50, xrs2, rad51, rad55 and rad9 rad51 diploid mutants; an increase in radiation-associated frequencies was detected in the rad9 rad51 diploid after exposure to 100 rads X rays. These data indicate that the S phase and G2 checkpoint pathways are independent from the recombinational repair pathway in suppressing homology-directed translocations in yeast.
Collapse
Affiliation(s)
- Li Zeng
- New York State Department of Public Health, Albany, NY, United States
- Ordway Research Institute, Albany, NY, United States
| | - Mingzeng Sun
- Ordway Research Institute, Albany, NY, United States
- School of Public of Health, University at Albany, Albany, NY, United States
| | | |
Collapse
|
2
|
Origin, Regulation, and Fitness Effect of Chromosomal Rearrangements in the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22020786. [PMID: 33466757 PMCID: PMC7830279 DOI: 10.3390/ijms22020786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosomal rearrangements comprise unbalanced structural variations resulting in gain or loss of DNA copy numbers, as well as balanced events including translocation and inversion that are copy number neutral, both of which contribute to phenotypic evolution in organisms. The exquisite genetic assay and gene editing tools available for the model organism Saccharomyces cerevisiae facilitate deep exploration of the mechanisms underlying chromosomal rearrangements. We discuss here the pathways and influential factors of chromosomal rearrangements in S. cerevisiae. Several methods have been developed to generate on-demand chromosomal rearrangements and map the breakpoints of rearrangement events. Finally, we highlight the contributions of chromosomal rearrangements to drive phenotypic evolution in various S. cerevisiae strains. Given the evolutionary conservation of DNA replication and recombination in organisms, the knowledge gathered in the small genome of yeast can be extended to the genomes of higher eukaryotes.
Collapse
|
3
|
Fasullo MT, Sun M. Both RAD5-dependent and independent pathways are involved in DNA damage-associated sister chromatid exchange in budding yeast. AIMS GENETICS 2017; 4:84-102. [PMID: 28596989 PMCID: PMC5460634 DOI: 10.3934/genet.2017.2.84] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sister chromatids are preferred substrates for recombinational repair after cells are exposed to DNA damage. While some agents directly cause double-strand breaks (DSBs), others form DNA base adducts which stall or impede the DNA replication fork. We asked which types of DNA damage can stimulate SCE in budding yeast mutants defective in template switch mechanisms and whether PCNA polyubiquitination functions are required for DNA damage-associated SCE after exposure to potent recombinagens. We measured spontaneous and DNA damage-associated unequal sister chromatid exchange (uSCE) in yeast strains containing two fragments of his3 after exposure to MMS, 4-NQO, UV, X rays, and HO endonuclease-induced DSBs. We determined whether other genes in the pathway for template switching, including UBC13, MMS2, SGS1, and SRS2 were required for DNA damage-associated SCE. RAD5 was required for DNA damage-associated SCE after exposure to UV, MMS, and 4-NQO, but not for spontaneous, X-ray-associated, or HO endonuclease-induced SCE. While UBC13, MMS2, and SGS1 were required for MMS and 4NQO-associated SCE, they were not required for UV-associated SCE. DNA damage-associated recombination between his3 recombination substrates on non-homologous recombination was enhanced in rad5 mutants. These results demonstrate that DNA damaging agents that cause DSBs stimulate SCE by RAD5-independent mechanisms, while several potent agents that generate bulky DNA adducts stimulate SCE by multiple RAD5-dependent mechanisms. We suggest that DSB-associated recombination that occurs in G2 is RAD5-independent.
Collapse
Affiliation(s)
- Michael T Fasullo
- College of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Mingzeng Sun
- College of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
4
|
Freedland J, Cera C, Fasullo M. CYP1A1 I462V polymorphism is associated with reduced genotoxicity in yeast despite positive association with increased cancer risk. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 815:35-43. [PMID: 28283091 DOI: 10.1016/j.mrgentox.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
CYP1A1 functions in detoxifying xenobiotics but occasionally converts compounds into potent genotoxins. CYP1A1 activates polyaromatic hydrocarbons, such as benzo[a]pyrene 7,8 dihydrodiol (BaP-DHD), rendering them genotoxic. Particular alleles of CYP1A1, such as CYP1A1 I462V have been correlated with a higher incidence of breast and lung cancer, but it is unknown whether these variants express enzymes in vivo that are more potent in generating genotoxins. We individually expressed CYP1A1 (CYP1A1.1), CYP1A1 T461N (CYP1A1.4) and I462V (CYP1A1.2) alleles in wild-type and DNA repair deficient mutant strains of Saccharomyces cerevisiae (budding yeast) and asked which yeast strains exhibited the highest levels of carcinogen-associated genotoxicity after exposure to BaP-DHD, aflatoxin B1 (AFB1), and heterocyclic aromatic amines (HAAs). We measured carcinogen-associated recombination, Rad51 foci, and carcinogen-associated toxicity in a DNA repair mutant deficient in both nucleotide excision repair and recombinational repair. CYP1A1 activity was confirmed by measuring ethoxyresorufin-O-deethylation (EROD) activities. Our data indicate that CYP1A1 I462V allele confers the least carcinogen-associated genotoxicity, compared to CYP1A1; however, results vary depending on the chemical carcinogen and the genotoxic endpoint. We speculate that the cancer-associated risk of CYP1A1 I462V may be caused by exposure to other xenobiotics.
Collapse
Affiliation(s)
- Julian Freedland
- College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY 12205, United States
| | - Cinzia Cera
- Center for Medical Sciences,150 New Scotland Road, Albany, NY 12208, United States
| | - Michael Fasullo
- College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY 12205, United States; Center for Medical Sciences,150 New Scotland Road, Albany, NY 12208, United States.
| |
Collapse
|
5
|
Fasullo M, Smith A, Egner P, Cera C. Activation of aflatoxin B1 by expression of human CYP1A2 polymorphisms in Saccharomyces cerevisiae. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 761:18-26. [PMID: 24472830 DOI: 10.1016/j.mrgentox.2014.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
Abstract
Human susceptibility to environmental carcinogens is highly variable and depends on multiple genetic factors, including polymorphisms in cytochrome P450 genes. Although epidemiological studies have identified individual polymorphisms in cytochrome P450 genes that may alter cancer risk, there is often conflicting data about whether such polymorphisms alter the genotoxicity of environmental carcinogens. This is particularly true of the CYP1A2 polymorphisms that confer differential activation of multiple human carcinogens. To determine whether a single cytochrome P450 polymorphism confers higher levels of carcinogen-associated genotoxicity, we chose an organism that lack enzymes to metabolically activate aflatoxins and expressed individual human P450 genes in budding yeast. We measured the frequencies of recombination, Rad51 foci formation, 7-methoxyresorufin O-demethylase activities, and the concentrations of carcinogen-associated DNA adducts in DNA repair proficient yeast expressing P450 polymorphisms after exposure to aflatoxin B1 (AFB1).We measured growth of rad4 rad51 cells expressing CYP1A2 polymorphisms while exposed to AFB1. We observed that there was significantly less AFB1-associated genotoxicity in yeast expressing CYP1A2 I386F, while yeast expressing CYP1A2 C406Y exhibited intermediate levels of genotoxicity compared to yeast expressing CYP1A2 D348N or wild type. We conclude that differences in carcinogen genotoxicity can be observed in yeast expressing different CYP1A2 alleles. This is the first report that carcinogen-associated P450 polymorphisms can be studied in yeast.
Collapse
Affiliation(s)
- Michael Fasullo
- Ordway Research Institute, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12209, USA; Department of Biomedical Sciences, School of Public Health, Center for Medical Sciences, 150 New Scotland Avenue, Albany NY, USA.
| | - Autumn Smith
- Ordway Research Institute, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12209, USA
| | - Patricia Egner
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Cinzia Cera
- Ordway Research Institute, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12209, USA
| |
Collapse
|
6
|
Liddell L, Manthey G, Pannunzio N, Bailis A. Quantitation and analysis of the formation of HO-endonuclease stimulated chromosomal translocations by single-strand annealing in Saccharomyces cerevisiae. J Vis Exp 2011:3150. [PMID: 21968396 PMCID: PMC3230211 DOI: 10.3791/3150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genetic variation is frequently mediated by genomic rearrangements that arise through interaction between dispersed repetitive elements present in every eukaryotic genome. This process is an important mechanism for generating diversity between and within organisms1-3. The human genome consists of approximately 40% repetitive sequence of retrotransposon origin, including a variety of LINEs and SINEs4. Exchange events between these repetitive elements can lead to genome rearrangements, including translocations, that can disrupt gene dosage and expression that can result in autoimmune and cardiovascular diseases5, as well as cancer in humans6-9. Exchange between repetitive elements occurs in a variety of ways. Exchange between sequences that share perfect (or near-perfect) homology occurs by a process called homologous recombination (HR). By contrast, non-homologous end joining (NHEJ) uses little-or-no sequence homology for exchange10,11. The primary purpose of HR, in mitotic cells, is to repair double-strand breaks (DSBs) generated endogenously by aberrant DNA replication and oxidative lesions, or by exposure to ionizing radiation (IR), and other exogenous DNA damaging agents. In the assay described here, DSBs are simultaneously created bordering recombination substrates at two different chromosomal loci in diploid cells by a galactose-inducible HO-endonuclease (Figure 1). The repair of the broken chromosomes generates chromosomal translocations by single strand annealing (SSA), a process where homologous sequences adjacent to the chromosome ends are covalently joined subsequent to annealing. One of the substrates, his3-Δ3', contains a 3' truncated HIS3 allele and is located on one copy of chromosome XV at the native HIS3 locus. The second substrate, his3-Δ5', is located at the LEU2 locus on one copy of chromosome III, and contains a 5' truncated HIS3 allele. Both substrates are flanked by a HO endonuclease recognition site that can be targeted for incision by HO-endonuclease. HO endonuclease recognition sites native to the MAT locus, on both copies of chromosome III, have been deleted in all strains. This prevents interaction between the recombination substrates and other broken chromosome ends from interfering in the assay. The KAN-MX-marked galactose-inducible HO endonuclease expression cassette is inserted at the TRP1 locus on chromosome IV. The substrates share 311 bp or 60 bp of the HIS3 coding sequence that can be used by the HR machinery for repair by SSA. Cells that use these substrates to repair broken chromosomes by HR form an intact HIS3 allele and a tXV::III chromosomal translocation that can be selected for by the ability to grow on medium lacking histidine (Figure 2A). Translocation frequency by HR is calculated by dividing the number of histidine prototrophic colonies that arise on selective medium by the total number of viable cells that arise after plating appropriate dilutions onto non-selective medium (Figure 2B). A variety of DNA repair mutants have been used to study the genetic control of translocation formation by SSA using this system12-14.
Collapse
Affiliation(s)
- Lauren Liddell
- Irell & Manella Graduate School of Biological Sciences, Department of Molecular and Cellular Biology, City of Hope Comprehensive Cancer Center and Beckman Research Institute,University of Southern California, USA
| | | | | | | |
Collapse
|
7
|
Manthey GM, Bailis AM. Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae. PLoS One 2010; 5:e11889. [PMID: 20686691 PMCID: PMC2912366 DOI: 10.1371/journal.pone.0011889] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022] Open
Abstract
Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Adam M. Bailis
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Rose AM, O'Neil NJ, Bilenky M, Butterfield YS, Malhis N, Flibotte S, Jones MR, Marra M, Baillie DL, Jones SJM. Genomic sequence of a mutant strain of Caenorhabditis elegans with an altered recombination pattern. BMC Genomics 2010; 11:131. [PMID: 20178641 PMCID: PMC2837035 DOI: 10.1186/1471-2164-11-131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 02/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The original sequencing and annotation of the Caenorhabditis elegans genome along with recent advances in sequencing technology provide an exceptional opportunity for the genomic analysis of wild-type and mutant strains. Using the Illumina Genome Analyzer, we sequenced the entire genome of Rec-1, a strain that alters the distribution of meiotic crossovers without changing the overall frequency. Rec-1 was derived from ethylmethane sulfonate (EMS)-treated strains, one of which had a high level of transposable element mobility. Sequencing of this strain provides an opportunity to examine the consequences on the genome of altering the distribution of meiotic recombination events. Results Using Illumina sequencing and MAQ software, 83% of the base pair sequence reads were aligned to the reference genome available at Wormbase, providing a 21-fold coverage of the genome. Using the software programs MAQ and Slider, we observed 1124 base pair differences between Rec-1 and the reference genome in Wormbase (WS190), and 441 between the mutagenized Rec-1 (BC313) and the wild-type N2 strain (VC2010). The most frequent base-substitution was G:C to A:T, 141 for the entire genome most of which were on chromosomes I or X, 55 and 31 respectively. With this data removed, no obvious pattern in the distribution of the base differences along the chromosomes was apparent. No major chromosomal rearrangements were observed, but additional insertions of transposable elements were detected. There are 11 extra copies of Tc1, and 8 of Tc2 in the Rec-1 genome, most likely the remains of past high-hopper activity in a progenitor strain. Conclusion Our analysis of high-throughput sequencing was able to detect regions of direct repeat sequences, deletions, insertions of transposable elements, and base pair differences. A subset of sequence alterations affecting coding regions were confirmed by an independent approach using oligo array comparative genome hybridization. The major phenotype of the Rec-1 strain is an alteration in the preferred position of the meiotic recombination event with no other significant phenotypic consequences. In this study, we observed no evidence of a mutator effect at the nucleotide level attributable to the Rec-1 mutation.
Collapse
Affiliation(s)
- Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Manthey GM, Naik N, Bailis AM. Msh2 blocks an alternative mechanism for non-homologous tail removal during single-strand annealing in Saccharomyces cerevisiae. PLoS One 2009; 4:e7488. [PMID: 19834615 PMCID: PMC2759526 DOI: 10.1371/journal.pone.0007488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Nilan Naik
- Scripps College Post-Baccalaureate Premedical Program, Claremont, California, United States of America
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci U S A 2008; 105:11845-50. [PMID: 18701715 DOI: 10.1073/pnas.0804529105] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ionizing radiation is an established source of chromosome aberrations (CAs). Although double-strand breaks (DSBs) are implicated in radiation-induced and other CAs, the underlying mechanisms are poorly understood. Here, we show that, although the vast majority of randomly induced DSBs in G(2) diploid yeast cells are repaired efficiently through homologous recombination (HR) between sister chromatids or homologous chromosomes, approximately 2% of all DSBs give rise to CAs. Complete molecular analysis of the genome revealed that nearly all of the CAs resulted from HR between nonallelic repetitive elements, primarily Ty retrotransposons. Nonhomologous end-joining (NHEJ) accounted for few, if any, of the CAs. We conclude that only those DSBs that fall at the 3-5% of the genome composed of repetitive DNA elements are efficient at generating rearrangements with dispersed small repeats across the genome, whereas DSBs in unique sequences are confined to recombinational repair between the large regions of homology contained in sister chromatids or homologous chromosomes. Because repeat-associated DSBs can efficiently lead to CAs and reshape the genome, they could be a rich source of evolutionary change.
Collapse
|
11
|
Fasullo M, Dong Z, Sun M, Zeng L. Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. DNA Repair (Amst) 2005; 4:1240-51. [PMID: 16039914 DOI: 10.1016/j.dnarep.2005.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/07/2005] [Accepted: 06/15/2005] [Indexed: 11/23/2022]
Abstract
Saccharomyces cerevisiae RAD53 (CHK2) and CHK1 control two parallel branches of the RAD9-mediated pathway for DNA damage-induced G(2) arrest. Previous studies indicate that RAD9 is required for X-ray-associated sister chromatid exchange (SCE), suppresses homology-directed translocations, and is involved in pathways for double-strand break repair (DSB) repair that are different than those controlled by PDS1. We measured DNA damage-associated SCE in strains containing two tandem fragments of his3, his3-Delta5' and his3-Delta3'::HOcs, and rates of spontaneous translocations in diploids containing GAL1::his3-Delta5' and trp1::his3-Delta3'::HOcs. DNA damage-associated SCE was measured after log phase cells were exposed to methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4-NQO), UV, X rays and HO-induced DSBs. We observed that rad53 mutants were defective in MMS-, 4-NQO, X-ray-associated and HO-induced SCE but not in UV-associated SCE. Similar to rad9 pds1 double mutants, rad53 pds1 double mutants exhibited more X-ray sensitivity than the single mutants. rad53 sml1 diploid mutants exhibited a 10-fold higher rate of spontaneous translocations compared to the sml1 diploid mutants. chk1 mutants were not deficient in DNA damage-associated SCE after exposure to DNA damaging agents or after DSBs were generated at trp1::his3-Delta5'his3-Delta3'::HOcs. These data indicate that RAD53, not CHK1, is required for DSB-initiated SCE, and DNA damage-associated SCE after exposure to X-ray-mimetic and UV-mimetic chemicals.
Collapse
Affiliation(s)
- Michael Fasullo
- Ordway Research Institute, 150 New Scotland Avenue, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
12
|
Dong Z, Fasullo M. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Nucleic Acids Res 2003; 31:2576-85. [PMID: 12736307 PMCID: PMC156034 DOI: 10.1093/nar/gkg352] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his3-Delta5' and his3-Delta3'::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his3-Delta3'::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE.
Collapse
Affiliation(s)
- Zheng Dong
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA
| | | |
Collapse
|
13
|
Yu X, Gabriel A. Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics 2003; 163:843-56. [PMID: 12663527 PMCID: PMC1462499 DOI: 10.1093/genetics/163.3.843] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chromosomal double-strand breaks (DSBs) can be repaired by either homology-dependent or homology-independent pathways. Nonhomologous repair mechanisms have been relatively less well studied, despite their potential importance in generating chromosomal rearrangements. We have developed a Saccharomyces cerevisiae-based assay to identify and characterize homology-independent chromosomal rearrangements associated with repair of a unique DSB generated within an engineered URA3 gene. Approximately 1% of successfully repaired cells have accompanying chromosomal rearrangements consisting of large insertions, deletions, aberrant gene conversions, or other more complex changes. We have analyzed rearrangements in isogenic wild-type, rad52, yku80, and rad52 yku80 strains, to determine the types of events that occur in the presence or absence of these key repair proteins. Deletions were found in all strain backgrounds, but insertions were dependent upon the presence of Yku80p. A rare RAD52- and YKU80-independent form of deletion was present in all strains. These events were characterized by long one-sided deletions (up to 13 kb) and extensive imperfect overlapping sequences (7-22 bp) at the junctions. Our results demonstrate that the frequency and types of repair events depend on the specific genetic context. This approach can be applied to a number of problems associated with chromosome stability.
Collapse
Affiliation(s)
- Xin Yu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
14
|
Fasullo M, Giallanza P, Dong Z, Cera C, Bennett T. Saccharomyces cerevisiae rad51 mutants are defective in DNA damage-associated sister chromatid exchanges but exhibit increased rates of homology-directed translocations. Genetics 2001; 158:959-72. [PMID: 11454747 PMCID: PMC1461715 DOI: 10.1093/genetics/158.3.959] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Saccharomyces cerevisiae Rad51 is structurally similar to Escherichia coli RecA. We investigated the role of S. cerevisiae RAD51 in DNA damage-associated unequal sister chromatid exchanges (SCEs), translocations, and inversions. The frequency of these rearrangements was measured by monitoring mitotic recombination between two his3 fragments, his3-Delta5' and his3-Delta3'::HOcs, when positioned on different chromosomes or in tandem and oriented in direct or inverted orientation. Recombination was measured after cells were exposed to chemical agents and radiation and after HO endonuclease digestion at his3-Delta3'::HOcs. Wild-type and rad51 mutant strains showed no difference in the rate of spontaneous SCEs; however, the rate of spontaneous inversions was decreased threefold in the rad51 mutant. The rad51 null mutant was defective in DNA damage-associated SCE when cells were exposed to either radiation or chemical DNA-damaging agents or when HO endonuclease-induced double-strand breaks (DSBs) were directly targeted at his3-Delta3'::HOcs. The defect in DNA damage-associated SCEs in rad51 mutants correlated with an eightfold higher spontaneous level of directed translocations in diploid strains and with a higher level of radiation-associated translocations. We suggest that S. cerevisiae RAD51 facilitates genomic stability by reducing nonreciprocal translocations generated by RAD51-independent break-induced replication (BIR) mechanisms.
Collapse
Affiliation(s)
- M Fasullo
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
15
|
Clikeman JA, Khalsa GJ, Barton SL, Nickoloff JA. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms. Genetics 2001; 157:579-89. [PMID: 11156980 PMCID: PMC1461527 DOI: 10.1093/genetics/157.2.579] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are repaired by homologous recombination (HR) and nonhomologous end-joining (NHEJ). NHEJ in yeast chromosomes has been observed only when HR is blocked, as in rad52 mutants or in the absence of a homologous repair template. We detected yKu70p-dependent imprecise NHEJ at a frequency of approximately 0.1% in HR-competent Rad+ haploid cells. Interestingly, yku70 mutation increased DSB-induced HR between direct repeats by 1.3-fold in a haploid strain and by 1.5-fold in a MAT homozygous (a/a) diploid, but yku70 had no effect on HR in a MAT heterozygous (a/alpha) diploid. yku70 might increase HR because it eliminates the competing precise NHEJ (religation) pathway and/or because yKu70p interferes directly or indirectly with HR. Despite the yku70-dependent increase in a/a cells, HR remained 2-fold lower than in a/alpha cells. Cell survival was also lower in a/a cells and correlated with the reduction in HR. These results indicate that MAT heterozygosity enhances DSB-induced HR by yKu-dependent and -independent mechanisms, with the latter mechanism promoting cell survival. Surprisingly, yku70 strains survived a DSB slightly better than wild type. We propose that this reflects enhanced HR, not by elimination of precise NHEJ since this pathway produces viable products, but by elimination of yKu-dependent interference of HR.
Collapse
Affiliation(s)
- J A Clikeman
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Prokaryotic and eukaryotic cells have developed a network of DNA repair systems that restore genomic integrity following DNA damage from endogenous and exogenous genotoxic sources. One of the mechanisms used to repair damaged chromosomes is genetic recombination, in which information present as a second chromosomal copy is used to repair a damaged region of the genome. In this review, I summarized what is known about the molecular and cellular mechanisms by which various DNA-damaging agents induce recombination in yeast. The yeast Saccharomyces cerevisiae has served as an excellent model organism to study the induction of recombination. It has helped to define the basic phenomenology and to isolate the genes involved in the process. Given the evolutionary conservation of the various DNA repair systems in eukaryotes, it is likely that the knowledge gathered about induced recombination in yeast is applicable to mammalian cells and thus to humans. Many carcinogens are known to induce recombination and to cause chromosomal rearrangements. An understanding of the mechanisms, by which genotoxic agents cause increased levels of recombination will have important consequences for the treatment of cancer, and for the assessment of risks arising from exposure to genotoxic agents in humans.
Collapse
Affiliation(s)
- M Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
17
|
Paladino G, Weibel B, Sengstag C. Heterocyclic aromatic amines efficiently induce mitotic recombination in metabolically competent Saccharomyces cerevisiae strains. Carcinogenesis 1999; 20:2143-52. [PMID: 10545418 DOI: 10.1093/carcin/20.11.2143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Heterocyclic aromatic amines (HAs) represent a class of potent bacterial mutagens and rodent carcinogens which gain their biological activity upon metabolic conversion by phase I and phase II enzymes. Subsequent to cytochrome P450 (CYP)-dependent hydroxylation, mainly catalyzed by CYP1A2, acetylation mediated by the activity of N-acetyltransferase, NAT2, produces the ultimate electrophilic product that may react with DNA. In addition to point mutations observed in HA-exposed cells as genotoxic endpoint in vitro, loss of heterozygosity (LOH) has often been identified in HA-related rodent tumors as another endpoint in vivo. LOH may reflect a chromosomal deletion, a chromosome loss or a previous mitotic recombination event and it represents a prominent mechanism for the inactivation of tumor suppressor alleles. In this study we have investigated whether LOH observed in several HA-induced rodent tumors is related to a recombinogenic activity of HA compounds, and to address this question we have studied the genotoxic activity of several HAs in metabolically competent Saccharomyces cerevisiae strains. For this purpose expression vectors have been constructed providing simultaneous expression of three human enzymes, CYP1A2, NADPH-cytochrome P450 oxidoreductase and NAT2 in different genotoxicity tester strains. Evidence for functional expression of all three enzymes has been obtained. One strain allowed us to monitor HA-induced gene conversion, another one HA-induced chromosomal translocation. A third strain allowed us to study HA-induced forward mutations in the endogenous URA3 gene. It was found that 2-amino-3-methylimidazo-[4,5-f]quinoline and 2-amino-3, 8-dimethylimidazo-[4,5-f]quinoxaline produced a strong recombinogenic response in either recombination tester strain. The recombinogenic activity was comparable with the mutagenic activity of the compounds. The other HAs, 2-amino-3, 4-dimethyl-imidazo-[4, 5-f]quinoline, 2-amino-6-methyldipyrido-[1,2-a:3',2'-d]imidazole, 2-aminodipyrido-[1,2-a:3', 2'-d]imidazole, 3-amino-1-methyl-5H pyrido-[4,3-b]indole and 2-amino-1-methyl-6-phenyl-imidazo-[4, 5-b]pyridine, produced weak or no increases in the genotoxic endpoints of interest. The described strains may provide a suitable tool to characterize the genotoxic potential of HAs in more detail.
Collapse
Affiliation(s)
- G Paladino
- Genetics Department, Institute of Toxicology, Swiss Federal Institute of Technology (ETH Zürich), Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | |
Collapse
|
18
|
Fasullo M, Koudelik J, AhChing P, Giallanza P, Cera C. Radiosensitive and mitotic recombination phenotypes of the Saccharomyces cerevisiae dun1 mutant defective in DNA damage-inducible gene expression. Genetics 1999; 152:909-19. [PMID: 10388811 PMCID: PMC1460661 DOI: 10.1093/genetics/152.3.909] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biological significance of DNA damage-induced gene expression in conferring resistance to DNA-damaging agents is unclear. We investigated the role of DUN1-mediated, DNA damage-inducible gene expression in conferring radiation resistance in Saccharomyces cerevisiae. The DUN1 gene was assigned to the RAD3 epistasis group by quantitating the radiation sensitivities of dun1, rad52, rad1, rad9, rad18 single and double mutants, and of the dun1 rad9 rad52 triple mutant. The dun1 and rad52 single mutants were similar in terms of UV sensitivities; however, the dun1 rad52 double mutant exhibited a synergistic decrease in UV resistance. Both spontaneous intrachromosomal and heteroallelic gene conversion events between two ade2 alleles were enhanced in dun1 mutants, compared to DUN1 strains, and elevated recombination was dependent on RAD52 but not RAD1 gene function. Spontaneous sister chromatid exchange (SCE), as monitored between truncated his3 fragments, was not enhanced in dun1 mutants, but UV-induced SCE and heteroallelic recombination were enhanced. Ionizing radiation and methyl methanesulfonate (MMS)-induced DNA damage did not exhibit greater recombinogenicity in the dun1 mutant compared to the DUN1 strain. We suggest that one function of DUN1-mediated DNA damage-induced gene expression is to channel the repair of UV damage into a nonrecombinogenic repair pathway.
Collapse
Affiliation(s)
- M Fasullo
- Department of Biochemistry and Molecular Biology, The Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
19
|
Fasullo M, Bennett T, AhChing P, Koudelik J. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations. Mol Cell Biol 1998; 18:1190-200. [PMID: 9488434 PMCID: PMC108832 DOI: 10.1128/mcb.18.3.1190] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1997] [Accepted: 11/26/1997] [Indexed: 02/06/2023] Open
Abstract
Genetic instability in the Saccharomyces cerevisiae rad9 mutant correlates with failure to arrest the cell cycle in response to DNA damage. We quantitated the DNA damage-associated stimulation of directed translocations in RAD9+ and rad9 mutants. Directed translocations were generated by selecting for His+ prototrophs that result from homologous, mitotic recombination between two truncated his3 genes, GAL1::his3-delta5' and trp1::his3-delta3'::HOcs. Compared to RAD9+ strains, the rad9 mutant exhibits a 5-fold higher rate of spontaneous, mitotic recombination and a greater than 10-fold increase in the number of UV- and X-ray-stimulated His+ recombinants that contain translocations. The higher level of recombination in rad9 mutants correlated with the appearance of nonreciprocal translocations and additional karyotypic changes, indicating that genomic instability also occurred among non-his3 sequences. Both enhanced spontaneous recombination and DNA damage-associated recombination are dependent on RAD1, a gene involved in DNA excision repair. The hyperrecombinational phenotype of the rad9 mutant was correlated with a deficiency in cell cycle arrest at the G2-M checkpoint by demonstrating that if rad9 mutants were arrested in G2 before irradiation, the numbers both of UV- and gamma-ray-stimulated recombinants were reduced. The importance of G2 arrest in DNA damage-induced sister chromatid exchange (SCE) was evident by a 10-fold reduction in HO endonuclease-induced SCE and no detectable X-ray stimulation of SCE in a rad9 mutant. We suggest that one mechanism by which the RAD9-mediated G2-M checkpoint may reduce the frequency of DNA damage-induced translocations is by channeling the repair of double-strand breaks into SCE.
Collapse
Affiliation(s)
- M Fasullo
- Department of Biochemistry and Molecular Biology, The Albany Medical College, New York 12208-3479, USA.
| | | | | | | |
Collapse
|
20
|
Friedl AA, Kiechle M, Fellerhoff B, Eckardt-Schupp F. Radiation-induced chromosome aberrations in Saccharomyces cerevisiae: influence of DNA repair pathways. Genetics 1998; 148:975-88. [PMID: 9539418 PMCID: PMC1460056 DOI: 10.1093/genetics/148.3.975] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Radiation-induced chromosome aberrations, particularly exchange-type aberrations, are thought to result from misrepair of DNA double-strand breaks. The relationship between individual pathways of break repair and aberration formation is not clear. By electrophoretic karyotyping of single-cell clones derived from irradiated cells, we have analyzed the induction of stable aberrations in haploid yeast cells mutated for the RAD52 gene, the RAD54 gene, the HDF1(= YKU70) gene, or combinations thereof. We found low and comparable frequencies of aberrational events in wildtype and hdf1 mutants, and assume that in these strains most of the survivors descended from cells that were in G2 phase during irradiation and therefore able to repair breaks by homologous recombination between sister chromatids. In the rad52 and the rad54 strains, enhanced formation of aberrations, mostly exchange-type aberrations, was detected, demonstrating the misrepair activity of a rejoining mechanism other than homologous recombination. No aberration was found in the rad52 hdf1 double mutant, and the frequency in the rad54 hdf1 mutant was very low. Hence, misrepair resulting in exchange-type aberrations depends largely on the presence of Hdf1, a component of the nonhomologous end-joining pathway in yeast.
Collapse
Affiliation(s)
- A A Friedl
- GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Strahlenbiologie, Oberschleissheim, Germany.
| | | | | | | |
Collapse
|
21
|
Bärtsch S, Würgler FE, Sengstag C. A genetic system to detect mitotic recombination between repeated chromosomal sequences in Drosophila Schneider line 2 cells. Mutat Res 1997; 395:9-27. [PMID: 9465910 DOI: 10.1016/s1383-5718(97)00138-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to study mitotic homologous recombination in somatic Drosophila melanogaster cells in vitro and to learn more on the question how recombination is influenced by mutagens, a genetic system was developed where spontaneous and drug-induced recombination could be monitored. Two recombination reporter substrates were stably introduced in multiple copies into the genome of established D. melanogaster Schneider line 2 cells: one plasmid (pSB310) contained the 5' and 3' deleted neomycin phosphoribosyltransferase alleles neoL and neoR as direct repeats; the other (pSB485) contained similar deletions (lacZL and lacZR) of the beta-galactosidase gene (lacZ). Restoration of a functional neo gene upon mitotic recombination between homologous sequences allowed direct selection for the event, whereas recombination in single cells harbouring the integrated lacZ-based reporter plasmid was detected by histochemical staining or flow cytometric analysis (FACS). The neo-based construct in the clonal transgenic cell line 44CD4 showed a spontaneous recombination frequency of 2.9 x 10(-4), whereas the 485AD1 cell line harbouring the lacZ-based construct exhibited a frequency of 2.8 x 10(-4). The alkylating agents EMS and MMS and the clastogen mitomycin C were able to induce recombination in the 485AD1 cell line in a dose-dependent manner. The results obtained from these studies suggest that the transgenic cell lines are potentially useful tools for identifying agents which stimulate direct repeat recombination in somatic Drosophila cells.
Collapse
Affiliation(s)
- S Bärtsch
- Department of Genetics, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland
| | | | | |
Collapse
|
22
|
Ramotar D, Masson JY. A Saccharomyces cerevisiae mutant defines a new locus essential for resistance to the antitumour drug bleomycin. Can J Microbiol 1996; 42:835-43. [PMID: 8776853 DOI: 10.1139/m96-105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The antitumor drug bleomycin can produce a variety of lesions in the cellular DNA by a free radical dependent mechanism. To understand how these DNA lesions are repaired, bleomycin-hypersensitive mutants were isolated from the yeast Saccharomyces cerevisiae. We report here the analysis of one mutant, DRY25, that showed extreme sensitivity to bleomycin. This mutant also exhibited hypersensitivity to hydrogen peroxide and t-butyl hydroperoxide, but showed no sensitivity to other DNA-damaging agents, including gamma-rays, ultraviolet light, and methyl methanesulfonate. Subsequent analysis revealed that strain DRY25 was severely deficient in the repair of bleomycin-induced DNA lesions. Under normal growth conditions, DRY25 displayed a 3-fold increase in the frequency of chromosomal translocation that was further stimulated by 5- to 15-fold when the cells were treated with either bleomycin or hydrogen peroxide, but not by methyl methanesulfonate, as compared with the wild type. Genetic analysis indicated that the mutant defect was independent of the nucleotide excision, postreplication, or recombinational DNA-repair pathways. These data suggest that one conceivable defect of DRY25 is that it lacks a protein that protects the cell against oxidative damage to DNA. A clone that fully complemented DRY25 defect was isolated and the possible roles of the complementing gene are discussed.
Collapse
Affiliation(s)
- D Ramotar
- Health and Environment Unit, Centre hospitalier de l'Universite Laval, Sainte-Foy, Canada,
| | | |
Collapse
|
23
|
Galli A, Schiestl RH. On the mechanism of UV and gamma-ray-induced intrachromosomal recombination in yeast cells synchronized in different stages of the cell cycle. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:301-10. [PMID: 7565592 DOI: 10.1007/bf02191597] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A genetic system selecting for deletion events (DEL recombination) due to intrachromosomal recombination has previously been constructed in the yeast Saccharomyces cerevisiae. Intrachromosomal recombination is inducible by chemical and physical carcinogens. We wanted to understand better the mechanism of induced DEL recombination and to attempt to determine in which phase of the cell cycle DEL recombination is inducible. Yeast cells were arrested at specific phases of the cell cycle, irradiated with UV or gamma-rays, and assayed for DEL recombination and interchromosomal recombination. In addition, the contribution of intrachromatid crossing-over to the number of radiation induced DEL recombination events was directly investigated at different phases of the cell cycle. UV irradiation induced DEL recombination preferentially in S phase, while gamma-rays induced DEL recombination in every phase of the cell cycle including G1. UV and gamma-radiation induced intrachromatid crossing over preferentially in G1, but it accounted at the most for only 14% of the induced DEL recombination events. The possibility is discussed that single-strand annealing or one-sided invasion events, which can occur in G1 and may be induced by a double-strand break intermediate, may be responsible for a large proportion of the induced DEL recombination events.
Collapse
Affiliation(s)
- A Galli
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Anderson MS, Kanipes MI, Jackson JC, Yates J, Henry SA, Lopes JM. Physical map locations of the phospholipid biosynthetic structural and regulatory genes of Saccharomyces cerevisiae. Yeast 1995; 11:187-90. [PMID: 7732728 DOI: 10.1002/yea.320110210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here we report the physical map locations of five genes required for phospholipid biosynthesis in Saccharomyces cerevisiae. These include four structural genes (INO1, CHO2, OPI3 and PIS1) and one global negative regulatory gene (UME6). Collectively, this information completes the mapping of all phospholipid biosynthetic structural and regulatory genes identified to date.
Collapse
Affiliation(s)
- M S Anderson
- Department of Molecular and Cellular Biochemistry, Loyola University of Chicago, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
25
|
Fasullo M, Dave P. Mating type regulates the radiation-associated stimulation of reciprocal translocation events in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:63-70. [PMID: 8190072 DOI: 10.1007/bf00283877] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Both ultraviolet (UV) and ionizing radiation were observed to stimulate mitotic, ectopic recombination between his3 recombinational substrates, generating reciprocal translocations in Saccharomyces cerevisiae (yeast). The stimulation was greatest in diploid strains competent for sporulation and depends upon both the ploidy of the strain and heterozygosity at the MATlocus. The difference in levels of stimulation between MATa/MAT alpha diploid and MAT alpha haploid strains increases when cells are exposed to higher levels of UV radiation (sevenfold at 150 J/m2), whereas when cells are exposed to higher levels of ionizing radiation (23.4 krad), only a twofold difference is observed. When the MAT alpha gene was introduced by DNA transformation into a MATa/mat alpha::LEU2+ diploid, the levels of radiation-induced ectopic recombination approach those obtained in a strain that is heterozygous at MAT. Conversely, when the MATa gene was introduced by DNA transformation into a MAT alpha haploid, no enhanced stimulation of ectopic recombination was observed when cells were irradiated with ionizing radiation but a threefold enhancement was observed when cells were irradiated with UV. The increase in radiation-stimulated ectopic recombination resulting from heterozygosity at MAT correlated with greater spontaneous ectopic recombination and higher levels of viability after irradiation. We suggest that MAT functions that have been previously shown to control the level of mitotic, allelic recombination (homolog recombination) also control the level of mitotic, radiation-stimulated ectopic recombination between short dispersed repetitive sequences on non-homologous chromosomes.
Collapse
Affiliation(s)
- M Fasullo
- Department of Radiotherapy, Loyola University Medical Center, Maywood, IL 60153
| | | |
Collapse
|