1
|
Lamas-Maceiras M, Vizoso-Vázquez Á, Barreiro-Alonso A, Cámara-Quílez M, Cerdán ME. Thanksgiving to Yeast, the HMGB Proteins History from Yeast to Cancer. Microorganisms 2023; 11:microorganisms11040993. [PMID: 37110415 PMCID: PMC10142021 DOI: 10.3390/microorganisms11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Yeasts have been a part of human life since ancient times in the fermentation of many natural products used for food. In addition, in the 20th century, they became powerful tools to elucidate the functions of eukaryotic cells as soon as the techniques of molecular biology developed. Our molecular understandings of metabolism, cellular transport, DNA repair, gene expression and regulation, and the cell division cycle have all been obtained through biochemistry and genetic analysis using different yeasts. In this review, we summarize the role that yeasts have had in biological discoveries, the use of yeasts as biological tools, as well as past and on-going research projects on HMGB proteins along the way from yeast to cancer.
Collapse
Affiliation(s)
- Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Cámara-Quílez
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| | - María Esperanza Cerdán
- Centro Interdisciplinar de Química y Biología (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Facultad de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
2
|
Rico-Díaz A, Barreiro-Alonso A, Rey-Souto C, Becerra M, Lamas-Maceiras M, Cerdán ME, Vizoso-Vázquez Á. The HMGB Protein KlIxr1, a DNA Binding Regulator of Kluyveromyces lactis Gene Expression Involved in Oxidative Metabolism, Growth, and dNTP Synthesis. Biomolecules 2021; 11:biom11091392. [PMID: 34572607 PMCID: PMC8465852 DOI: 10.3390/biom11091392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
In the traditional fermentative model yeast Saccharomyces cerevisiae, ScIxr1 is an HMGB (High Mobility Group box B) protein that has been considered as an important regulator of gene transcription in response to external changes like oxygen, carbon source, or nutrient availability. Kluyveromyces lactis is also a useful eukaryotic model, more similar to many human cells due to its respiratory metabolism. We cloned and functionally characterized by different methodologies KlIXR1, which encodes a protein with only 34.4% amino acid sequence similarity to ScIxr1. Our data indicate that both proteins share common functions, including their involvement in the response to hypoxia or oxidative stress induced by hydrogen peroxide or metal treatments, as well as in the control of key regulators for maintenance of the dNTP (deoxyribonucleotide triphosphate) pool and ribosome synthesis. KlIxr1 is able to bind specific regulatory DNA sequences in the promoter of its target genes, which are well conserved between S. cerevisiae and K. lactis. Oppositely, we found important differences between ScIrx1 and KlIxr1 affecting cellular responses to cisplatin or cycloheximide in these yeasts, which could be dependent on specific and non-conserved domains present in these two proteins.
Collapse
|
3
|
Mukherjee A, Vasquez KM. Targeting Chromosomal Architectural HMGB Proteins Could Be the Next Frontier in Cancer Therapy. Cancer Res 2020; 80:2075-2082. [PMID: 32152151 DOI: 10.1158/0008-5472.can-19-3066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Chromatin-associated architectural proteins are part of a fundamental support system for cellular DNA-dependent processes and can maintain/modulate the efficiency of DNA replication, transcription, and DNA repair. Interestingly, prognostic outcomes of many cancer types have been linked with the expression levels of several of these architectural proteins. The high mobility group box (HMGB) architectural protein family has been well studied in this regard. The differential expression levels of HMGB proteins and/or mRNAs and their implications in cancer etiology and prognosis present the potential of novel targets that can be explored to increase the efficacy of existing cancer therapies. HMGB1, the most studied member of the HMGB protein family, has pleiotropic roles in cells including an association with nucleotide excision repair, base excision repair, mismatch repair, and DNA double-strand break repair. Moreover, the HMGB proteins have been identified in regulating DNA damage responses and cell survival following treatment with DNA-damaging agents and, as such, may play roles in modulating the efficacy of chemotherapeutic drugs by modulating DNA repair pathways. Here, we discuss the functions of HMGB proteins in DNA damage processing and their potential roles in cancer etiology, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas.
| |
Collapse
|
4
|
Barreiro-Alonso A, Lamas-Maceiras M, Cerdán EM, Vizoso-Vázquez Á. The HMGB protein Ixr1 interacts with Ssn8 and Tdh3 involved in transcriptional regulation. FEMS Yeast Res 2019; 18:4847888. [PMID: 29438513 DOI: 10.1093/femsyr/foy013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022] Open
Abstract
Ixr1 is a Saccharomyces cerevisiae transcriptional factor that extensively regulates the response to hypoxia and controls other important cellular functions and DNA repair. During aerobic growth, the Ixr1 repressor function is predominant on regulated promoters of hypoxic genes, although activator effects are also observed on other genes. During hypoxia, Ixr1 expression increases and the number of genes activated by Ixr1 also increase. In this work we demonstrate that the NH2-terminal region of Ixr1 is involved in transcriptional activation. We also present the first analysis about Ixr1 interactions with three factors that have been previously identified as important players in the yeast hypoxic response, Cyc8, Tup1 and Ssn8; results demonstrate that only Ssn8 binds to Ixr1. We have also looked for other Ixr1-binding proteins associated with transcriptional regulation, by co-purification and mass spectrometry identification. Tdh3, a protein involved in transcriptional silencing, is among the new identified Ixr1-binding proteins. Differential phosphorylation of Ixr1 is found when comparing aerobic and hypoxic yeast growth. Implication of these results in transcriptional regulation mediated by Ixr1 is discussed.
Collapse
Affiliation(s)
- Aida Barreiro-Alonso
- EXPRELA Group, Departamento de Bioloxía, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña 15001, Spain
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Departamento de Bioloxía, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña 15001, Spain
| | - Esperanza M Cerdán
- EXPRELA Group, Departamento de Bioloxía, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña 15001, Spain
| | - Ángel Vizoso-Vázquez
- EXPRELA Group, Departamento de Bioloxía, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña 15001, Spain
| |
Collapse
|
5
|
Vizoso-Vázquez Á, Lamas-Maceiras M, González-Siso MI, Cerdán ME. Ixr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Sci Rep 2018; 8:3090. [PMID: 29449612 PMCID: PMC5814428 DOI: 10.1038/s41598-018-21439-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work. Ixr1 regulates other transcriptional factors that respond to nutrient availability or extracellular and intracellular stress stimuli, some controlled by the TOR pathway and PKA signaling. Ixr1 controls transcription of ribosomal RNAs and genes encoding ribosomal proteins or involved in ribosome assembly. qPCR, ChIP, and 18S and 25S rRNAs measurement have confirmed this function. Ixr1 binds directly to several promoters of genes related to rRNA transcription and ribosome biogenesis. Cisplatin treatment mimics the effect of IXR1 deletion on rRNA and ribosomal gene transcription, and prevents Ixr1 binding to specific promoters related to these processes.
Collapse
Affiliation(s)
- Ángel Vizoso-Vázquez
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - Mónica Lamas-Maceiras
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Esperanza Cerdán
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain.
| |
Collapse
|
6
|
Repair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity. Proc Natl Acad Sci U S A 2017; 114:950-955. [PMID: 28096358 DOI: 10.1073/pnas.1615327114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cisplatin is the most commonly used anticancer drug for the treatment of testicular germ cell tumors (TGCTs). The hypersensitivity of TGCTs to cisplatin is a subject of widespread interest. Here, we show that high-mobility group box protein 4 (HMGB4), a protein preferentially expressed in testes, uniquely blocks excision repair of cisplatin-DNA adducts, 1,2-intrastrand cross-links, to potentiate the sensitivity of TGCTs to cisplatin therapy. We used CRISPR/Cas9-mediated gene editing to knockout the HMGB4 gene in a testicular human embryonic carcinoma and examined cellular responses. We find that loss of HMGB4 elicits resistance to cisplatin as evidenced by cell proliferation and apoptosis assays. We demonstrate that HMGB4 specifically inhibits repair of the major cisplatin-DNA adducts in TGCT cells by using the human TGCT excision repair system. Our findings also reveal characteristic HMGB4-dependent differences in cell cycle progression following cisplatin treatment. Collectively, these data provide convincing evidence that HMGB4 plays a major role in sensitizing TGCTs to cisplatin, consistent with shielding of platinum-DNA adducts from excision repair.
Collapse
|
7
|
Vizoso-Vázquez A, Lamas-Maceiras M, Fernández-Leiro R, Rico-Díaz A, Becerra M, Cerdán ME. Dual function of Ixr1 in transcriptional regulation and recognition of cisplatin-DNA adducts is caused by differential binding through its two HMG-boxes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:256-269. [PMID: 27871851 DOI: 10.1016/j.bbagrm.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/30/2022]
Abstract
Ixr1 is a transcriptional factor involved in the response to hypoxia, which is also related to DNA repair. It binds to DNA through its two in-tandem high mobility group box (HMG-box) domains. Each function depends on recognition of different DNA structures, B-form DNA at specific consensus sequences for transcriptional regulation, or distorted DNA, like cisplatin-DNA adducts, for DNA repair. However, the contribution of the HMG-box domains in the Ixr1 protein to the formation of different protein-DNA complexes is poorly understood. We have biophysically and biochemically characterized these interactions with specific DNA sequences from the promoters regulated by Ixr1, or with cisplatin-DNA adducts. Both HMG-boxes are necessary for transcriptional regulation, and they are not functionally interchangeable. The in-tandem arrangement of their HMG-boxes is necessary for functional folding and causes sequential cooperative binding to specific DNA sequences, with HMG-box A showing a higher contribution to DNA binding and bending than the HMG-box B. Binding of Ixr1 HMG boxes to specific DNA sequences is entropy driven, whereas binding to platinated DNA is enthalpy driven for HMG-box A and entropy driven for HMG-box B. This is the first proof that HMG-box binding to different DNA structures is associated with predictable thermodynamic differences. Based on our study, we present a model to explain the dual function of Ixr1 in the regulation of gene expression and recognition of distorted DNA structures caused by cisplatin treatment.
Collapse
Affiliation(s)
- A Vizoso-Vázquez
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - M Lamas-Maceiras
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - R Fernández-Leiro
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - A Rico-Díaz
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - M Becerra
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain
| | - M E Cerdán
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, A Coruña, Spain.
| |
Collapse
|
8
|
Cankorur-Cetinkaya A, Eraslan S, Kirdar B. Transcriptomic response of yeast cells to ATX1 deletion under different copper levels. BMC Genomics 2016; 17:489. [PMID: 27401861 PMCID: PMC4940881 DOI: 10.1186/s12864-016-2771-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/25/2016] [Indexed: 01/15/2023] Open
Abstract
Background Iron and copper homeostatic pathways are tightly linked since copper is required as a cofactor for high affinity iron transport. Atx1p plays an important role in the intracellular copper transport as a copper chaperone transferring copper from the transporters to Ccc2p for its subsequent insertion into Fet3p, which is required for high affinity iron transport. Results In this study, genome-wide transcriptional landscape of ATX1 deletants grown in media either lacking copper or having excess copper was investigated. ATX1 deletants were allowed to recover full respiratory capacity in the presence of excess copper in growth environment. The present study revealed that iron ion homeostasis was not significantly affected by the absence of ATX1 either at the transcriptional or metabolic levels, suggesting other possible roles for Atx1p in addition to its function as a chaperone in copper-dependent iron absorption. The analysis of the transcriptomic response of atx1∆/atx1∆ and its integration with the genetic interaction network highlighted for the first time, the possible role of ATX1 in cell cycle regulation, likewise its mammalian counterpart ATOX1, which was reported to play an important role in the copper-stimulated proliferation of non-small lung cancer cells. Conclusions The present finding revealed the dispensability of Atx1p for the transfer of copper ions to Ccc2p and highlighted its possible role in the cell cycle regulation. The results also showed the potential of Saccharomyces cerevisiae as a model organism in studying the capacity of ATOX1 as a therapeutic target for lung cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2771-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayca Cankorur-Cetinkaya
- Department of Chemical Engineering, Faculty of Engineering, Bogazici University, 34342, Istanbul, Turkey. .,Present address: Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, United Kingdom.
| | - Serpil Eraslan
- Department of Chemical Engineering, Faculty of Engineering, Bogazici University, 34342, Istanbul, Turkey.,Present address: Diagnostic Centre for Genetic Diseases, Koc University Hospital, Davutpasa Cd. No:43010 Topkapı, Istanbul, Turkey
| | - Betul Kirdar
- Department of Chemical Engineering, Faculty of Engineering, Bogazici University, 34342, Istanbul, Turkey
| |
Collapse
|
9
|
Wright EP, Padula MP, Higgins VJ, Aldrich-Wright JR, Coorssen JR. A Systems Biology Approach to Understanding the Mechanisms of Action of an Alternative Anticancer Compound in Comparison to Cisplatin. Proteomes 2014; 2:501-526. [PMID: 28250393 PMCID: PMC5302693 DOI: 10.3390/proteomes2040501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 09/19/2014] [Accepted: 10/29/2014] [Indexed: 01/22/2023] Open
Abstract
Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures. Studies have shown that 56MESS is a novel compound which, unlike cisplatin, does not covalently bind to DNA, but is more toxic to many cell lines and active against cisplatin-resistant cells. Furthermore, a transcriptional study of 56MESS in yeast has implicated iron and copper metabolism as well as the general yeast stress response following challenge with 56MESS. Beyond this, the cytotoxicity of 56MESS remains largely uncharacterised. Here, yeast was used as a model system to facilitate a systems-level comparison between 56MESS and cisplatin. Preliminary experiments indicated that higher concentrations than seen in similar studies be used. Although a DNA interaction with 56MESS had been theorized, this work indicated that an effect on protein synthesis/ degradation was also implicated in the mechanism(s) of action of this novel anticancer compound. In contrast to cisplatin, the different mechanisms of action that are indicated for 56MESS suggest that this compound could overcome cisplatin resistance either as a stand-alone treatment or a synergistic component of therapeutics.
Collapse
Affiliation(s)
- Elise P Wright
- Molecular Physiology Department, and the Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Campbelltown, NSW 2751, Australia.
| | - Matthew P Padula
- Proteomics Core Facility, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia.
| | - Vincent J Higgins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Janice R Aldrich-Wright
- Molecular Physiology Department, and the Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Campbelltown, NSW 2751, Australia.
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2751, Australia.
| | - Jens R Coorssen
- Molecular Physiology Department, and the Molecular Medicine Research Group, School of Medicine, University of Western Sydney, Campbelltown, NSW 2751, Australia.
| |
Collapse
|
10
|
Johnstone TC, Wilson JJ, Lippard SJ. Monofunctional and higher-valent platinum anticancer agents. Inorg Chem 2013; 52:12234-49. [PMID: 23738524 PMCID: PMC3818431 DOI: 10.1021/ic400538c] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called "non-traditional" platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug-delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with a historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo.
Collapse
Affiliation(s)
- Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Justin J. Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| |
Collapse
|
11
|
Tsaponina O, Chabes A. Pre-activation of the genome integrity checkpoint increases DNA damage tolerance. Nucleic Acids Res 2013; 41:10371-8. [PMID: 24049076 PMCID: PMC3905891 DOI: 10.1093/nar/gkt820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The genome integrity checkpoint is a conserved signaling pathway that is regulated in yeast by the Mec1 (homologous to human ATR) and Rad53 (homologous to human Chk1) kinases. The pathway coordinates a multifaceted response that allows cells to cope with DNA damage and DNA replication stress. The full activation of the checkpoint blocks origin firing, stabilizes replication forks, activates DNA repair proteins and may lead to senescence or apoptosisin higher eukaryotes. We have recently demonstrated that endogenous replication stress can activate the genome integrity checkpoint in budding yeast at a low level that does not go so far as to interfere with cell cycle progression, but it does activate DNA damage-inducible proteins. Here we demonstrate that the low level pre-activation of the checkpoint, either by endogenous replication stress or by the nucleotide-depleting drug hydroxyurea, can increase damage tolerance to multiple DNA-damaging agents. These results may provide new strategies for using the checkpoint to protect normal cells from genotoxic stress.
Collapse
Affiliation(s)
- Olga Tsaponina
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 90187, Umeå, Sweden and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE 90187 Umeå, Sweden
| | | |
Collapse
|
12
|
Abstract
Alkylating agents are the most widely used anticancer drugs whose main target is the DNA, although how exactly the DNA lesions cause cell death is still not clear. The emergence of resistance to this class of drugs as well as to other antitumor agents is one of the major causes of failure of cancer treatment. This paper reviews some of the best characterized mechanisms of resistance to alkylating agents. Pre- and post-target mechanisms are recognized, the former able to limit the formation of lethal DNA adducts, and the latter enabling the cell to repair or tolerate the damage. The role in the pre-target mechanisms of reduced drug accumulation and the increased detoxification or activation systems (such as DT-diaphorase, metallothionein, GST/GSH system, etc...) are discussed. In the post-target mechanisms the different DNA repair pathways, tolerance to alkylation damage and the 'downstream' effects (cell cycle arrest and/or apoptosis) are examined.
Collapse
Affiliation(s)
- G Damia
- Department of Oncology, Instituto di Ricerche Farmacologiche 'Mario Negri', Via Eritrea 62, 20157, Milan, Italy.,
| | | |
Collapse
|
13
|
Rodríguez Lombardero S, Vizoso Vázquez A, Rodríguez Belmonte E, González Siso MI, Cerdán ME. SKY1 and IXR1 interactions, their effects on cisplatin and spermine resistance in Saccharomyces cerevisiae. Can J Microbiol 2012; 58:184-8. [PMID: 22260231 DOI: 10.1139/w11-124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast Saccharomyces cerevisiae has been previously used as a model eukaryotic system to identify genes related to drug resistance. Deletion of the IXR1 gene increases resistance to cisplatin, and deletion of the SKY1 gene increases resistance to cisplatin and spermine. Three S. cerevisiae strains and their derivatives, carrying single Δixr1 and Δsky1 and double Δixr1Δsky1 deletions, were compared in terms of resistance against these compounds. We found that the effects of these deletions are highly dependent on the genetic background of the selected strains. These results are valuable in the selection of yeast strains to be used in genetic screenings of compounds with putative pharmacological interest.
Collapse
Affiliation(s)
- Silvia Rodríguez Lombardero
- Departamento Biología Celular y Molecular, Universidad de A Coruña, F. Ciencias, Campus de A Zapateira s/n, A Coruña, Spain
| | | | | | | | | |
Collapse
|
14
|
Bhattacharyya D, Ramachandran S, Sharma S, Pathmasiri W, King CL, Baskerville-Abraham I, Boysen G, Swenberg JA, Campbell SL, Dokholyan NV, Chaney SG. Flanking bases influence the nature of DNA distortion by platinum 1,2-intrastrand (GG) cross-links. PLoS One 2011; 6:e23582. [PMID: 21853154 PMCID: PMC3154474 DOI: 10.1371/journal.pone.0023582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 07/21/2011] [Indexed: 11/28/2022] Open
Abstract
The differences in efficacy and molecular mechanisms of platinum anti-cancer drugs cisplatin (CP) and oxaliplatin (OX) are thought to be partially due to the differences in the DNA conformations of the CP and OX adducts that form on adjacent guanines on DNA, which in turn influence the binding of damage-recognition proteins that control downstream effects of the adducts. Here we report a comprehensive comparison of the structural distortion of DNA caused by CP and OX adducts in the TGGT sequence context using nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations. When compared to our previous studies in other sequence contexts, these structural studies help us understand the effect of the sequence context on the conformation of Pt-GG DNA adducts. We find that both the sequence context and the type of Pt-GG DNA adduct (CP vs. OX) play an important role in the conformation and the conformational dynamics of Pt-DNA adducts, possibly explaining their influence on the ability of many damage-recognition proteins to bind to Pt-DNA adducts.
Collapse
Affiliation(s)
- Debadeep Bhattacharyya
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Srinivas Ramachandran
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Program in Cellular and Molecular Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shantanu Sharma
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wimal Pathmasiri
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Candice L. King
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Irene Baskerville-Abraham
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Gunnar Boysen
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - James A. Swenberg
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (SLC); (NVD); (SGC)
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (SLC); (NVD); (SGC)
| | - Stephen G. Chaney
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (SLC); (NVD); (SGC)
| |
Collapse
|
15
|
Lillo O, Bracesco N, Nunes E. Lethal and mutagenic interactions between γ-rays, cisplatin and etoposide at the cellular and molecular levels. Int J Radiat Biol 2010; 87:222-30. [PMID: 21133647 DOI: 10.3109/09553002.2010.518207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE We analysed the lethal and mutagenic interactions between γ-rays, cisplatin (Pt) and etoposide (E), three agents used in tumour chemoradiotherapy. Corresponding results at cellular and molecular levels could provide additional elements on involved mechanisms and, on antitumour activity and toxicity in combined cancer treatments. MATERIALS AND METHODS The yeast Saccharomyces cerevisiae SC7K(lys2-3) (auxotrophic for lysine) was used as eukaryotic model. Exponential growing cells were exposed to the mentioned agents, as single and combined treatments. Lethal and mutation interaction equations were determined as a function of doses according to quantitative models. DNA double-strand breaks were evaluated immediately after treatments, through pulsed-field electrophoresis and laser densitometry. RESULTS All three agents induced significant mutant frequency. The γ +Pt + E combination determined maximal lethal and mutagenic synergism, followed by γ + Pt and γ + E combinations. Meanwhile, Pt + E combination showed lethal additivity and very low mutagenic synergism. Pt + E double combination determined moderate DNA degradation. DNA degradation after γ-exposure, was similar to that of γ + Pt, γ + E and γ + Pt + E combinations. CONCLUSIONS Synergistic lethal and mutagenic interactions indicate crosstalk between non-homologous end joining, homologous recombination and postreplicative repair pathways. Pt + E additivity indicate independence of involved repair pathways. Furthermore, the quantification of interactive events may be an additional suitable tool in tumour therapy planning.
Collapse
Affiliation(s)
- Olga Lillo
- Department of Biophysics, Laboratory of Radiobiology, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.
| | | | | |
Collapse
|
16
|
Lillo O, Bracesco N, Nunes E. Lethal and mutagenic interactions between γ-rays, cisplatin and etoposide at the cellular and molecular levels. Int J Radiat Biol 2010. [DOI: 10.3109/09553002.2011.518207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Kostrhunova H, Kasparkova J, Gibson D, Brabec V. Studies on cellular accumulation of satraplatin and its major metabolite JM118 and their interactions with glutathione. Mol Pharm 2010; 7:2093-102. [PMID: 20936822 DOI: 10.1021/mp100080e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Before the active form of a Pt drug reaches its major pharmacological target in the cell nucleus, the Pt complex has to accumulate in cells, and during its transportation into cells and inside cells, it reacts with various biomolecules. Satraplatin is the first orally administered Pt drug under active clinical investigation. The major metabolite of this Pt(IV) complex is its Pt(II) analogue (JM118), which also has significant anticancer properties. Here we report the role of active transport in cellular entry of satraplatin and JM118 and interactions of these Pt complexes with glutathione. The results reveal that the organic cation transporters may play a more important role in the mechanism of cytotoxicity of JM118 than in the cytotoxicity of cisplatin. In contrast, satraplatin is a poor substrate of these transporters. In addition, satraplatin reacts with glutathione with the rate markedly lower than JM118 and cisplatin. Interestingly, satraplatin can be activated by glutathione allowing it to react with DNA, although to a much lower extent than in the case of another Pt(IV) drug tetraplatin.
Collapse
Affiliation(s)
- Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi, Kralovopolska 135, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
18
|
Kostrhunova H, Vrana O, Suchankova T, Gibson D, Kasparkova J, Brabec V. Different Features of the DNA Binding Mode of Antitumor cis-Amminedichlorido(cyclohexylamine)platinum(II) (JM118) and Cisplatin in Vitro. Chem Res Toxicol 2010; 23:1833-42. [DOI: 10.1021/tx1002904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Oldrich Vrana
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tereza Suchankova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dan Gibson
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic, Department of Experimental Physics, Faculty of Sciences, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic, and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
19
|
Ahmad S. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 2010; 7:543-66. [PMID: 20232326 DOI: 10.1002/cbdv.200800340] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platinum-based compounds are widely used as chemotherapeutics for the treatment of a variety of cancers. The anticancer activity of cisplatin and other platinum drugs is believed to arise from their interaction with DNA. Several cellular pathways are activated in response to this interaction, which include recognition by high-mobility group and repair proteins, translesion synthesis by polymerases, and induction of apoptosis. The apoptotic process is regulated by activation of caspases, p53 gene, and several proapoptotic and antiapoptotic proteins. Such cellular processing eventually leads to an inhibition of the replication or transcription machinery of the cell. Deactivation of platinum drugs by thiols, increased nucleotide excision repair of Pt-DNA adducts, decreased mismatch repair, and defective apoptosis result in resistance to platinum therapy. The differences in cytotoxicity of various platinum complexes are attributed to the differential recognition of their adducts by cellular proteins. Cisplatin and oxaliplatin both produce mainly 1,2-GG intrastrand cross-links as major adducts, but oxaliplatin is found to be more active particularly against cisplatin-resistant tumor cells. Mismatch repair and replicative bypass appear to be the processes most likely involved in differentiating the molecular responses to these two agents. This review describes the formation of Pt-DNA adducts, their interaction with cellular components, and biological effects of this interaction.
Collapse
Affiliation(s)
- Saeed Ahmad
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| |
Collapse
|
20
|
Castro-Prego R, Lamas-Maceiras M, Soengas P, Fernández-Leiro R, Carneiro I, Becerra M, González-Siso MI, Cerdán ME. Ixr1p regulates oxygen-dependent HEM13 transcription. FEMS Yeast Res 2010; 10:309-21. [DOI: 10.1111/j.1567-1364.2010.00616.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation. Biochem J 2009; 425:235-43. [PMID: 19807692 DOI: 10.1042/bj20091500] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ixr1p from Saccharomyces cerevisiae has been previously studied because it binds to DNA containing intrastrand cross-links formed by the anticancer drug cisplatin. Ixr1p is also a transcriptional regulator of anaerobic/hypoxic genes, such as SRP1/TIR1, which encodes a stress-response cell wall manoprotein, and COX5B, which encodes the Vb subunit of the mitochondrial complex cytochrome c oxidase. However, factors controlling IXR1 expression remained unexplored. In the present study we show that IXR1 mRNA levels are controlled by oxygen availability and increase during hypoxia. In aerobiosis, low levels of IXR1 expression are maintained by Rox1p repression through the general co-repressor complex Tup1-Ssn6. Ixr1p itself is necessary for full IXR1 expression under hypoxic conditions. Deletion analyses have identified the region in the IXR1 promoter responsible for this positive auto-control (nucleotides -557 to -376). EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays show that Ixr1p binds to the IXR1 promoter both in vitro and in vivo. Ixr1p is also required for hypoxic repression of ROX1 and binds to its promoter. UPC2 deletion has opposite effects on IXR1 and ROX1 transcription during hypoxia. Ixr1p is also necessary for resistance to oxidative stress generated by H2O2. IXR1 expression is moderately activated by H2O2 and this induction is Yap1p-dependent. A model of IXR1 regulation as a relay for sensing different signals related to change in oxygen availability is proposed. In this model, transcriptional adaptation from aerobiosis to hypoxia depends on ROX1 and IXR1 cross-regulation.
Collapse
|
22
|
Ramachandran S, Temple BR, Chaney SG, Dokholyan NV. Structural basis for the sequence-dependent effects of platinum-DNA adducts. Nucleic Acids Res 2009; 37:2434-48. [PMID: 19255091 PMCID: PMC2677858 DOI: 10.1093/nar/gkp029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The differences in efficacy and molecular mechanisms of platinum based anti-cancer drugs cisplatin (CP) and oxaliplatin (OX) have been hypothesized to be in part due to the differential binding affinity of cellular and damage recognition proteins to CP and OX adducts formed on adjacent guanines in genomic DNA. HMGB1a in particular exhibits higher binding affinity to CP-GG adducts, and the extent of discrimination between CP- and OX-GG adducts is dependent on the bases flanking the adducts. However, the structural basis for this differential binding is not known. Here, we show that the conformational dynamics of CP- and OX-GG adducts are distinct and depend on the sequence context of the adduct. Molecular dynamics simulations of the Pt-GG adducts in the TGGA sequence context revealed that even though the major conformations of CP- and OX-GG adducts were similar, the minor conformations were distinct. Using the pattern of hydrogen bond formation between the Pt–ammines and the adjacent DNA bases, we identified the major and minor conformations sampled by Pt–DNA. We found that the minor conformations sampled exclusively by the CP-GG adduct exhibit structural properties that favor binding by HMGB1a, which may explain its higher binding affinity to CP-GG adducts, while these conformations are not sampled by OX-GG adducts because of the constraints imposed by its cyclohexane ring, which may explain the negligible binding affinity of HMGB1a for OX-GG adducts in the TGGA sequence context. Based on these results, we postulate that the constraints imposed by the cyclohexane ring of OX affect the DNA conformations explored by OX-GG adduct compared to those of CP-GG adduct, which may influence the binding affinities of HMG-domain proteins for Pt-GG adducts, and that these conformations are further influenced by the DNA sequence context of the Pt-GG adduct.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | | | | | | |
Collapse
|
23
|
Galea AM, Murray V. The anti-tumour agent, cisplatin, and its clinically ineffective isomer, transplatin, produce unique gene expression profiles in human cells. Cancer Inform 2008; 6:315-55. [PMID: 19259415 PMCID: PMC2623290 DOI: 10.4137/cin.s802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cisplatin is a DNA-damaging anti-cancer agent that is widely used to treat a range of tumour types. Despite its clinical success, cisplatin treatment is still associated with a number of dose-limiting toxic side effects. The purpose of this study was to clarify the molecular events that are important in the anti-tumour activity of cisplatin, using gene expression profiling techniques. Currently, our incomplete understanding of this drug's mechanism of action hinders the development of more efficient and less harmful cisplatin-based chemotherapeutics. In this study the effect of cisplatin on gene expression in human foreskin fibroblasts has been investigated using human 19K oligonucleotide microarrays. In addition its clinically inactive isomer, transplatin, was also tested. Dualfluor microarray experiments comparing treated and untreated cells were performed in quadruplicate. Cisplatin treatment was shown to significantly up- or down-regulate a consistent subset of genes. Many of these genes responded similarly to treatment with transplatin, the therapeutically inactive isomer of cisplatin. However, a smaller proportion of these transcripts underwent differential expression changes in response to the two isomers. Some of these genes may constitute part of the DNA damage response induced by cisplatin that is critical for its anti-tumour activity. Ultimately, the identification of gene expression responses unique to clinically active compounds, like cisplatin, could thus greatly benefit the design and development of improved chemotherapeutics.
Collapse
Affiliation(s)
- Anne M. Galea
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
24
|
Sharma S, Gong P, Temple B, Bhattacharyya D, Dokholyan NV, Chaney SG. Molecular dynamic simulations of cisplatin- and oxaliplatin-d(GG) intrastand cross-links reveal differences in their conformational dynamics. J Mol Biol 2007; 373:1123-40. [PMID: 17900616 PMCID: PMC2129172 DOI: 10.1016/j.jmb.2007.07.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/26/2007] [Accepted: 07/28/2007] [Indexed: 11/18/2022]
Abstract
Mismatch repair proteins, DNA damage-recognition proteins and translesion DNA polymerases discriminate between Pt-GG adducts containing cis-diammine ligands (formed by cisplatin (CP) and carboplatin) and trans-RR-diaminocyclohexane ligands (formed by oxaliplatin (OX)) and this discrimination is thought to be important in determining differences in the efficacy, toxicity and mutagenicity of these platinum anticancer agents. We have postulated that these proteins recognize differences in conformation and/or conformational dynamics of the DNA containing the adducts. We have previously determined the NMR solution structure of OX-DNA, CP-DNA and undamaged duplex DNA in the 5'-d(CCTCAGGCCTCC)-3' sequence context and have shown the existence of several conformational differences in the vicinity of the Pt-GG adduct. Here we have used molecular dynamics simulations to explore differences in the conformational dynamics between OX-DNA, CP-DNA and undamaged DNA in the same sequence context. Twenty-five 10 ns unrestrained fully solvated molecular dynamics simulations were performed starting from two different DNA conformations using AMBER v8.0. All 25 simulations reached equilibrium within 4 ns, were independent of the starting structure and were in close agreement with previous crystal and NMR structures. Our data show that the cis-diammine (CP) ligand preferentially forms hydrogen bonds on the 5' side of the Pt-GG adduct, while the trans-RR-diaminocyclohexane (OX) ligand preferentially forms hydrogen bonds on the 3' side of the adduct. In addition, our data show that these differences in hydrogen bond formation are strongly correlated with differences in conformational dynamics, specifically the fraction of time spent in different DNA conformations in the vicinity of the adduct, for CP- and OX-DNA adducts. We postulate that differential recognition of CP- and OX-GG adducts by mismatch repair proteins, DNA damage-recognition proteins and DNA polymerases may be due, in part, to differences in the fraction of time that the adducts spend in a conformation favorable for protein binding.
Collapse
Affiliation(s)
- Shantanu Sharma
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
25
|
Johnson SW, Ferry KV, Hamilton TC. Recent insights into platinum drug resistance in cancer. Drug Resist Updat 2007; 1:243-54. [PMID: 16904407 DOI: 10.1016/s1368-7646(98)80005-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1998] [Revised: 05/04/1998] [Accepted: 05/06/1998] [Indexed: 10/25/2022]
Abstract
Cisplatin and its analogs have become important components of chemotherapeutic regimens for the treatment of solid tumors, however, their overall effectiveness is limited by the emergence of drug-resistant tumor cells. Resistance to the platinum drugs is multifactorial consisting of mechanisms that prevent the formation of lethal platinum-DNA adducts and mechanisms that operate downstream of the drug/target interaction to promote cell survival. Continued progress in the study of the drug resistance phenotype as well as the development of new platinum analogs may eventually lead to improved therapies and increased survival rates.
Collapse
Affiliation(s)
- S W Johnson
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
26
|
Wu Y, Bhattacharyya D, King CL, Baskerville-Abraham I, Huh SH, Boysen G, Swenberg JA, Temple B, Campbell SL, Chaney SG. Solution structures of a DNA dodecamer duplex with and without a cisplatin 1,2-d(GG) intrastrand cross-link: comparison with the same DNA duplex containing an oxaliplatin 1,2-d(GG) intrastrand cross-link. Biochemistry 2007; 46:6477-87. [PMID: 17497831 PMCID: PMC2129171 DOI: 10.1021/bi062291f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteins that discriminate between cisplatin-DNA adducts and oxaliplatin-DNA adducts are thought to be responsible for the differences in tumor range, toxicity, and mutagenicity of these two important chemotherapeutic agents. However, the structural basis for differential protein recognition of these adducts has not been determined and could be important for the design of more effective platinum anticancer agents. We have determined high-resolution NMR structures for cisplatin-GG and undamaged DNA dodecamers in the AGGC sequence context and have compared these structures with the oxaliplatin-GG structure in the same sequence context determined previously in our laboratory. This structural study allows the first direct comparison of cisplatin-GG DNA and oxaliplatin-GG DNA solution structures referenced to undamaged DNA in the same sequence context. Non-hydrogen atom rmsds of 0.81 and 1.21 were determined for the 15 lowest-energy structures for cisplatin-GG DNA and undamaged DNA, respectively, indicating good structural convergence. The theoretical NOESY spectra obtained by back-calculation from the final average structures showed excellent agreement with the experimental data, indicating that the final structures are consistent with the NMR data. Several significant conformational differences were observed between the cisplatin-GG adduct and the oxaliplatin-GG adduct, including buckle at the 5' G6.C19 base pair, opening at the 3' G7.C18 base pair, twist at the A5G6.T20C19 base pair step, slide, twist, and roll at the G6G7.C19C18 base pair step, slide at the G7C8.C18G17 base pair step, G6G7 dihedral angle, and overall bend angle. We hypothesize that these conformational differences may be related to the ability of various DNA repair proteins, DNA binding proteins, and DNA polymerases to discriminate between cisplatin-GG and oxaliplatin-GG adducts.
Collapse
Affiliation(s)
- Yibing Wu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Debadeep Bhattacharyya
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Candice L. King
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Irene Baskerville-Abraham
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sung-Ho Huh
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gunnar Boysen
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James A. Swenberg
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brenda Temple
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
- * To whom correspondence should be addressed: Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260. Telephone: (919) 966-3286. E-mail: or
| | - Stephen G. Chaney
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
- * To whom correspondence should be addressed: Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260. Telephone: (919) 966-3286. E-mail: or
| |
Collapse
|
27
|
Lehoczký P, McHugh PJ, Chovanec M. DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol Rev 2006; 31:109-33. [PMID: 17096663 DOI: 10.1111/j.1574-6976.2006.00046.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA interstrand cross-links (ICL) present a formidable challenge to the cellular DNA repair apparatus. For Escherichia coli, a pathway which combines nucleotide excision repair (NER) and homologous recombination repair (HRR) to eliminate ICL has been characterized in detail, both genetically and biochemically. Mechanisms of ICL repair in eukaryotes have proved more difficult to define, primarily as a result of the fact that several pathways appear compete for ICL repair intermediates, and also because these competing activities are regulated in the cell cycle. The budding yeast Saccharomyces cerevisiae has proven a powerful tool for dissecting ICL repair. Important roles for NER, HRR and postreplication/translesion synthesis pathways have all been identified. Here we review, with reference to similarities and differences in higher eukaryotes, what has been discovered to date concerning ICL repair in this simple eukaryote.
Collapse
Affiliation(s)
- Peter Lehoczký
- Department of Molecular Genetics, Cancer Research Institute, Bratislava, Slovak Republic
| | | | | |
Collapse
|
28
|
|
29
|
Zorbas H, Keppler BK. Cisplatin damage: are DNA repair proteins saviors or traitors to the cell? Chembiochem 2005; 6:1157-66. [PMID: 15934047 DOI: 10.1002/cbic.200400427] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haralabos Zorbas
- Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | |
Collapse
|
30
|
Abstract
Cisplatin, carboplatin and oxaliplatin are platinum-based drugs that are widely used in cancer chemotherapy. Platinum-DNA adducts, which are formed following uptake of the drug into the nucleus of cells, activate several cellular processes that mediate the cytotoxicity of these platinum drugs. This review focuses on recently discovered cellular pathways that are activated in response to cisplatin, including those involved in regulating drug uptake, the signalling of DNA damage, cell-cycle checkpoints and arrest, DNA repair and cell death. Such knowledge of the cellular processing of cisplatin adducts with DNA provides valuable clues for the rational design of more efficient platinum-based drugs as well as the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Dong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Room 18-498, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
31
|
Chaney SG, Campbell SL, Bassett E, Wu Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev Oncol Hematol 2005; 53:3-11. [PMID: 15607931 DOI: 10.1016/j.critrevonc.2004.08.008] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2004] [Indexed: 12/18/2022] Open
Abstract
The cytotoxicity of platinum compounds is thought to be determined primarily by their DNA adducts. Cisplatin and oxaliplatin are structurally distinct, but form the same types of adducts at the same sites on DNA. However, the DNA adducts are differentially recognized by a number of cellular proteins. For example, mismatch repair proteins and some damage-recognition proteins bind to cisplatin-GG adducts with higher affinity than to oxaliplatin-GG adducts, and this differential recognition of cisplatin- and oxaliplatin-GG adducts is thought to contribute to the differences in cytotoxicity and tumor range of cisplatin and oxaliplatin. A detailed kinetic analysis of the insertion and extension steps of dNTP incorporation in the vicinity of the adduct shows that both DNA polymerase beta (pol beta) and DNA polymerase eta (pol eta) catalyze translesion synthesis past oxaliplatin-GG adducts with greater efficiency than past cisplatin-GG adducts. In the case of pol eta, the efficiency and fidelity of translesion synthesis in vitro is very similar to that previously observed with cyclobutane TT dimers, suggesting that pol eta is likely to be involved in error-free bypass of Pt adducts in vivo. This has been confirmed for cisplatin by comparing the cisplatin-induced mutation frequency in human fibroblast cell lines with and without pol eta. Thus, the greater efficiency of bypass of oxaliplatin-GG adducts by pol eta may explain the lower mutagenicity of oxaliplatin compared to cisplatin. The ability of these cellular proteins to discriminate between cisplatin and oxaliplatin adducts suggest that there exist significant conformational differences between the adducts, yet the crystal structures of the cisplatin- and oxaliplatin-GG adducts were very similar. We have recently solved the solution structure of the oxaliplatin-GG adduct and have shown that it is significantly different from the previously published solution structures of the cisplatin-GG adducts. Furthermore, the observed differences in conformation provide a logical explanation for the differential recognition of cisplatin and oxaliplatin adducts by mismatch repair and damage-recognition proteins.
Collapse
Affiliation(s)
- Stephen G Chaney
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599-7260, USA.
| | | | | | | |
Collapse
|
32
|
Chaney SG, Campbell SL, Temple B, Bassett E, Wu Y, Faldu M. Protein interactions with platinum-DNA adducts: from structure to function. J Inorg Biochem 2004; 98:1551-9. [PMID: 15458816 DOI: 10.1016/j.jinorgbio.2004.04.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 04/15/2004] [Accepted: 04/17/2004] [Indexed: 11/20/2022]
Abstract
Because of the efficacy of cisplatin and carboplatin in a wide variety of chemotherapeutic regimens, hundreds of platinum(II) and platinum(IV) complexes have been synthesized and evaluated as anticancer agents over the past 30 years. Of the many third generation platinum compounds evaluated to date, only oxaliplatin has been approved for clinical usage in the United States. Thus, it is important to understand the mechanistic basis for the differences in efficacy, mutagenicity and tumor range between cisplatin and oxaliplatin. Cisplatin and oxaliplain form the same types of adducts at the same sites on DNA. The most abundant adduct for both compounds is the Pt-GG intrastrand diadduct. Cisplatin-GG adducts are preferentially recognized by mismatch repair proteins and some damage-recognition proteins, and this differential recognition of cisplatin- and oxaliplatin-GG adducts is thought to contribute to the differences in cytotoxicity and tumor range of cisplatin and oxaliplatin. A detailed kinetic analysis of the insertion and extension steps of dNTP incorporation in the vicinity of the adduct shows that both pol beta and pol eta catalyze translesion synthesis past oxaliplatin-GG adducts with greater efficiency than past cisplatin-GG adducts. In the case of pol eta, the efficiency and fidelity of translesion synthesis in vitro is very similar to that previously observed with cyclobutane TT dimers, suggesting that pol eta is likely to be involved in error-free bypass of Pt adducts in vivo. This has been confirmed for cisplatin by comparing the cisplatin-induced mutation frequency in human fibroblast cell lines with and without pol eta. Thus, the greater efficiency of bypass of oxaliplatin-GG adducts by pol eta is likely to explain the lower mutagenicity of oxaliplatin compared to cisplatin. The ability of these cellular proteins to discriminate between cisplatin and oxaliplatin adducts suggest that there exist significant conformational differences between the adducts, yet the crystal structures of the cisplatin- and oxaliplatin-GG adducts were very similar. We have recently solved the solution structure of the oxaliplatin-GG adduct and have shown that it is significantly different from the previously published solution structures of the cisplatin-GG adducts. Furthermore, the observed differences in conformation provide a logical explanation for the differential recognition of cisplatin and oxaliplatin adducts by mismatch repair and damage-recognition proteins. Molecular modeling studies are currently underway to analyze the mechanistic basis for the differential bypass of cisplatin and oxaliplatin adducts by DNA polymerases.
Collapse
Affiliation(s)
- Stephen G Chaney
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center and Curriculum in Toxicology, CB #7260 Mary Ellen Jones Building, University of North Carolina, Chapel Hill, NC 27599-7260, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Wu Y, Pradhan P, Havener J, Boysen G, Swenberg JA, Campbell SL, Chaney SG. NMR solution structure of an oxaliplatin 1,2-d(GG) intrastrand cross-link in a DNA dodecamer duplex. J Mol Biol 2004; 341:1251-69. [PMID: 15321720 DOI: 10.1016/j.jmb.2004.06.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 06/24/2004] [Indexed: 11/18/2022]
Abstract
We have determined, at high resolution, the NMR solution structure of an oxaliplatin-GG DNA dodecamer in the AGGC sequence context by 2D NMR studies. Homonuclear assignment strategies resulted in unambiguous assignment of 203 out of 249 protons, which corresponds to assignment of approximately 81% of the protons. Assignments of H5' and H5" protons were tentative due to resonance overlap. The structure of the oxaliplatin duplex was calculated using the program CNS with a simulated annealing protocol. A total of 510 experimental restraints were employed in the structure calculation. Of 20 calculated structures, the 15 with the lowest energy were accepted as a family. The RMSD of the 15 lowest energy structures was 0.68 A, indicating good structural convergence. The theoretical NOESY spectrum obtained by back-calculation from the final average structure showed excellent agreement with the experimental data, indicating that the final structure was in good agreement with the experimental NMR data. Significant conformational differences were observed between the oxaliplatin-GG 12-mer DNA we studied and all previous solution structures of cisplatin-GG DNA duplexes. For example, the oxaliplatin-GG adduct shows much less distortion at the AG base-pair step than the cisplatin-GG adducts. In addition, the oxaliplatin-GG structure also has a narrow minor groove and an overall axis bend of about 31 degrees, both of which are very different from the recent NMR structures for the cisplatin-GG adducts. These structural differences may explain some of the biological differences between oxaliplatin- and cisplatin-GG adducts.
Collapse
Affiliation(s)
- Yibing Wu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Beljanski V, Marzilli LG, Doetsch PW. DNA damage-processing pathways involved in the eukaryotic cellular response to anticancer DNA cross-linking drugs. Mol Pharmacol 2004; 65:1496-506. [PMID: 15155842 DOI: 10.1124/mol.65.6.1496] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used a panel of isogenic Saccharomyces cerevisiae strains compromised in several different DNA damage-processing pathways to assess in vivo processing of DNA adducts induced by four cross-linking anticancer drugs. By examining cytotoxicity profiles, cell cycle arrest patterns, and determining recombination and mutation frequencies, we found that cisplatin-, nitrogen mustard-, mitomycin-, and carmustine-induced DNA adducts in S. cerevisiae are processed by components of the nucleotide excision repair (NER), recombination repair (RR), and translesion synthesis (TLS) pathways, with substantially different contributions of each pathway for the drugs studied here. In contrast to previous studies that used single pathway-compromised strains to identify genes that mediate sensitivity to DNA cross-linking drugs, we used strains that were compromised in multiple pathways. By doing so, we were able to establish several functions that were previously unknown and interconnections between different DNA damage-processing pathways. To our surprise, we found that for cisplatin-induced cytotoxicity, TLS and RR contribute to survival to a significant extent. In the case of nitrogen mustard DNA adduct processing, equal involvement of two major pathways was established: one that requires functional RR and NER components and one that requires functional TLS and NER components. These data reveal the complexity of DNA cross-link processing that, in many cases, requires interactions of components from several different DNA damage-processing systems. We demonstrate the usefulness of yeast strains with multiple simultaneous defects in DNA damage-processing pathways for studying the modes of action of anticancer drugs.
Collapse
|
35
|
Abstract
Cellular DNA-repair pathways involve proteins that have roles in other DNA-metabolic processes, as well as those that are dedicated to damage removal. Several proteins, which have diverse functions and are not known to have roles in DNA repair, also associate with damaged DNA. These newly discovered interactions could either facilitate or hinder the recognition of DNA damage, and so they could have important effects on DNA repair and genetic integrity. The outcome for the cell, and ultimately for the organism, might depend on which proteins arrive first at sites of DNA damage.
Collapse
Affiliation(s)
- Susan D Cline
- Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, California 94305-5020, USA
| | | |
Collapse
|
36
|
Abstract
The study presented here investigates the effect of HMGB1 knockout on the sensitivity of mouse embryonic fibroblasts treated with the anticancer drug cisplatin. We evaluated both the growth inhibition by cisplatin and cisplatin-induced cell death in the Hmgb1(-/-) cells and its wild-type counterpart. No significant differences were observed in the responses of these cells to cisplatin, indicating that HMGB1 does not play a significant role in modulating the cellular responses to cisplatin in this context. Since HMGB1 significantly enhances the cytotoxicity of cisplatin in other cells, these results illustrate the importance of cell type in determining the ability of this and probably other cisplatin-DNA-binding proteins to influence the efficacy of the drug.
Collapse
Affiliation(s)
- Min Wei
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
37
|
Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 2002; 99:14298-302. [PMID: 12370430 PMCID: PMC137878 DOI: 10.1073/pnas.162491399] [Citation(s) in RCA: 670] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is a chemotherapeutic drug used to treat a variety of cancers. Both intrinsic and acquired resistance to cisplatin, as well as toxicity, limit its effectiveness. Molecular mechanisms that underlie cisplatin resistance are poorly understood. Here we demonstrate that deletion of the yeast CTR1 gene, which encodes a high-affinity copper transporter, results in increased cisplatin resistance and reduced intracellular accumulation of cisplatin. Copper, which causes degradation and internalization of Ctr1 protein (Ctr1p), enhances survival of wild-type yeast cells exposed to cisplatin and reduces cellular accumulation of the drug. Cisplatin also causes degradation and delocalization of Ctr1p and interferes with copper uptake in wild-type yeast cells. Mouse cell lines lacking one or both mouse Ctr1 (mCtr1) alleles exhibit increased cisplatin resistance and decreased cisplatin accumulation in parallel with mCtr1 gene dosage. We propose that cisplatin uptake is mediated by the copper transporter Ctr1p in yeast and mammals. The link between Ctr1p and cisplatin transport may explain some cases of cisplatin resistance in humans and suggests ways of modulating sensitivity and toxicity to this important anticancer drug.
Collapse
Affiliation(s)
- Seiko Ishida
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA
| | | | | | | |
Collapse
|
38
|
Zamble DB, Mikata Y, Eng CH, Sandman KE, Lippard SJ. Testis-specific HMG-domain protein alters the responses of cells to cisplatin. J Inorg Biochem 2002; 91:451-62. [PMID: 12175937 DOI: 10.1016/s0162-0134(02)00472-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cisplatin is an effective agent for the treatment of testicular cancer. In the present study with mouse testicular teratocarcinoma cell extracts, we observed a deficiency in nucleotide excision repair (NER) of a DNA probe bearing a cisplatin 1,2-d(GpG) intrastrand cross-link. In contrast, repair of the cisplatin 1,3-d(GpTpG) intrastrand cross-link was still active in these cell extracts. A current working hypothesis is that complexes of HMG-domain proteins with the major cisplatin 1,2-intrastrand cross-links could enhance cisplatin cytotoxicity by blocking repair of these lesions on the genome. The family of HMG-domain proteins include a testis-specific protein, tsHMG, which might account for the altered NER in testicular cells. To test this possibility, a human cervical carcinoma cell line (HeLa) was constructed which ectopically expressed tsHMG under the control of an inducible promoter. Microscopic examination of tsHMG expression and cisplatin-induced apoptosis on a cellular level revealed that the nuclear protein did indeed modulate the cytotoxic consequences of cisplatin treatment. Also, tsHMG enhanced transcription inhibition by cisplatin. These results reveal that an HMG-domain protein can affect cellular responses to cisplatin and may be relevant to the clinical observation that cancer cells in specific tissues are particularly sensitive to cisplatin.
Collapse
Affiliation(s)
- Deborah B Zamble
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | | | | | | | | |
Collapse
|
39
|
Essigmann JM, Rink SM, Park HJ, Croy RG. Design of DNA damaging agents that hijack transcription factors and block DNA repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:301-13. [PMID: 11764957 DOI: 10.1007/978-1-4615-0667-6_47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- J M Essigmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The processes by which cells develop resistance to antitumor platinum drugs have been the subject of intense research because resistance is a major obstacle for the clinical use of this class of drugs. It is therefore of great interest to understand the molecular and biochemical mechanisms that underlie resistance to platinum drugs and their biological effects. There is a large body of experimental evidence suggesting that the antitumor activity of platinum complexes stems from their ability to form on DNA various types of covalent adducts. As a result, research on DNA modifications by these drugs and their cellular processing has predominated. The resistance of tumor cells to platinum drugs has been attributed to several processes and an increased repair of platinum-DNA adducts is considered a most significant event. The present review summarizes recent insights into the effects of sulfur-containing compounds on DNA modifications by antitumor platinum complexes and how these modifications are repaired including how this repair is associated with their recognition by cellular, damaged-DNA binding-proteins. It strongly supports the view that changes in the structure of platinum drugs, resulting in DNA binding mode fundamentally different from that of "classical" cisplatin, will alter resistance pathways of platinum drugs, and may also modulate their pharmacological properties.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, Brno, Czech Republic.
| | | |
Collapse
|
41
|
Wong B, Masse JE, Yen YM, Giannikopoulos P, Feigon J, Johnson RC, Giannikoupolous P. Binding to cisplatin-modified DNA by the Saccharomyces cerevisiae HMGB protein Nhp6A. Biochemistry 2002; 41:5404-14. [PMID: 11969400 DOI: 10.1021/bi012077l] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nhp6A is an abundant non-histone chromatin-associated protein in Saccharomyces cerevisiae that contains a minor groove DNA binding motif called the HMG box. In this report, we show that Nhp6Ap binds to cisplatin intrastrand cross-links on duplex DNA with a 40-fold greater affinity than to unmodified DNA with the same sequence. Nevertheless, Nhp6Ap bound to cisplatinated DNA readily exchanges onto unmodified DNA. Phenanthroline-copper footprinting and two-dimensional NMR on complexes of wild-type and mutant Nhp6Ap with DNA were employed to probe the mode of binding to the cisplatin lesion. Recognition of the cisplatin adduct requires a surface-exposed phenylalanine on Nhp6Ap that promotes bending of DNA by inserting into the helix from the minor groove. We propose that Nhp6Ap targets the cisplatin adduct by means of intercalation by the phenylalanine and that it can bind in either orientation with respect to the DNA lesion. A methionine, which also inserts between base pairs and functions in target selection on unmodified DNA, plays no apparent role in recognition of the cisplatin lesion. Basic amino acids within the N-terminal arm of Nhp6Ap are required for high-affinity binding to the cisplatin adduct as well as to unmodified DNA. Cisplatin mediates its cytotoxicity by forming covalent adducts on DNA, and we find that Deltanhp6a/b mutants are hypersensitive to cisplatin in comparison with the wild-type strain. In contrast, Deltanhp6a/b mutants are slightly more resistant to hydrogen peroxide and ultraviolet irradiation. Therefore, Nhp6A/Bp appears to directly or indirectly function in yeast to enhance cellular resistance to cisplatin.
Collapse
Affiliation(s)
- Ben Wong
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Lee KB, Wang D, Lippard SJ, Sharp PA. Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proc Natl Acad Sci U S A 2002; 99:4239-44. [PMID: 11904382 PMCID: PMC123632 DOI: 10.1073/pnas.072068399] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transcription-coupled repair (TCR) is essential for the rapid, preferential removal of DNA damage in active genes. The large subunit of RNA polymerase (Pol) II is ubiquitinated in cells after UV-irradiation or cisplatin treatment, which induces DNA damage preferentially repaired by TCR. Several human mutations, such as Cockayne syndrome complementation groups A and B, are defective in TCR and incapable of Pol II ubiquitination upon DNA damage. Here we demonstrate a correlation between ubiquitination of RNA Pol II and arrest of transcription in vitro. Ubiquitination of Pol II is significantly induced by alpha-amanitin, an amatoxin that blocks Pol II elongation and causes its degradation in cells. Pol II undergoes similar ubiquitination on DNA containing cisplatin adducts that arrest transcription. Stimulation of ubiquitination requires the addition of template DNA and does not occur in the presence of an antibody to the general transcription factor TFIIB, indicating the transcription dependence of the reaction. We propose that components of the reaction recognize elongating Pol II-DNA complexes arrested by alpha-amanitin or cisplatin lesions, triggering ubiquitination.
Collapse
Affiliation(s)
- Keng-Boon Lee
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
43
|
Mitra K, Marquis JC, Hillier SM, Rye PT, Zayas B, Lee AS, Essigmann JM, Croy RG. A rationally designed genotoxin that selectively destroys estrogen receptor-positive breast cancer cells. J Am Chem Soc 2002; 124:1862-3. [PMID: 11866593 PMCID: PMC4095803 DOI: 10.1021/ja017344p] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a novel strategy to increase the selective toxicity of genotoxic compounds. The strategy involves the synthesis of bifunctional molecules capable of forming DNA adducts that have high affinity for specific proteins in target cells. It is proposed that the association of such proteins with damaged sites in DNA can compromise protein function and/or DNA repair resulting in increased toxicity. We describe the synthesis of a bifunctional compound consisting of an aniline mustard linked to the 7alpha position of estradiol. This novel compound can form covalent DNA adducts that have high affinity for the estrogen receptor. Breast cancer cells that express high levels of the estrogen receptor showed increased sensitivity to the cytotoxic effects of the new compound.
Collapse
Affiliation(s)
- Kaushik Mitra
- Department of Chemistry and Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schenk PW, Boersma AWM, Brok M, Burger H, Stoter G, Nooter K. Inactivation of the Saccharomyces cerevisiae SKY1 gene induces a specific modification of the yeast anticancer drug sensitivity profile accompanied by a mutator phenotype. Mol Pharmacol 2002; 61:659-66. [PMID: 11854447 DOI: 10.1124/mol.61.3.659] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The therapeutic potential of the highly active anticancer agent cisplatin is severely limited by the occurrence of cellular resistance. A better understanding of the molecular pathways involved in cisplatin-induced cell death could potentially indicate ways to overcome cellular unresponsiveness to the drug and thus lead to better treatment results. We used the budding yeast Saccharomyces cerevisiae as a model organism to identify and characterize novel genes involved in cisplatin-induced cell kill, and found that SKY1 (SR-protein-specific kinase from budding yeast) is a cisplatin sensitivity gene whose disruption conferred cisplatin resistance. In cross-resistance studies, we observed resistance of yeast sky1 Delta cells (i.e., cells from which the SKY1 gene had been disrupted) to cisplatin, carboplatin (but not oxaliplatin), doxorubicin and daunorubicin, and hypersensitivity to cadmium chloride and 5-fluorouracil. Furthermore, these cells did not display reduced platinum accumulation, DNA platination or doxorubicin accumulation, indicating that the resistance is unrelated to decreased drug import or increased drug export. Based on the modification of the anticancer drug sensitivity profile and our finding that sky1 Delta cells display a mutator phenotype, we propose that Sky1p might play a significant role in specific repair and/or tolerance pathways. Disruption of the S. cerevisiae SKY1 gene would thus result in deregulation of such mechanisms and, consequently, lead to altered drug sensitivity.
Collapse
Affiliation(s)
- Paul W Schenk
- Department of Medical Oncology, University Hospital Rotterdam-Daniel den Hoed Cancer Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Pasheva EA, Ugrinova I, Spassovska NC, Pashev IG. The binding affinity of HMG1 protein to DNA modified by cis-platin and its analogs correlates with their antitumor activity. Int J Biochem Cell Biol 2002; 34:87-92. [PMID: 11733188 DOI: 10.1016/s1357-2725(01)00096-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The antitumor activity of cis-platin is believed to result from its interaction with cellular DNA and subsequent processing of DNA adducts by damage recognition proteins. Among them are the high mobility group (HMG) proteins 1 and 2, which have been hypothesized to mediate the effect of cis-platin. One possibility suggests that the tight binding of HMG1 to DNA adducts blocks the repair of damaged DNA. In order to further evaluate such a mechanism, several cis-platinum complexes with known antitumor activity have been used to treat DNA and the affinity of HMG1 to the DNA adduct induced by each drug was determined. The dissociation constants for the complexes of HMG1 with the platinated probe were obtained by gel mobility shift assays. The antitumor activity of the tested platinum compounds was found to correlate with the binding affinity of HMG1 to the respective drug-DNA adduct. These findings support the view that HMG1 contributes to cytotoxicity of cis-platin by shielding damaged DNA from repair. In addition, they offer a fast test for screening new platinum compounds for antitumor activity.
Collapse
Affiliation(s)
- Evdokia A Pasheva
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | | | | |
Collapse
|
46
|
Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:93-130. [PMID: 11525387 DOI: 10.1016/s0079-6603(01)67026-0] [Citation(s) in RCA: 438] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cisplatin [cis-DDP, cis-diamminedichloroplatinum(II)] is a potent anticancer drug that has been used successfully to treat tumors of the head, neck, lungs, and genitourinary tract. The biological activity of cisplatin was discovered serendipitously more than 30 years ago, and since that time research efforts have focused on elucidating its mechanism of action. The present review provides a historical perspective of our attempts to understand this complex phenomenon and the results of recent work that guides our current activities in this field. Continued efforts to understand the mechanism of genotoxicity of cisplatin are expected to lead to the discovery of new drugs and combinations for the improvement of cancer chemotherapy.
Collapse
Affiliation(s)
- S M Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
47
|
Yarnell AT, Oh S, Reinberg D, Lippard SJ. Interaction of FACT, SSRP1, and the high mobility group (HMG) domain of SSRP1 with DNA damaged by the anticancer drug cisplatin. J Biol Chem 2001; 276:25736-41. [PMID: 11344167 DOI: 10.1074/jbc.m101208200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure-specific recognition protein SSRP1, initially isolated from expression screening of a human B-cell cDNA library for proteins that bind to cisplatin (cis-diamminedichloroplatinum(II))-modified DNA, contains a single DNA-binding high mobility group (HMG) domain. Human SSRP1 purifies as a heterodimer of SSRP1 and Spt16 (FACT) that alleviates the nucleosomal block to transcription elongation by RNAPII in vitro. The affinity and specificity of FACT, SSRP1, and the isolated HMG domain of SSRP1 for cisplatin-damaged DNA were investigated by gel mobility shift assays. FACT exhibits both affinity and specificity for DNA damaged globally with cisplatin compared with unmodified DNA or DNA damaged globally with the clinically ineffective trans-DDP isomer. FACT binds the major 1,2-d(GpG) intrastrand cisplatin adduct, but its isolated SSRP1 subunit fails to form discrete, high affinity complexes with cisplatin-modified DNA under similar conditions. These results suggest that Spt16 primes SSRP1 for cisplatin-damaged DNA recognition by unveiling its HMG domain. As expected, the isolated HMG domain of SSRP1 is sufficient for specific binding to cisplatin-damaged DNA and binds the major cisplatin 1,2-d(GpG) intrastrand cross-link. The affinity and specificity of FACT for cisplatin-modified DNA, as well as its importance for transcription of chromatin, suggests that the interaction of FACT and cisplatin-damaged DNA may be crucial to the anticancer mechanism of cisplatin.
Collapse
Affiliation(s)
- A T Yarnell
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Cisplatin is a widely used chemotherapeutic agent. It reacts with nucleophilic bases in DNA and forms 1,2-d(ApG), 1,2-d(GpG) and 1,3-d(GpTpG) intrastrand crosslinks, interstrand crosslinks and monofunctional adducts. The presence of these adducts in DNA is through to be responsible for the therapeutic efficacy of cisplatin. The exact signal transduction pathway that leads to cell cycle arrest and cell death following treatment with the drug is not known but cell death is believed to be mediated by the recognition of the adducts by cellular proteins. Here we describe the structural information available for cisplatin and related platinum adducts, the interactions of the adducts with cellular proteins and the implications of these interactions for cell survival.
Collapse
Affiliation(s)
- M Kartalou
- Department of Chemistry, Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
49
|
Hofr C, Brabec V. Thermal and thermodynamic properties of duplex DNA containing site-specific interstrand cross-link of antitumor cisplatin or its clinically ineffective trans isomer. J Biol Chem 2001; 276:9655-61. [PMID: 11104778 DOI: 10.1074/jbc.m010205200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of the single, site-specific interstrand cross-link formed by cisplatin or transplatin on the thermal stability and energetics of a 20-base pair DNA duplex is reported. The cross-linked or unplatinated 20-base pair duplexes were investigated with the aid of differential scanning calorimetry, temperature-dependent UV absorption, and circular dichroism. The cross-link of both platinum isomers increases the thermal stability of the modified duplexes by changing the molecularity of denaturation. The structural perturbation resulting from the interstrand cross-link of cisplatin increases entropy of the duplex and in this way entropically stabilizes the duplex. This entropic cross-link-induced stabilization of the duplex is partially but not completely compensated by the enthalpic destabilization of the duplex. The net result of these enthalpic and entropic effects is that the structural perturbation resulting from the formation of the interstrand cross-link by cisplatin induces a decrease in duplex thermodynamic stability, with this destabilization being enthalpic in origin. By contrast, the interstrand cross-link of transplatin is enthalpically almost neutral with the cross-link-induced destabilization entirely entropic in origin. These differences are consistent with distinct conformational distortions induced by the interstrand cross-links of the two isomers. Importantly, for the duplex cross-linked by cisplatin relative to that cross-linked by transplatin, the compensating enthalpic and entropic effects almost completely offset the difference in cross-link-induced energetic destabilization. It has been proposed that the results of the present work further support the view that the impact of the interstrand cross-links of cisplatin and transplatin on DNA is different for each and might also be associated with the distinctly different antitumor effects of these platinum compounds.
Collapse
Affiliation(s)
- C Hofr
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | | |
Collapse
|
50
|
Shah D, Kelly J, Zhang Y, Dande P, Martinez J, Ortiz G, Fronza G, Tran H, Soto AM, Marky L, Gold B. Evidence in Escherichia coli that N3-methyladenine lesions induced by a minor groove binding methyl sulfonate ester can be processed by both base and nucleotide excision repair. Biochemistry 2001; 40:1796-803. [PMID: 11327842 DOI: 10.1021/bi0024658] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been previously reported that a neutral DNA equilibrium binding agent based on an N-methylpyrrolecarboxamide dipeptide (lex) and modified with an O-methyl sulfonate ester functionality (MeOSO(2)-lex) selectively affords N3-methyladenine lesions. To study the interaction of the neutral lex dipeptide with calf thymus DNA, we have prepared stable, nonmethylating sulfone analogues of MeOSO(2)-lex that are neutral and cationic. Thermodynamic studies show that both the neutral and monocationic sulfone compounds bind to DNA with K(b)'s of 10(5) in primarily entropy-driven reactions. To determine how the cytotoxic N3-methyladenine adduct generated from MeOSO(2)-lex is repaired in E. coli, MeOSO(2)-lex was tested for toxicity in wild-type E. coli and in mutant strains defective in base excision repair (tag and/or alkA glycosylases or apn endonuclease), nucleotide excision repair (uvrA), and both base and nucleotide excision repair (tag/alkA/uvrA). The results clearly demonstrate the cellular toxicity of the N3-methyladenine lesion, and the protective role of base excision glycosylase proteins. A novel finding is that in the absence of functional base excision glycosylases, nucleotide excision repair can also protect cells from this cytotoxic minor groove lesion. Interaction between base and nucleotide excision repair systems is also seen in the protection of cells treated with cis-diamminedichloroplatinum(II) but not with anti-(+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene.
Collapse
Affiliation(s)
- D Shah
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198-6805,USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|